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Özet: Kanatçık yükleme cihazları, havacılık uygulamalarında 
kullanılan tahrik (eyletim) sistemleri üzerindeki harici yük etkisi 
benzetimlerini yapmak amacıyla geliştirilmektedir. Bahsedilen 
uygulamalarda, kanatçık tahrik sistemlerinin aerodinamik kuvvet 
ve momentler altındaki başarımları ele alınması gereken önemli 
hususlardan biridir.  Göz önüne alınan azami kuvvet ve moment 
değerlerine bağlı olarak, kanatçık yükleme cihazları 
elektromekanik, hidrolik veya pnömatik eyletimli olabilmektedir. 
Bant genişliği gereksinimi, eyletim şekline karar vermedeki bir 
diğer belirleyici unsur olarak öne çıkmaktadır. Bu bağlamda, daha 
yüksek kuvvet ve moment oluşturma kapasitesi ve yüksek bant 
genişliği dolayısıyla hidrolik eyletim daha avantajlı bir seçenek 
olarak belirmektedir. Bu çalışmada, hidrolik eyletimli bir kanatçık 
yükleme cihazı için tümlevli geri adımlama yöntemi kullanılarak 
denetim sistemi tasarlanması hususu ele alınmaktadır. 
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Abstract: Fin loading systems are utilized to simulate the effects 
of the external inputs on actuation systems in aerial applications. 
In those systems, the performance of the fin actuation systems 
subject to aerodynamic force and moment effects is one of the 
major issues to be handled. Depending on the amount of the 
maximum force and torque values, the loading systems are in the 
type of electromechanically-, hydraulically-, or pneumatically-
actuated. The bandwidth requirement is another determining 
factor in deciding on the type of the actuation. In this scene, the 
hydraulic actuation systems are more advantageous than the 
others because of their large force and moment execution 
capabilities as well as high bandwidth properties. In this study, 
the issue of designing a control system for a hydraulically-
actuated fin loading system is investigated regarding the integral 
backstepping method. 
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1. Introduction 
Performance of the fin actuation systems 
utilized in aerial vehicles is directly 
dependent on their achievement against 
aerodynamic effects acting on the 
actuation system through control 
surfaces. In order to guarantee their 
success, it is necessary that the related 
verification tests be completed prior to 
the field implementation. 
 
In aerospace engineering, the 
aerodynamic effects acting on the control 
surfaces of the flying systems are called 
‘hinge moments’. For observing the 
influence of the hinge moment on the 
control surfaces, the force and moment 
execution systems called ‘fin loading 
systems’ are developed. In these systems, 
the actuation unit is constructed in 
electromechanical, hydraulic, or 
pneumatic type depending on the 
performance requirements. Especially 
for the situations in which the amplitude 
of the forces and moments to be applied 
to the considered fin actuation system is 
relatively high, the hydraulically-
actuated configurations are chosen. The 
opportunity for larger bandwidth values 
constitutes the other advantage of these 
kind of structures as well as their small 
size-to-power ratio characteristics [1]. 
 
In earlier studies, conventional control 
systems mainly based on PID 
(proportional plus integral plus 
derivative) controller are developed for 
hydraulic loading systems. However, it is 
observed that these schemes can not 
make the control of the loading systems 
as accurate as desired because the PID-
type control action is not sufficient to 
handle parameter uncertainties in the 
hydraulic system and also disturbing 
effects [2,3]. Regarding the nonlinear 
characteristics of the hydraulic systems 
as well, several robust control methods 
are utilized in the control of hydraulic 
loading systems as a remedy to the 
inconveniencies mentioned above [4]. 

