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ABSTRACT
In fractional calculus, an area ofapplied mathematics, the differintegral is a
combined differentiation/integration operator. Differintegral theory is used to solve some
classes of differential equations and fractional differential equations. One of these equations is
the confluent hypergeometric equation. In this paper, we intend to solve this equation by
means of the differintegral theorems.

Keywords: Fractional calculus, Differintegral, Confluent hypergeometric equation,
Differintegral theorems, Generalized Leibniz rule

(/4
Uygulamali matematigin bir alani olan kesirli hesapta diferintegral, tiirev/integral
operatortintin bir birlesimidir. Diferansiyel denklemlerin ve kesirli diferansiyel denklemlerin
bazi simiflarimi ¢ozmek igin diferintegral teorisi kullaniimaktadir. Bu denklemlerden birisi
konfluent hipergeometrik denklemidir. Bu makalede, diferintegral teoremleri yardimiyla bu
denklemi ¢cozmeyi hedefleriz.

Anahtar Kelimeler: Kesirli hesap, Diferintegral, Konfluent hipergeometrik denklemi,
Diferintegral teoremleri, Genellestirilmig Leibniz kurali
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1. INTRODUCTION

The widely investigated subject of fractional calculus (that is, calculus of derivatives and
integrals of any arbitrary real or complex order) has gained considerable importance and
popularity during the past three decades or so, due chiefly to its demonstrated applications in
numerous seemingly diverse fields of science and engineering. We can mention that the
fractional differential equations are playing an important role in fluid dynamics, traffic model
with fractional derivative, measurement of viscoelastic material properties, modeling of
viscoplasticity, control theory, relativity theory, economy, nuclear magnetic resonance,
geometric mechanics, mechanics, optics, signal processing, robot technology, PID control
systems, Schrodinger equation, heat transfer, filtration and so on.

Some of most obvious formulations based on the fundamental definitions of Riemann-
Liouville fractional differentiation and fractional integration are, respectively,

d* :
DEf() = mﬁjﬂﬂ(t -kt tdr (k—1<u<k), 1)
and,
—u 1 : _
DO = o5 [ FOE =D dr > an>0) @

where k € N, N being the set of positive integers, I" stands for Euler’s function gamma [1-4].

Recently, by applying the Riemann-Liouville definitions of a differintegral (that is,
fractional derivative and fractional integral) of order u € R, many authors have explicity
obtained particular solutions of a number of families of homogeneous (as well as non-
homogeneous) linear ordinary and partial differintegral equations (see, for details, [5]; see
also [6,7]). An important example of Fuchsian differential equations is provided by the
celebrated hypergeometric equation (or, more precisely, the Gauss hypergeometric equation)

2

z(l—z)%+[y—(a+ﬁ+1)z]2—z—aﬁu=0,

whose study can be traced back to L. Euler, C.F. Gauss and E.E. Kummer. On the other hand,
a special limit (confluent) case of the Gauss hypergeometric equation, in the form [8]

d2u+ 1+% (£ +1) — o (_£+1)
dz? 4 z 72 u= H= 2/

is refered to as the Whittaker equation whose systematic study was initiated by E.T.
Whittaker.

Other classes of non-Fuchsian differential equations which we shall consider in this
investigation include the so-called Fukuhara equation [9]
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d*u  du
22ﬁ+25—(1—z+22)u=0,

the Tricomi equation [10]

d2u+( +ﬁ)du+( +6+£) =0
dz? azdzyzzzu_'

and the Bessel equation [11]

2d2u+ du 2 2= 0
2tz = (@ = vHu=0.

Moreover, in [12], Inc obtained the particular solutions of the confluent hypergeometric
differential equation by using the nabla fractional calculus operator which is an important
operator in discrete fractional calculus. Virchenko’s study [13] is devoted to further
development of important case of Wright’s hypergeometric function and its applications to
the generalization of ' —, B —, ¥ —, { —, Volterra functions. In [14], Srivastava and Saxena
expressed some Volterra-type fractional integro-differential equations with a multivariable
confluent hypergeometric function as their kernel. And, Campos solved the extended
confluent hypergeometric differential equation in [15].

In this paper, we also obtained the fractional solutions of the confluent hypergeometric
equation by using the differintegral theorems. The most important advantage of these
theorems is applicaple to the singular equations.

