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Abstract

We study a class of second-order evolution inclusions and we obtain a sufficient condition for f-local
controllability along a reference trajectory.
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1. Introduction

In this note we are concerned with the following problem
2" € A(t)x + F(t,z), =(0)€e Xo, 2'(0)€ Xy, (1.1)

where F' : [0,T] x X — P(X) is a set-valued map, X is a separable Banach space, Xo,X; C X and
{A(t)}+>0 is a family of linear closed operators from X into X that generates an evolution system of operators
{U(@, s)} sepo,r)-

The general framework of evolution operators { A(¢) }+>o that define problem (1.1) has been developed by
Kozak ([14]) and improved by Henriquez ([12]). In several recent papers ([2-5], [8-11]) existence results and
qualitative properties of solutions for problem (1.1) have been obtained by using several techniques.

The aim of the present paper is to obtain a sufficient condition for f-local controllability of inclusion
(1.1). We denote by Sr be the set of all mild solutions of (1.1) and by Rr(T") the reachable set of (1.1).
If y(.) € Sp is a mild solution and if f : R™ — R™ is a locally Lipschitz function then we say that the
differential inclusion (1.1) is f-locally controllable around y(.) if h(y(T)) € int(f(Rp(T))). In particular, if
f is the identity map the above definitions reduces to the usual concept of local controllability of systems
around a solution.

The proof of our result is based on an approach of Tuan ([16]). More precisely, we prove that inclusion
(1.1) is f-locally controllable around the solution y(.) if a certain variational inclusion is h-locally controllable
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around the null solution for every h € 9f(z(T')), where 0f(.) denotes Clarke’s generalized Jacobian of the
locally Lipschitz function f. The main tools in the proof of our result is a continuous version of Filippov’s
theorem for mild solutions of problem (1.1) obtained in [8] and a certain generalization of the classical open
mapping principle in [17].

We note that similar results for other classes of differential inclusions may be found in our previous papers
[6,7].

The paper is organized as follows: in Section 2 we present some preliminary results to be used in the
sequel and in Section 3 we present our main results.

2. Preliminaries

Let us denote by I the interval [0,7] and let X be a real separable Banach space with the norm |.| and
with the corresponding metric d(.,.). Denote by £(I) the o-algebra of all Lebesgue measurable subsets of I,
by P(X) the family of all nonempty subsets of X and by B(X) the family of all Borel subsets of X. Recall
that the Pompeiu-Hausdorff distance of the closed subsets A, B C X is defined by

di(A, B) = max{d*(A, B),d"(B, A)}, d*(A, B) =sup{d(a, B);a € A},

where d(z, B) = infyep d(x,y).

As usual, we denote by C(I,X) the Banach space of all continuous functions z(.) : I — X endowed
with the norm ||z(.)||c = sup,e/||x(t)||, by L*(I, X) the Banach space of all (Bochner) integrable functions
z(.) : I — X endowed with the norm ||z(.)[|1 = [ ||z(t)||dt and by B(X) the Banach space of linear bounded
operators on X.

In what follows {A(t)}+>0 is a family of linear closed operators from X into X that generates an evo-
lution system of operators {U(t,s)}+scr. By hypothesis the domain of A(t), D(A(t)) is dense in X and is
independent of t.

Definition 2.1. ([12,14]) A family of bounded linear operators U(t,s) : X — X, (t,s) € A = {(t,s) €
I x I;s <t} is called an evolution operator of the equation

2" (t) = A(t)z(t) (2.1)

if
i) For any = € X, the map (t,s) — U(t, s)x is continuously differentiable and
a) U(t,t) =0,t e 1. ,
b)Ift € I,z € X then EU(t s)x|i=s = = and Z/l(t 8)Tli=s = —1.
i) If (¢, s) € A, then 8—2/1(75 s)x € D(A(t)), the map (t,s) — U(t,s)x is of class C? and
a) atgl/{(t s)x = A)U(t, s)x.
) asZU(t s)x =U(t, s)A(t)x.
2
) 828tu(t s)xli=s = 0. i
iii) If (¢, ) € A, then there exist atgasl/{(t s)x, 838281:u(t s)z and
a) tQas U(t,s)z = A(t) ~U(t,s)z and the map (t,s) — A(t ) 5:U(t, s)x is continuous.

b) gatbl(t s)x = mU(t s)A(s).

o

@)

As an example for equation (2.1) one may consider the problem (e.g., [12])

0%z 0%z 0z
@(t,T)—ﬁ(t,T)—FCL(t)a(t,T), te [O’T]’TE [0727T],
S0 = 2(tm) =0, 21,00 = (1 2m), te0.1],

or or
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where a(.) : I — R is a continuous function. This problem is modeled in the space X = L?(R,C) of
2m-periodic 2-integrable functions from R to C, A1z = % with domain H?(R, C) the Sobolev space of
27-periodic functions whose derivatives belong to L?(R,C). It is well known thatA; is the infinitesimal
generator of strongly continuous cosine functions C(t) on X. Moreover, A; has discrete spectrum; namely

the spectrum of A; consists of eigenvalues —n?, n € Z with associated eigenvectors z, (1) = \/%e"m, n € N.
The set z,, n € N is an orthonormal basis of X. In particular, A1z =3 ., —n? < 2,2y > 2Zn, 2 € D(A7).
The cosine function is given by C(t)z = > czcos(nt) < 2,2, > z, with the associated sine function
S(t)z =1t < z,20> 20+ > ez < Z,2Zp > Zn.

