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Abstract

We study a class of second-order evolution inclusions and we obtain a sufficient condition for f -local
controllability along a reference trajectory.
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1. Introduction

In this note we are concerned with the following problem

x′′ ∈ A(t)x+ F (t, x), x(0) ∈ X0, x′(0) ∈ X1, (1.1)

where F : [0, T ] × X → P(X) is a set-valued map, X is a separable Banach space, X0, X1 ⊂ X and
{A(t)}t≥0 is a family of linear closed operators from X into X that generates an evolution system of operators
{U(t, s)}t,s∈[0,T ].

The general framework of evolution operators {A(t)}t≥0 that define problem (1.1) has been developed by
Kozak ([14]) and improved by Henriquez ([12]). In several recent papers ([2-5], [8-11]) existence results and
qualitative properties of solutions for problem (1.1) have been obtained by using several techniques.

The aim of the present paper is to obtain a sufficient condition for f -local controllability of inclusion
(1.1). We denote by SF be the set of all mild solutions of (1.1) and by RF (T ) the reachable set of (1.1).
If y(.) ∈ SF is a mild solution and if f : Rn → Rm is a locally Lipschitz function then we say that the
differential inclusion (1.1) is f -locally controllable around y(.) if h(y(T )) ∈ int(f(RF (T ))). In particular, if
f is the identity map the above definitions reduces to the usual concept of local controllability of systems
around a solution.

The proof of our result is based on an approach of Tuan ([16]). More precisely, we prove that inclusion
(1.1) is f -locally controllable around the solution y(.) if a certain variational inclusion is h-locally controllable
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around the null solution for every h ∈ ∂f(z(T )), where ∂f(.) denotes Clarke’s generalized Jacobian of the
locally Lipschitz function f . The main tools in the proof of our result is a continuous version of Filippov’s
theorem for mild solutions of problem (1.1) obtained in [8] and a certain generalization of the classical open
mapping principle in [17].

We note that similar results for other classes of differential inclusions may be found in our previous papers
[6,7].

The paper is organized as follows: in Section 2 we present some preliminary results to be used in the
sequel and in Section 3 we present our main results.

2. Preliminaries

Let us denote by I the interval [0, T ] and let X be a real separable Banach space with the norm |.| and
with the corresponding metric d(., .). Denote by L(I) the σ-algebra of all Lebesgue measurable subsets of I,
by P(X) the family of all nonempty subsets of X and by B(X) the family of all Borel subsets of X. Recall
that the Pompeiu-Hausdorff distance of the closed subsets A,B ⊂ X is defined by

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A},

where d(x,B) = infy∈B d(x, y).
As usual, we denote by C(I,X) the Banach space of all continuous functions x(.) : I → X endowed

with the norm ||x(.)||C = supt∈I ||x(t)||, by L1(I,X) the Banach space of all (Bochner) integrable functions
x(.) : I → X endowed with the norm ||x(.)||1 =

∫
I ||x(t)||dt and by B(X) the Banach space of linear bounded

operators on X.
In what follows {A(t)}t≥0 is a family of linear closed operators from X into X that generates an evo-

lution system of operators {U(t, s)}t,s∈I . By hypothesis the domain of A(t), D(A(t)) is dense in X and is
independent of t.

Definition 2.1. ([12,14]) A family of bounded linear operators U(t, s) : X → X, (t, s) ∈ ∆ := {(t, s) ∈
I × I; s ≤ t} is called an evolution operator of the equation

x′′(t) = A(t)x(t) (2.1)

if
i) For any x ∈ X, the map (t, s)→ U(t, s)x is continuously differentiable and

a) U(t, t) = 0, t ∈ I.
b) If t ∈ I, x ∈ X then ∂

∂tU(t, s)x|t=s = x and ∂
∂sU(t, s)x|t=s = −x.

ii) If (t, s) ∈ ∆, then ∂
∂sU(t, s)x ∈ D(A(t)), the map (t, s)→ U(t, s)x is of class C2 and

a) ∂2

∂t2
U(t, s)x ≡ A(t)U(t, s)x.

b) ∂2

∂s2
U(t, s)x ≡ U(t, s)A(t)x.

c) ∂2

∂s∂tU(t, s)x|t=s = 0.
iii) If (t, s) ∈ ∆, then there exist ∂3

∂t2∂s
U(t, s)x, ∂3

∂s2∂t
U(t, s)x and

a) ∂3

∂t2∂s
U(t, s)x ≡ A(t) ∂∂sU(t, s)x and the map (t, s)→ A(t) ∂∂sU(t, s)x is continuous.

b) ∂3

∂s2∂t
U(t, s)x ≡ ∂

∂tU(t, s)A(s)x.