2. MATERIALS AND METHODS

2.1. Definition If the function f(z) is analytic (regular) inside and on C, where C =
{C~,C*}, €~ is a contour along the cut joining the points z and —o + ilm(z), which starts
from the point at —oo, encircles the point z once counter-clockwise, and returns to the point at
—oo, and C* is a contour along the cut joining the points z and oo + iIm(z), which starts from
the point at oo, encircles the point z once counter-clockwise, and returns to the point at oo,

fo@ = lim f,(2) (k€L
where T # z,
—n<arg(t—z)<mn for C”,
0<arg(r—z) <2m for C*. “)

In that case, f,(z) (u > 0) is the fractional derivative of f(z) of order u and f,(z) (u <
0) is the fractional integral of f(z) of order —u, confirmed (in each case) that

If,(2)| <o (WeR). (5)
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[4].

2.2. Lemma (Linearity) Let f(z) and g(z) be analytic and single-valued functions. If £, and
g, exist, then

B [af@]y = alf@D]

() [ef @ + 09D, = alf D] + c2lg (D], ©)

where c; and c, are constants and 4 € R, z € C.

2.3. Lemma (Index law) Let f(z) be an analytic and single-valued function. If (f,), and
(f), exist, then

{f@L = F@Dlysy = {[f @]}, ()

Trv+u+1)

where v,u € R, z € C and T+ DI (u+1)

2.4. Lemma (Generalized Leibniz rule) Let f(z) and g(z) be single-valued and analytic
functions. If f, and g, exist, then

u+1

f-9) = LT+ 1(5 k)l“zk 1y Jee G ®
where u € R, z € C and |%
2.5. Property For a constant A,

(e“)v =1e*” (A#0,veER,zEOQD). 9)
2.6. Property For a constant 4,

(e‘lz)v =e ™e* (1#0,vER,zECQC). (10)
2.7. Property For a constant A,

(zl)v = e_im’zl_v% <v ER,z€C, % < OO>. (11)
2.8. Property

IF'z+1)=2zI'(z+1) =2z, (12)

and,
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r(wraa—-v)

rk+1-v) (13)

F'(v—-k) =(-1)*

where k € Z¢ and v € R.

2.9. Theorem Let P(z; p) and Q(z; g¢) be polynomials in z of degrees p and g, respectively,
defined by

» »
P(z; p) = Z az?7* = a, ﬂ(z — Zj) (ap #0,p €N), (14)
k=0 j=1
and,
g
0(za) = ) bzt (b # 0,4 € N). (15)
k=0

Suppose also that f—, # 0 exists for a given function f.
Then the nonhomogeneous linear ordinary fractional differintegral equation

P 9
PEPe@+| ) ()P@o+ ) (L) aaEa)|e @
k=1

k=1
U
+_<%)‘%!b0¢v_4_1(z)::‘f(Z) Qp,@ € N,V,H E]R), (16)

has a particular solution of the form

o(2) = { ?f_‘(;(i) e?-[(z;gv,@)l e—}[(z;zv,tl)} (zeC\{zy,...2,}), (17)

u—v+1

where for suitable condition,

G
P& )

H(z; p,q) dé (zeC\{z,.., Zp}), (18)

confirmed that the second component of (17) exists. Moreover, the homogeneous linear
ordinary fractional differintegral equation

V4 9

(S EACTORS N (R - FNCPY| PRNE)

k=1 k=1

Pz p)e,(2) +
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U
+(()atboor i@ =0 paeNvuer), @9

has solutions of the form

0(z) = K[e_}[ (zm@)] (20)

u-v+1’

where # (z; p, ¢) is given by (18), it being confirmed that the second component of (20) exist
and K is an arbitrary constant [16].

3. MAIN RESULTS

The hypergeometric equation

d?p(x) do(x) _
T2 +[c—(a+ b+ 1)x] SR abp(x) =0, (21)

x(1—x)
has three regular singular points at x = 0,1 and o (a, b and ¢ are parameters). By setting x =
z/b and taking the limit as b — oo, we can merge the singularities at b and infinity. This gives
us the confluent equation as

dZ i
a9 % = 22
z——+(c—2) ap =0, (22)

solutions of which are the confluent hypergeometric functions, which are shown as M (a, c; z).