Although it is not so common as norm-
based control approaches, one of those 
methods is the so-called ‘backstepping 
control’ which is a recursive control 
technique. Especially when certain 
parametric uncertainties such as those 
on hydraulic parameters and unknown 
disturbance effects originating from the 
external loads are in concern, the 
backstepping control is proposed as a 
viable solution [1]. Regarding the 
complex nonlinear mathematical models 
of the hydraulic systems under 
consideration, the backstepping control 
scheme can be built for position tracking 
control applications of hydraulic loading 
systems [5]. In order to increase the 
tracking performance of those systems, a 
disturbance observer is coupled with the 
backstepping control structure so as to 
estimate the disturbance including the 
friction and loading forces. The related 
experimental studies show that the 
suggested approach yield satisfactory 
results in accordance with the 
disturbance observer designed [6]. The 
preceding structure is enhanced by 
taking the parameter uncertainties into 
account in the disturbance observer. In 
the mentioned scheme, the ‘extended’ 
disturbance observer accounts the 
external perturbations and parameter 
uncertainties separately [7]. Further, the 
actuator disturbance is considered in 
addition to the friction and hydraulic 
flow nonlinearities and thus the 
nonlinearity level of the loading system 
is increased more. Having performed the 
relevant computer simulations and 
laboratory experiments, it is seen that 
the proposed backstepping control 
scheme satisfies the tracking 
performance requirements [8]. As shown 
in the literature, the backstepping 
control scheme is improved in an 
adaptive manner by estimating some 
unknown parameters in hydraulic model 
and then the algorithm is tested on a 
constructed setup [1-3]. Apart from 
controlled loading systems, the 
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backstepping control method is applied 
on passive torque control systems both 
analytically and experimentally in an 
adaptive manner. The preceding work is 
supported by means of a Takagi-Sugeno 
fuzzy logic algorithm [9]. In another 
static hydraulic loader implementation,           
a Lyapunov-based robust control 
algorithm including friction 
compensation is conducted with                              
a convenient state observer [10]. 
 
In order to design a controller using the 
backstepping method, the dynamic 
equations of the system to be controlled 
should be expressed in the lower-
triangular form. For example, if xi anf fi 
denote the ith state variable of a system 
and corresponding function (i=1, 2,               
and 3), respectively, and u represents its 
control input, the dynamic equations of 
the system can be expressed in the lower 
triangular form as [11-13] 
 

 2111 x,xfx   (1) 

 
 32122 x,x,xfx   (2) 

 
 u,x,x,xfx 32133   (3) 

 
In this technique, each of the differential 
equations given above is stabilized with 
the following state variable as the control 
variable. Namely, at the first stage, x2 is 
used as the control variable for the x1 
dynamics in equation (1). Then, x3 serves 
as the control variable of the x2 dynamics 
given in equation (2). After stabilizing 
the x1 and x2 dynamics in equations (1) 
and (2), the actual control input u is 
determined from equation (3) as a 
function of x1, x2, and x3. In each stage, the 
corresponding stabilizing control law is 
obtained using an appropriate method 
such as using a proper Lyapunov 
function. Since a stabilizing feedback 
control law is derived at each stage and 
then the process goes one step back until 
the actual control input is determined, 

this method is called ‘backstepping’ 
[5,11,14]. 
 
In this study, a control system based on 
the integral backstepping approach is 
proposed for hydraulically-actuated fin 
loading systems. Unlike most of the 
relevant studies on the control of the 
hydraulic or electro-hydraulic loading 
systems, the torque control problem is 
handled here instead of the position or 
speed control. Namely, almost all of 
control schemes on the hydraulic loading 
systems are based on the position 
tracking of the output elements or shafts 
of the actuators while the torque on the 
shaft is directly chosen as the control 
variable in the present work. Selecting 
hydraulic motors as the actuators of the 
system, the control signals are generated 
with regard of the backstepping control. 
Here, an extra integral action is added to 
the control scheme to nullify the steady-
state errors of the control system unlike 
the classical backstepping method. 
Namely, having derived the equations of 
motion of the mentioned system, the 
control algorithm is established upon 
this model in a way compatible with the 
backstepping method including an 
integral action. Afterwards, the gains are 
obtained for the system with a classical 
PID-type controller. In the end of the 
relevant computer simulations, it is seen 
that the backstepping control gives more 
satisfactory results than its classical 
counterparts because of its robustness. 
Apart from their superior characteristics, 
the implementation difficulties of the 
integral backstepping approach on a 
physical system are also emphasized 
within the scope of the work. 
 