As an example for equation (2.1) one may consider the problem (e.g., [12])

∂2z

∂t2
(t, τ) =

∂2z

∂τ2
(t, τ) + a(t)

∂z

∂t
(t, τ), t ∈ [0, T ], τ ∈ [0, 2π],

z(t, 0) = z(t, π) = 0,
∂z

∂τ
(t, 0) =

∂z

∂τ
(t, 2π), t ∈ [0, T ],



Aurelian Cernea, Results in Nonlinear Anal. 1 (2018), 99–106 101

where a(.) : I → R is a continuous function. This problem is modeled in the space X = L2(R,C) of
2π-periodic 2-integrable functions from R to C, A1z = d2z(τ)

dτ2
with domain H2(R,C) the Sobolev space of

2π-periodic functions whose derivatives belong to L2(R,C). It is well known thatA1 is the infinitesimal
generator of strongly continuous cosine functions C(t) on X. Moreover, A1 has discrete spectrum; namely
the spectrum of A1 consists of eigenvalues −n2, n ∈ Z with associated eigenvectors zn(τ) = 1√

2π
einτ , n ∈ N.

The set zn, n ∈ N is an orthonormal basis of X. In particular, A1z =
∑

n∈Z−n2 < z, zn > zn, z ∈ D(A1).
The cosine function is given by C(t)z =

∑
n∈Z cos(nt) < z, zn > zn with the associated sine function

S(t)z = t < z, z0 > z0 +
∑

n∈Z∗
sin(nt)
n < z, zn > zn.

For t ∈ I define the operator A2(t)z = a(t)dz(τ)
dτ with domain D(A2(t)) = H1(R,C). Set A(t) =

A1 +A2(t). It has been proved in [12] that this family generates an evolution operator as in Definition 1.

Definition 2.2. A continuous mapping x(.) ∈ C(I,X) is called a mild solution of problem (1.1) if there
exists a (Bochner) integrable function f(.) ∈ L1(I,X) such that

f(t) ∈ F (t, x(t)) a.e. (I), (2.2)

x(t) = − ∂

∂s
U(t, 0)x0 + U(t, 0)y0 +

∫ t

0
U(t, s)f(s)ds, t ∈ I. (2.3)

We shall call (x(.), f(.)) a trajectory-selection pair of (1.1) if f(.) verifies (2.2) and x(.) is defined by (2.3).

Hypothesis H1. i) F (., .) : I ×X → P(X) has nonempty closed values and is L(I)⊗ B(X) measurable.
ii) There exists l(.) ∈ L1(I,R+) such that, for any t ∈ I, F (t, .) is l(t)-Lipschitz in the sense that

dH(F (t, x1), F (t, x2)) ≤ l(t)|x1 − x2| ∀x1, x2 ∈ X.

Hypothesis H2. Let S be a separable metric space, X0, X1 ⊂ X are closed sets, a0(.) : S → X0, a1(.) :
S → X1 and c(.) : S → (0,∞) are given continuous mappings.

The continuous mappings g(.) : S → L1(I,X), y(.) : S → C(I,X) are given such that

(y(s))′′(t) = A(t)y(s)(t) + g(s)(t), y(s)(0) ∈ X0, (y(s))′(0) ∈ X1.

and there exists a continuous function q(.) : S → L1(I,R+) such that

d(g(s)(t), F (t, y(s)(t))) ≤ q(s)(t) a.e. (I), ∀ s ∈ S. (2.4)

Theorem 2.3. ([10]) Assume that Hypotheses H1 and H2 are satisfied.
Then there exist M > 0 and the continuous functions x(.) : S → L1(I,X), h(.) : S → C(I,X) such that

for any s ∈ S (x(s)(.), h(s)(.)) is a trajectory-selection of (1.1) satisfying for any (t, s) ∈ I × S

x(s)(0) = a0(s), (x(s))′(0) = a1(s),

|x(s)(t)− y(s)(t)| ≤M [c(s) + |a0(s)− y(s)(0)|+ |a1(s)− (y(s))′(0)|+
∫ t

0
q(s)(u)du]. (2.5)