The confluent hypergeometric equation has a regular singular point at z =0 and an
essential singularity at infinity. Bessel functions, J,,(z), and the Laguerre polynomials, L, (z),
can be written in terms of the solutions of the confluent hypergeometric equation as

e—lZ

_ Z\" 1 .
Jn(2) = = (E) M(n+§,2n+1,212>,

L,(z) = M(—n, 1; 2).
Linearly independent solutions of Eq. (22) are given as

az ala+1)z? ala+1)(a+2)z3
= M , C, = 1 - ~ .- )
01(2) =M@, c;2) =1+ -+ S Y e De+ o) 3
(c#0,-1,-2,..),

and,
0,(z2) =zV*M(a+1—-¢,2-c;z) (c#234..).

Integral representation of the confluent hypergeometric functions, which are also shown
as ,F;(a, b;z), can be given as
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1
I'(c
M(a,c;z) = ) fe”ta_l(l — )% 4t (a,ceR,c>a>0).

I'(@)'(c—a)
0
[17].
Now, for Eq. (22), we use the transformation as

@(2) = z72e??u(z) [u(z) = z/2e7%/2¢(2)|. (23)

So, we can write

d [4 du 1

—d(g = Z_f_lez/2 [ZE + E (Z — C)u], (24)
and,

dz(p _£_2 dZu du 1

Gz =T g2 — g 2 - O + 2cuy, (25)

By substituting (23), (24) and (25) into (22), we have

c
d? 774 2c—
G _zy2 7o (26)

1
dz? 4 z 472

After, we can write Eq. (26) as follows

e | 1 5o i-(55)

= 0. 27
dz? 4 A 72 u=0 (27)

By using Theorem (2.9), we have [18]

u=2, p=g=1 ay,=h+0, a;,=0, by=s+#0, b =t, (28)
so that

P(z;1) = hz, P,(z;1)=h, (29)
and,

Q(z;1) =sz+t, Q,(z1) =s. (30)

After, by using Eqg. (18), we obtain
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[0(&1)
P1)

H(z;1,1) = dé = In[(hz)/hes?/h], (31)

3.1. Theorem Let |f,(z)| <o and f_, # 0. The nonhomogeneous second order linear
ordinary differential equation as

d’¢ do
hZF"‘(SZ‘FMh‘Ft)E‘FMS(p(Z)=f(Z) (h#0,u € R), (32)

has a solution as follows

0@ = {[u@ )] (ha)~/Memse/) (33)

u-1
Furthermore, the homogeneous second order linear ordinary differential equation as

hzdz—(p+(sz+ h+t)d—¢+ sp(z) =0 (h#0,u€R) (34)

has a solution as follows

¢(2) = K[(hz)~*/he7>/h] _, (35)
where K is an arbitrary constant [18].
Now, by using Theorem (3.1), we set
h=1 s=-1, t=c—a, pu=a. (36)
So, we obtain the equation as
ZC:T(g+(C—Z)Z—(§—a<p(z) = 0. (37)
After, we find the solution of Eq. (37) as follows
¢(2) = K[z “e”]4-1. (38)
Finally, we have the solution of Eq. (27) as
u(z) = Kz/2e7%/2[z% %] ,_,. (39)
3.2. Example Let a = 3 and ¢ = 1 for Eq. (38) and Eq. (39). So, we obtain
@(2) = K(2%€%),, (40)

and,
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u(z) = KzV?e7%/2(z2e%),. (41)

By using Eq. (1), we have

(z%e?), = (L f e’ dt = e?(z% + 4z + 2). (42)

After, by substituting (42) into (40) and (41), we find the solutions as

9(z) = Ke?(z> + 4z + 2), (43)
and,
u(z) = KzV2e%/2(22 + 4z + 2). (44)

3.3. Theorem Let |(z% )| < o (ke Z*u{0}), z=+ 0, and |§| < 1. The solution of (38)
can be written as follows

1
p(z) =Kz e* ,Fy|1 —a,c—a; E]' (45)

where ,F, is the Gauss hypergeometric function.

Proof. By means of (8), we have

N T@ ey (o
‘P(Z)=K;r<a_k)r<k+1)<z i ()ar i (46)

By using (9), (11), (12) and (13), we can rewrite the Eq. (46) as follows

¢(2) = KZ(F(k+1_a) 1( 1)kza-c" kMez,

DI (1 — a) k! I'(c—a)
_ gee Zi[l -l i ()
=RKZ e ajg IC alr K\ ,
k=0
1
= Kz%“e? ,F, [1 —-a,c—a; E] (47)

4. CONCLUSION

In this paper, we used the differintegral theorems for the confluent hypergeometric
equation. We also obtained hypergeometric forms of the fractional solutions. Solutions of the
singular equations can be obtained by means of these theorems.
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