2. Dynamic Modeling of the System 
The schematic representation of the 
regarded hydraulic fin loading system is 
shown in Figure 1. As seen from the 
figure, the loading system consists of four 
identical hydraulic motors placed on a 
horizontal table at an angle of 90. In this 
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configuration, the corresponding fin 
actuation system consisting of four 
control fins is mounted on the system in 
vertical position such that each of its fin 
connection rods matches one of the 
hydraulic motor. Then, the hydraulic 
motors exert torques representing the 
external aerodynamic effects, i.e. hinge 
moments, on the fin connection rods. 
While the fin actuation system is 
subjected to torques through its fin 
connection rods, it reacts by trying to 
rotate those rods by means of its control 
system. In this scheme, it is intended to 
see that the fin loading system is capable 
of rotating the fin connection rods even if 
they are under aerodynamic hinge 
moment effects. In the mentioned 
connections, it is assumed that couplings 
are used with a reduction ratio of N 
(N>1). 
 

 
Figure 1. Hydraulic motor type fin loading 
system [15] 

 
Regarding each fin-hydraulic motor 
connection, the hydraulic actuation 
system can be represented as in Figure 2. 
  

 
Figure 2. Hydraulic actuation system 
 

As indicated in Figure 2, the actuation 
system is combined of a servovalve,                        
a hydraulic motor, a coupling to make   
the connection between the motor and 
fin connection rod, and a torque sensor 
used to measure the net torque value on 
the motor output. In this configuration, 
the servovalve acts as a driver unit by 
allowing the amount of the pressurized 
hydraulic fluid proportional to the 
amount of the valve openings to pass 
through so as to rotate the hydraulic 
motor for getting the desired angular 
motion on its output shaft. The meanings 
of the symbols in Figure 2 are as listed 
below. 

 
bm: Viscous friction coefficient between 
the rotary and stationary parts of the 
hydraulic motor 
cL: Leakage coefficient between the 
separate volumes of the hydraulic motor 
Jm and JA: Moment of inertia values of the 
rotary part of the hydraulic motor and 
half of the torque sensor with respect to 
their rotation axes, respectively 
N: Reduction ratio of the coupling 
p1 and p2: Inlet and outlet pressures of 
the hydraulic motor, respectively 
pR and pS: Return and supply pressures 
on the inlet and outlet ports of the 
servovalve, respectively 
: Control voltage to the position of the 
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servovalve spool 
x: Displacement of the servovalve spool 
(valve opening) 
m: Angular displacement of the 
hydraulic motor output shaft 
: Angular displacement of the coupling 
output shaft 
f: Angular displacement of the fin 
connection rod 

 
Here, the servovalve dynamics can be 
expressed by the transfer function below 
using the Laplace variable ‘s’ in terms of 
the gain (Kv) and time constant (Tv) as 
the input and output variables are the 
displacement of servovalve control spool 
(x) and servovalve control signal in 
voltage (): 
 

 
  1


 sT

K

s

sx

v

v  (4) 

 
The linearized servovalve characteristics 
can be described by the following 
formula in terms of the displacement of 
the servovalve control spool and load 
pressure (pL) [16]: 
 

LpxL pcxcQ   (5) 

 
where QL, cx, and cp denote the volumetric 
flow rate of the load, servovalve 
displacement coefficient, and servovalve 
pressure coefficient, respectively. In this 
model, QL is assumed as the mean flow 
rate of the flow rates in the inlet and 
outlet ports of the hydraulic motor. From 
Figure 2, pL is defined in the following 
manner [16]: 
 

21 pppL   (6) 

 
Thus, the load flow rate can be calculated 
using the expression below [16]: 
 

   LLLmL pcp/VDQ    2  (7) 

 
 

where D, m
 , V, and  stand for the 

displacement of the hydraulic motor, i.e. 
the fluid volume per rotation handled by 
the rotary portion of the hydraulic motor, 
angular speed of the output shaft of the 
hydraulic motor, average volume of each 
part of the hydraulic motor, and bulk 
modulus, respectively. 

 
The dynamics of the fin loading system is 
modeled regarding the next equation: 
 

  Lfsme pDKbJ     (8) 

 
where Je stands for the equivalent 
moment of inertia of the system on the 
output shaft of the coupling equal to 

 2N/JJ Am   while Ks is the constant 

gain of the torque sensor. 
 