In what follows we assume that X = Rn.
A closed convex cone C ⊂ Rn is said to be regular tangent cone to the set X at x ∈ X ([16]) if there

exists continuous mappings qλ : C ∩B → Rn, ∀λ > 0 satisfying

lim
λ→0+

max
v∈C∩B

|qλ(v)|
λ

= 0,

x+ λv + qλ(v) ∈ X ∀λ > 0, v ∈ C ∩B,

where B is the closed unit ball in Rn.
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We recall, also, some well known intrinsic tangent cones in the literature (e.g. [1]); namely, the contingent,
the quasitangent and Clarke’s tangent cones, defines, respectively, by

KxX = {v ∈ Rn; ∃ sm → 0+, xm ∈ X : xm−x
sm
→ v}

QxX = {v ∈ Rn; ∀ sm → 0+,∃xm ∈ X : xm−x
sm
→ v}

CxX = {v ∈ Rn;∀ (xm, sm)→ (x, 0+), xm ∈ X, ∃ ym ∈ X : ym−xm
sm

→ v}.

In is known that, unlike KxX,QxX, the cone CxX is convex and one has CxX ⊂ QxX ⊂ KxX.
The results in the next section will be expressed, in the case when the mapping f(.) : X ⊂ Rn → Rm is

locally Lipschitz at x, in terms of the Clarke generalized Jacobian, defined by ([11])

∂f(x) = co{ lim
i→∞

f ′(xi); xi → x, xi ∈ X\Jf},

where Jf is the set of points at which f is not differentiable.
Corresponding to each type of tangent cone, say τxX one may introduce (e.g. [1]) a set-valued directional

derivative of a multifunction G(.) : X ⊂ Rn → P(Rn) (in particular of a single-valued mapping) at a point
(x, y) ∈ graph(G) as follows

τyG(x; v) = {w ∈ Rn; (v, w) ∈ τ(x,y)graph(G)}, ∈ τxX.

We recall that a set-valued map, A(.) : Rn → P(Rn) is said to be a convex (respectively, closed convex)
process if graph(A(.)) ⊂ Rn ×Rn is a convex (respectively, closed convex) cone. For the basic properties of
convex processes we refer to [1], but we shall use here only the above definition.

Hypothesis H3. i) Hypothesis H1 is satisfied and X0, X1 ⊂ Rn are closed sets.
ii) (y(.), g(.)) ∈ C(I,Rn) × L1(I,Rn) is a trajectory-selection pair of (1.1) and a family L(t, .) : Rn →

P(Rn), t ∈ I of convex processes satisfying the condition

L(t, u) ⊂ Qg(t)F (t, .)(y(t);u) ∀u ∈ dom(P (t, .)), a.e. t ∈ I (2.6)

is assumed to be given.
The family of convex processes in Hypothesis H3 defines the variational inclusion

v′′ ∈ A(t)v + L(t, v). (2.7)

Remark 2.4. We point out that Hypothesis H3 is not restrictive, since for any set-valued map F (., .), one
may find an infinite number of families of convex processes L(t, .), t ∈ I, satisfying condition (2.6). Any
family of closed convex subcones of the quasitangent cones, L(t) ⊂ Q(y(t),g(t))graph(F (t, .)), defines the
family of closed convex processes

L(t, u) = {v ∈ Rn; (u, v) ∈ L(t)}, u, v ∈ Rn, t ∈ I

that satisfy condition (2.6). For example one may take an "intrinsic" family of such closed convex process
given by Clarke’s convex-valued directional derivatives Cg(t)F (t, .)(y(t); .).

Since F (t, .) is assumed to be Lipschitz a.e. on I, the quasitangent directional derivative is given by ([1])

Qg(t)F (t, .)((y(t);u)) = {w ∈ Rn; lim
θ→0+

1

θ
d(g(t) + θw, F (t, y(t) + θu)) = 0}. (2.8)

In what follows BRn denotes the closed unit ball in Rn and 0n denotes the null element in Rn. Consider
f : Rn → Rm an arbitrary given function.

Definition 2.5. Differential inclusion (1.1) is said to be f -locally controllable around y(.) if f(y(T )) ∈
int(f(RF (T ))).

In particular, differential inclusion (1.1) is said to be locally controllable around the solution y(.) if
y(T ) ∈ int(RF (T )).
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Finally a key tool in the proof of our results is the following generalization of the classical open mapping
principle due to Warga ([17]).

For k ∈ N we define

Σk := {β = (β1, ..., βk);
k∑
i=1

βi ≤ 1, βi ≥ 0, i = 1, 2, ..., k}.