Regarding Figure 2, the following 
equality is considered in the derivation of 
equation (8): 
 

N/m   (9) 

 
Since the control system under 
consideration handles the torque 
quantity on the fin connection rod as the 
control variable, f can be assumed as a 
disturbance on the fin connecting rod. 
With this assumption, pL can be picked 
from equation (8) as follows: 

 

  D/KbJp smeL     (10) 

 
The time derivative of equation (10) 
yields the following expression for                     
a constant value of D: 
 

  D/KbJp smeL     (11) 

 
Since the net displacement at the 
midpoint of the torque sensor is f, the 
torque value measured by the torque 
sensor (T) can be found from the formula 
below: 
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 fsKT    (12) 

 
Accounting the same assumption that f 
is the disturbance, equation (12) turns 
into the following form: 

 
sKT   (13) 

 
From equation (13),  can be found as a 
function of T in the following fashion: 
 

sK/T  (14) 

 
Hence, matching equations (5) and (7) 
and substituting equations (4), (10), and 
(11) into the resulting expression, the 
forthcoming differential equation comes 
into the picture in terms of T along with 
the insertion of equation (14) and its 
successive time derivatives: 
 

 TdTdTdTd 0123
  (15) 

 
 where  

DKc

cc
d

vx

pL 
0 , 

  







 ND

KV
bcc

KDKc
d s

mpL
svx

2
1

2

1



  









2

1
2

m
epL

svx

bV
Jcc

KDKc
d  and 

svx

e

KDKc

JV
d

2
3  . 

 
Considering that the ratio  2/V  is 

much smaller than the other multipliers 
given in equation (7) and hence ignoring 
that division, equation (15) can be 
simplified to the following second-order 
expression: 

 

 TcTcTc 012
  (16) 

 

where c0=d0, 
 

svx

mpL

KDKc

NDbcc
c

2

1


 , 

and 
 

svx

epL

KDKc

Jcc
c


2 . 

3. Design of the Control System 
3.1. Integral backstepping control 
As Td and Gc denote the desired, or 
reference, value of T and transfer 
function of the controller unit, the block 
diagram of the entire control system can 
be drawn as shown in Figure 3. 
 
In order to apply the backstepping 
method to the present system, it is more 
appropriate to express the system 
dynamics in state space form. Regarding 
this fact, T and its first time derivative                

(T ) can be selected to be the first and 
second state variables of the system as 

Tx 1  and Txx   12 . Moreover, the 

time integration of x1, i.e.  dtxx 10 , is 

added to the control scheme as the 
additional state variable. Hence, the state 
equations of the fin loading system 
happen to be in the following fashion 
accounting equation (16) as well [17]: 
 

10 xx   (17) 

 

21 xx   (18) 

 
uxxx u  22112  (19) 

 
where 201 c/c , 212 c/c , and 

21 c/u  . 
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Figure 3. Block diagram of the control system 

 
Looking at equations (17) through (19), 
it is seen that they are in the lower 
triangular form as explained using 
equations (1) through (3). Hence, the 
backstepping method can be applied to 
the system to construct a torque control 
system. From here, as subscript ‘d’ 
indicates the desired value of the 
corresponding variable, the error terms 
(ei) and relevant Lyapunov functions 
based on the state errors for each of the 
state variables (Vi) can be constructed as 
in the following expressions for i=1 and 2 
[18-19]: 
 

iidi xxe   (20) 

 

  2
1 21 iii e/VV    (21) 

 

 where   2
00 21 e/V  . 

 
In designing a torque control system 
using the backstepping method with an 
integrator, the first step is the 
determination of the virtual control input 
x1d which stabilizes x0 dynamic given in 
equation (17). Here, the primary 
requirement on x1d is that it should make 
V0 strictly positive while the time 

derivative of V0 ( 0V
 ) has to be negative. 

To do this, the time derivative of V0 is 
taken as given below: 
 

10
2
000 eeekV   (22) 

 
In equation (22), the controller gain k0 is 
defined as a positive constant in the 
following manner: 

 
  0010 e/xxk dd   (23) 

 
Considering the selection given in 
equation (23), x1d is obtained as 
 

0001 ekxx dd    (24) 

 
After determining x1d, the second step 
arises as the computation of the other 
virtual control input x2d. In the similar 
manner, x2d can be found regarding the 
positive controller gain k1 that is selected 

to make 1V
  negative as shown in 

equation (27). The resulting expressions 

for 1V
  and k1 are also submitted in 

equations (25) and (26), respectively. 
 

21
2
11

2
001 eeekekV   (25) 

 
  1000021 e/eekxxk dd    (26) 

 

1100002 ekeekxx dd    (27) 

 
Finally, the real control input u results 

from the expression written for 2V
  given 

in equation (28) with the definition of 
the positive controller gain k2 as in 
equation (29): 
 

2
22

2
11

2
002 ekekekV   (28) 

 


 u

d

/xx

eKeKeKxu

 2211

0001020



 
 (29) 

 
where 210200 kkkkkK  , 

22120101  kkkkkkK , and 
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2102 kkkK  . 

 
The compound controller gains K0, K1, 
and K2 can be determined using the 
equations belonging to the error 
dynamics of the system. In this sense, the 
mentioned equations are revealed from 
the time derivatives of ej terms (j=0, 1, 
and 2) as listed below: 
 

1000 eeke   (30) 

 

21101 eekee   (31) 

 

2212 ekee   (32) 

 
The equations within (30) through (32) 
can be expressed more compactly in 
state space form in the following manner: 
 

eK̂e   (33) 

 

where  Teeee 210  and 

























2

1

0

10

11

01

k

k

k

K̂ . 

 
Having applied the Laplace 
transformation to the matrix equation 
(33), the equation giving the eigenvalues 
of the system appears to be as follows 
[17]: 
 

  001
2

2
3  KsKsKssD  (34) 

 
The form of D(s) normalized to its 
constant term [  sD ] becomes as 

 

 

1

1

0

1

2

0

23

0













































s
K

K

s
K

K
s

K
sD

 (35) 

 
 In order to determine the gains K0, K1, 
and K2, the well-known pole placement 

technique can be used [17]. For this 
purpose, the next normalized third-order 
polynomial  sD3  corresponding to the 

characteristic polynomial of a third-
order system dynamics is one of the 
appropriate candidates [20]: 
 

 

1
12

121 2

2

3

33













 














 

















s

sssD

c

c

c

c

c










 (36) 

 
where c and c stand for the desired 
bandwidth, i.e. corner frequency, and 
damping ratio values of the constructed 
control system, respectively. 
 
Specifying c and c in accordance with 
the expected system performance, K0, K1, 
and K2 are obtained as given below by 
equating  sD  and  sD3  polynomials in 

equations (35) and (36) each other: 
 

3
0 cK   (37) 

 

  2
1 12 ccK    (38) 

 
  ccK  122   (39) 

 
3.2. Classical PID-type control 
The transfer function of from  to T can 
be obtained from equation (16) as 
follows: 

 

   
 

01
2

2

1

cscscs

sT
sG





  (40) 

 
Taking f as the external disturbance, the 
simplified block diagram of the classical 
control system is drawn for unity 
feedback as shown in Figure 4. 
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Figure 4. Simplified block diagram of the 
control system 
 

Here, the controller transfer function                 
[  sGc ] is equal to the next expression for 

the PID-type controller as Kp, Ki, and Kd 
denote the proportional, integral, and 
derivative gains of the controller, 
respectively: 

 

  sK
s

K
KsG d

i
pc   (41) 

 
Considering equations (40) and (41), the 
overall transfer function of the closed-
loop control system becomes as given 
below: 
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where 
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As done for the case with the integral 
backstepping control, the controller 
gains can be determined by equating the 
 sD  polynomial in equation (36) to the 

characteristic polynomial, i.e. 
denominator polynomial, of the transfer 
function of the closed-loop system in                
equation (42) represented by D(s). 
Hence, Kp, Ki, and Kd come into the 
picture in the following fashion: 

 

  0
2

212 ccK ccp    (43) 

 

3
2 ci cK   (44) 

 
  1212 ccK ccd    (45) 

 
4. Computer Simulations 
In order to compare the performance 
characteristics of the integral 
backstepping- and PID-based control 
systems, the relevant models are 
constructed in the MATLAB SIMULINK 
environment as shown in Figure 5. 