Lemma 2.6. ([17]) Let δ ≤ 1, let g(.) : Rn → Rm be a mapping that is C1 in a neighborhood of 0n
containing δBRn. Assume that there exists β > 0 such that for every θ ∈ δΣn, βBRm ⊂ g′(θ)Σn. Then, for
any continuous mapping ϕ : δΣn → Rm that satisfies supθ∈δΣn

|g(θ)−ϕ(θ)| ≤ δβ
32 we have ϕ(0n) + δβ

16BRm ⊂
ϕ(δΣn).

3. The main result

In order to prove our result we assume that Hypothesis H3 is satisfied, C0 is a regular tangent cone to
X0 at y(0) and C1 is a regular tangent cone to X1 at y′(0). We denote by SL the set of all solutions of the
differential inclusion

w′′ ∈ A(t)w + L(t, w), w(0) ∈ C0, w′(0) ∈ C1

and by RL(T ) = {x(T ); x(.) ∈ SL} its reachable set at time T .

Theorem 3.1. Assume that Hypothesis H3 is satisfied and let f : Rn → Rm be a Lipschitz function with m
its Lipschitz constant.

Then, differential inclusion (1.1) is f -locally controllable around the solution y(.) if

0m ∈ int(hRL(T )) ∀h ∈ ∂f(y(T )). (3.1)

Proof. hRL(T ) is a convex cone, thus, by (3.1), it follows that hRL(T ) = Rm ∀h ∈ ∂f(y(T )). Taking
into account that the set ∂f(y(T )) is compact (e.g., [11]), we have that for every γ > 0 there exist k ∈ N
and wj ∈ RL(T ) j = 1, 2, ..., k such that

γBRm ⊂ h(w(Σk)) ∀h ∈ ∂f(y(T )), (3.2)

with

w(Σk) = {w(β) :=

k∑
j=1

βjwj , β = (β1, ..., βk) ∈ Σk}.

Using an usual separation theorem we deduce the existence of γ1, r1 > 0 such that for all h ∈ L(Rn,Rm)
with d(h, ∂f(y(T ))) ≤ r1 we have

γ1BRm ⊂ h(w(Σk)). (3.3)

Since wj ∈ RL(T ), j = 1, ..., k, there exist (wj(.), qj(.)), j = 1, ..., k trajectory-selection pairs of (2.7)
such that wj = wj(T ), j = 1, ..., k. We note that γ > 0 can be taken small enough such that |wj(0)| ≤ 1,
j = 1, ..., k.

Define

w(t, s) =
k∑
j=1

sjwj(t), q(t, s) =
k∑
j=1

sjqj(t), ∀s = (s1, ..., sk) ∈ Rk.

Obviously, w(., s) ∈ SL, ∀s ∈ Σk.
From the definition of C0 and C1 we find that for every ε > 0 there exists a continuous mapping

oε : Σk → Rn such that

y(0) + εw(0, s) + oε(s) ∈ X0, y′(0) + ε
∂w

∂t
(0, s) + oε(s) ∈ X1 (3.4)



Aurelian Cernea, Results in Nonlinear Anal. 1 (2018), 99–106 104

lim
ε→0+

max
s∈Σk

|oε(s)|
ε

= 0. (3.5)

Define
ρε(s)(t) :=

1

ε
d(q(t, s), F (t, y(t) + εw(t, s))− g(t)),

d(t) :=

k∑
j=1

[||qj(t)||+ l(t)||wj(t)||], t ∈ I.

Then, for every s ∈ Σk one has

ρε(s)(t) ≤ |q(t, s)|+ 1
εdH(0n, F (t, y(t) + εw(t, s))− g(t)) ≤ |q(t, s)|+

1
εdH(F (t, y(t)), F (t, y(t) + εw(t, s))) ≤ |q(t, s)||+ l(t)||w(t, s)|| ≤ d(t).

(3.6)

Next, if s1, s2 ∈ Σk one has

|ρε(s1)(t)− ρε(s2)(t)| ≤ |q(t, s1)− q(t, s2)|+ 1
εdH(F (t, y(t) + εw(t, s1)),

F (t, y(t) + εw(t, s2))) ≤ |s1 − s2|.maxj=1,k[|qj(t)|+ l(t)|wj(t)|],

thus ρε(.)(t) is Lipschitz with a Lipschitz constant not depending on ε.
At the same time, from (2.8) it follows that

lim
ε→0

ρε(s)(t) = 0 a.e. (I), ∀s ∈ Σk

and hence
lim
ε→0+

max
s∈Σk

ρε(s)(t) = 0 a.e. (I). (3.7)

Lebesgue’s dominated convergence theorem, (3.6) and (3.7) imply that

lim
ε→0+

∫ T

0
max
s∈Σk

ρε(s)(t)dt = 0. (3.8)

From (3.4), (3.5), (3.8) and the upper semicontinuity of the Clarke generalized Jacobian we can find
ε0, e0 > 0 such that

max
s∈Σk

||oε0(s)||
ε0

+

∫ T

0
max
s∈Σk

ρε0(s)(t)dt ≤ γ1

28m2
, (3.9)

ε0w(T, s) ≤ e0

2
∀s ∈ Σk. (3.10)

We define
y(s)(t) := y(t) + ε0w(t, s), g(s)(t) := g(t) + ε0q(t, s) s ∈ Rk,

a0(s) := y(0) + ε0w(0, s) + oε0(s), a1(s) := y′(0) + ε0
∂w

∂t
(0, s) + oε0(s), s ∈ Rk,

and we apply Theorem 2.3 in order to obtain that there exists a continuous function x(.) : Σk → C(I,Rn)
such that for any s ∈ Σk the function x(s)(.) is a mild solution of the differential inclusion x′′ ∈ A(t)x +
F (t, x), x(s)(0) = a0(s), (x(s))′(0) = a1(s) ∀s ∈ Σk and one has

||x(s)(T )− y(s)(T )|| ≤ ε0γ1

26m
∀s ∈ Σk. (3.11)

We define
f0(x) :=

∫
Rn

f(x− ay)χ(y)dy, x ∈ Rn,

ψ(s) := f0(y(T ) + ε0w(T, s)),
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where χ(.) : Rn → [0, 1] is a C∞ function with the support contained in BRn that satisfies
∫
Rn χ(y)dy = 1

and a = min{ e02 ,
ε0γ1
26m
}.

Hence f0(.) is of class C∞ and verifies

||f(x)− f0(x)|| ≤ m · a, (3.12)

f ′0(x) =

∫
Rn

f ′(x− ay)χ(y)dy. (3.13)

In particular,
f ′0(x) ∈ co{f ′(u); ||u− x|| ≤ a, f ′(u) exists},

ψ′(s)µ = f ′0(y(T ) + ε0w(T, s))ε0w(T, µ) ∀µ ∈ Σk.

If we denote h(s) := f ′0(y(T ) + ε0w(T, s)), then ψ′(s)µ = h(s)ε0w(T, µ) ∀µ ∈ Σk.
Taking into account, again, the upper semicontinuity of the Clarke generalized Jacobian we obtain

d(h(s), ∂f(z(T ))) = d(f ′0(y(T ) + ε0w(T, s)), ∂f(y(T ))) ≤ sup{d(f ′0(u), ∂f(y(T )));
||u− y(T )|| ≤ ||u− (y(T ) + ε0w(T, s))||+ ||ε0w(t, s)|| ≤ e0, f ′(u) exists} < r1.

The last inequality together with (3.3) gives

γ1BRm ⊂ h(s)w(Σk).

and therefore
ε0γ1BRm ⊂ h(s)ε0w(Σk) = h(s)ε0w(T, µ) = ψ′(s)µ, ∀µ ∈ Σk,

i.e.,
ε0γ1BRm ⊂ ψ′(s)Σk.

Finally, for s ∈ Σk, we put ϕ(s) = f(x(s)(T )).
Obviously, ϕ(.) is continuous and from (3.11), (3.12), (3.13) one may write

|ϕ(s)− ψ(s)| = |f(x(s)(T ))− f0(y(s)(T ))| ≤ |f(x(s)(T ))− f(y(s)(T ))|+
|f(y(s)(T ))− f0(y(s)(T ))| ≤ m|x(s)(T )− y(s)(T )|+m · a ≤ ε0γ1

64 + ε0γ1
64 = ε0γ1

32 .

It remains to apply Lemma 2.6 and to find that

f(x(0k)(T )) +
ε0γ1

16
BRm ⊂ ϕ(Σk) ⊂ f(RF (T )).

Finally, |f(y(T ))− f(x(0k)(T ))| ≤ ε0γ1
64 , so we have f(z(T )) ∈ int(f(RF (T ))), which completes the proof.
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