 
Here, the comparison between the 
integral backstepping- and PID-based 
control systems are performed according 
to three criteria: 

i. Maximum overshoot, 
ii. Phase difference between the 

reference input and system 
output, 

iii. Integral square error (ISE). 
 
In this scene, it is regarded that the 
excessive amount of the hinge moment 
on the fin connection rod may cause it to 
break down during the operation. Also, it 
enforces the opposing fin actuation 
system to operate against excessive 
external torque and hence the fin 
actuation system may fail due to harder 
operating conditions. For this reason, the 
maximum overshoot is chosen as one of 
the comparison criteria for the cases in 
which the reference input is selected to 
be a step input. Apart from this, the 
phase difference between the reference 
input and system outputs values yielded 
by the control systems exists in certain 
cases. Thus, the phase difference is 
selected to be the second comparison 
factor. 
 
For a fair comparison among different 
control systems, the use of ISE is a 
common practice in control engineering. 
In this study, ISE which constitutes the 
third comparison metric is calculated 
regarding the following equation [21]: 
 

Gc(s) G(s)
+

-

Td T
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 
ft

t

dtteISE
0

2  (46) 

 
where t0 anf tf stand for the initial and 
final time values of the simulation 
considered, respectively. Also, the 
actuating error [e(t)] is defined as 
follows: 
 

  TTete d   (47) 

 
Since the hinge moment varies in 
magnitude similar to a harmonic function 
as a function of time in practice, it is 
evaluated to be more representative to 
apply sinusoidal test inputs to the 
system. Thus, Td and f are applied in the 
form of sinusoidal functions as 

 dddd fsinTT   20  and 

 dff fsin  20  with Td0=50 Nm, 

d=/2 rad, f0=0.175 rad (=10), and 
=3.14. Here, fd is called the input 
frequency. Since the fin connection rod is 
desired to be subjected to an initial 
loading at an amount of Td0 as per an 
application requirement, the assignment 
of d=/2 rad is made. In the considered 
situations, 5, 15, and 25 Hz values are 
considered for fd to see the effectiveness 
of the proposed control schemes for 
sinusoidal reference. Moreover, the step 
response characteristics of both of the 
control systems are checked for 

comparison with a step height of               
Td0=50 Nm and fd= 5 Hz. In all of the 
simulations, the friction nonlinearity is 
also taken into account as a randomly-
varying disturbance with a maximum 
value of 10 Nm. The situations in which 
Je and bm parameters have 20% 
uncertainty are also simulated in 
addition to the cases based on nominal 
system parameters. The numerical 
values of the other relevant system 
parameters are presented in Table 1. The 
c value is selected in a manner 
consistent with similar realistic systems. 
 
Performing the computer simulations 
under the conditions explained above, 
the torque responses of both the integral 
backstepping-based and PID-type control 
systems to the designated Td quantity are 
demonstrated in plots between Figure 8 
and Figure 13 regarding all the situations 
taken into account. The data acquired 
from all relevant simulations in 
accordance with the considered 
performance criteria are given in Table 2 
and Table 3 for the step and sinusoidal 
reference inputs, respectively. In these 
tables, the integral backstepping- and 
PID-based control systems are accounted 
under nominal and uncertain conditions 
for the considered system parameters. 
 
 

 

 
Figure 5. MATLAB SIMULINK model of the fin loading system 
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Table 1. Numerical values of the relevant control system parameters used in the computer 
simulations 

Parameter Numerical Value Parameter Numerical Value 
Kv 510-5 m/V Je 1.510-3  kgm2 
Tv 410-5 s bm 410-3 Nms/rad 
cx 0.7 m2/s N 1.5 
cp 1.510-6 m3/(Pas) Ks 100 Nm/rad 
D 510-4 m3/rev c 157 rad/s (=25 Hz) 
V 710-5  m3 c 0.85 

 7108  Pa t0 0 
cL 810-10 m3/(Pas) tf 0.35 s 

 
 

 

  
(a) Without parameter uncertainty (b) With parameter uncertainty 

Figure 6. Response of the integral backstepping-based control system against step reference 
input for fd=5 Hz 
 
 

  
(a) Without parameter uncertainty (b) With parameter uncertainty 

Figure 7. Response of the PID-based control system against step reference input for fd=5 Hz 
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(a) Without parameter uncertainty (b) With parameter uncertainty 

Figure 8. Response of the integral backstepping-based control system against sinusoidal 
reference input for fd=5 Hz 
 

  
(a) Without parameter uncertainty (b) With parameter uncertainty 

Figure 9. Response of the PID- based control system against sinusoidal reference input for                
fd=5 Hz 
 

  
(a) Without parameter uncertainty (b) With parameter uncertainty 

Figure 10. Response of the integral backstepping-based control system against sinusoidal 
reference input for fd=15 Hz 
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(a) Without parameter uncertainty (b) With parameter uncertainty 

Figure 11. Response of the PID- based control system against sinusoidal reference input for 
fd=15 Hz 
 

  
(a) Without parameter uncertainty (b) With parameter uncertainty 

Figure 12. Response of the integral backstepping-based control system against sinusoidal 
reference input for fd=25 Hz 
 

  
(a) Without parameter uncertainty (b) With parameter uncertainty 

Figure 13. Response of the PID- based control system against sinusoidal reference input for 
fd=25 Hz 
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Table 2. Results obtained from the relevant computer simulations for step reference input with 
fd= 5 Hz 

Control System 
Parameter 
Conditions 

Maximum 
Overshoot () 

Phase 
Difference () 

ISE 

Backstepping-based 
Nominal 14.487 0 1.987105 

Uncertain 16.324 0 2.104105 

PID-based 
Nominal 1.799 0 7.916105 

Uncertain 1.546 0 5.239105 

 
Table 3. Results obtained from the relevant computer simulations for sinusoidal reference 
input 

Control System 
Parameter 
Conditions 

Input 
Frequency 
(fd) (Hz) 

Phase 
Difference () 

ISE 

Backstepping-based 

Nominal 
5 0 4.835105 

15 5.627 2.080106 
25 15.659 7.916106 

Uncertain 
5 0 5.232105 

15 6.415 1.956106 
25 10.824 6.953106 

PID-based 

Nominal 
5 32.158 1.881106 

15 68.769 9.306106 
25 98.015 9.887106 

Uncertain 
5 33.318 1.816106 

15 68.555 9.356106 
25 102.242 1.009107 

 

5. Discussion and Conclusion 
As seen from the results of the 
performed computer simulations, it 
appears that the maximum overshoots 
attained with the backstepping-based 
control system are much higher than 
those with the PID-based control system 
when the reference input is step input. 
On the other hand, regarding both step 
and sinusoidal type reference inputs, 
the ISE values obtained for the 
backstepping control are lower than the 
values with the PID-type control. That 
is, the torque control system of the 
hydraulic fin loading system based on 
the backstepping has a superior 
tracking capability to the PID-based 
control scheme. As expected, the ISE 
quantitities grow when the designated 
parameter uncertainties are accounted. 
In this sense, the only exception occurs 
in the PID-based control system for fd=5 
Hz.  Also, the uncertainty consideration 
results in lower maximum overshoot for 

the PID case. Another advantage of the 
use of the backstepping control in the 
torque control of the hydraulic fin 
loading system comes into the picture in 
the phase difference between the 
reference input and system output: The 
backstepping-based control system 
leads much lower phase difference 
quantities than those for their PID 
counterpart. When the input frequency 
is enlarged from 5 to 25 Hz, the phase 
difference values grow up, too. Here, the 
parameter uncertainties cause the 
phase difference values to increase as 
well. Actually, the distinctions between 
the nominal and uncertainty-added 
situations are not seen clearly on the 
relevant plots given above. Yet, the data 
presented in tables clarify this issue. 
 
However, although it provides the 
designers with a powerful tool robust 
against moderate-to-high-amplitude fin 
deflection disturbing effects, the 
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implementation of the backstepping 
technique to the practical applications 
involves some difficulties. The main 
issues are the precise acquisition of the 
moment quantity arising on the fin 
connecting shaft and taking the 
successive time derivatives of the 
reference input and measurement 
signals without being affected noise. In 
order to construct a more accurate 
control system, a convenient state 
estimator can also be employed along 
with the backstepping control. 
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