For t € I define the operator As(t)z = a(t)dZ—(:) with domain D(A(t)) = HY(R,C). Set A(t) =
Ay + Aa(t). It has been proved in [12] that this family generates an evolution operator as in Definition 1.

sin(nt)
n

Definition 2.2. A continuous mapping z(.) € C(I,X) is called a mild solution of problem (1.1) if there
exists a (Bochner) integrable function f(.) € L'(I, X) such that

ft) e F(t,z(t)) a.e.(I), (2.2)
o t
x(t) = —$Z/I(t, 0)zo + U(t,0)yo + / U(t,s)f(s)ds, tel. (2.3)
0
We shall call (z(.), f(.)) a trajectory-selection pair of (1.1) if f(.) verifies (2.2) and z(.) is defined by (2.3).

Hypothesis H1. i) F(.,.) : I x X — P(X) has nonempty closed values and is £(I) ® B(X) measurable.
ii) There exists I(.) € L*(I, R4 ) such that, for any t € I, F(t,.) is I(t)-Lipschitz in the sense that

dH(F(t,fEl),F(t,SCQ)) < l(t)|$1 — 332| V1,29 € X.

Hypothesis H2. Let S be a separable metric space, Xy, X1 C X are closed sets, ag(.) : S = Xo, a1(.) :
S — X1 and ¢(.) : S — (0,00) are given continuous mappings.
The continuous mappings g(.) : § — L'(I,X), y(.) : S — C(I, X) are given such that

(()"(t) = A@)y(s)(t) + 9(s)(t),  y(s)(0) € Xo, (y(5))'(0) € X3.

and there exists a continuous function ¢(.) : S — L*(I, R ) such that

d(g(s)(t), F(t,y(s)(t)) < q(s)(t) a.e.(I), Vs €S, (2.4)

Theorem 2.3. (/10]) Assume that Hypotheses H1 and H2 are satisfied.
Then there exist M > 0 and the continuous functions z(.) : S — LY(I,X), h(.) : S — C(I, X) such that
for any s € S (z(s)(.),h(s)(.)) is a trajectory-selection of (1.1) satisfying for any (t,s) € I x S

2(s)(0) = ao(s), (2(s))'(0) = ax(s),

|2(s)(t) —y(s)(t)| < Mc(s) + lao(s) — y(s)(0)] + |ar(s) — (y(s))"(0)] +/ q(s)(u)du]. (2.5)

0

In what follows we assume that X = R".
A closed convex cone C' C R" is said to be regular tangent cone to the set X at x € X ([16]) if there
exists continuous mappings ¢y : C N B — R", VA > 0 satisfying

lim max (V)]

=0,
A—=0+veCNB A

r+A+qv)EX VA>0,veCNB,
where B is the closed unit ball in R"™.
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We recall, also, some well known intrinsic tangent cones in the literature (e.g. [1]); namely, the contingent,
the quasitangent and Clarke’s tangent cones, defines, respectively, by

K. X = {veR™ Hsm—>0+,xm€X:%—>v}
Q:X ={veR" Vs, —0+,3z, € X: =L — v}
Oy X = {v € RV (@, ) = (2,04), Ty € X, Tym € X ¢ ¥2-2m 0},

In is known that, unlike K, X, Q. X, the cone C,X is convex and one has C,, X C Q. X C K, X.
The results in the next section will be expressed, in the case when the mapping f(.) : X C R" — R™ is
locally Lipschitz at x, in terms of the Clarke generalized Jacobian, defined by ([11])

of(z) = co{li}m f(z); i =z, z € X\Jg},

where J; is the set of points at which f is not differentiable.

Corresponding to each type of tangent cone, say 7, X one may introduce (e.g. [1]) a set-valued directional
derivative of a multifunction G(.) : X C R™ — P(R") (in particular of a single-valued mapping) at a point
(x,y) € graph(G) as follows

7yG(z;0v) = {w € R"; (v,w) € 75 ygraph(G)}, € 7. X.

We recall that a set-valued map, A(.) : R™ — P(R") is said to be a convex (respectively, closed convex)
process if graph(A(.)) C R™ x R™ is a convex (respectively, closed convex) cone. For the basic properties of
convex processes we refer to [1], but we shall use here only the above definition.

Hypothesis H3. i) Hypothesis H1 is satisfied and Xo, X1 C R™ are closed sets.
i) (y(.),g(.)) € C(I,R™) x LY(I,R") is a trajectory-selection pair of (1.1) and a family L(t,.) : R™ —
P(R™), t € I of convex processes satisfying the condition

L(t,u) C QyupyF(t, )(y(t);u) Yue&dom(P(t,.)), ae tel (2.6)

1s assumed to be given.
The family of convex processes in Hypothesis H3 defines the variational inclusion

" € A(t)v + L(t,v). (2.7)

Remark 2.4. We point out that Hypothesis H3 is not restrictive, since for any set-valued map F(.,.), one
may find an infinite number of families of convex processes L(t,.), t € I, satisfying condition (2.6). Any

family of closed convex subcones of the quasitangent cones, L(t) C Qy)g()9raph(F(t,.)), defines the
family of closed convex processes

L(t,u) = {veR"; (u,v) € L(t)}, u,veR™ tel

that satisfy condition (2.6). For example one may take an "intrinsic" family of such closed convex process
given by Clarke’s convex-valued directional derivatives Cg ) F(t,.)(y(t);.).

Since F(t,.) is assumed to be Lipschitz a.e. on I, the quasitangent directional derivative is given by ([1])

QueF (1, )((y(0) ) = {w € R lim S(g(t) + 0w, F(t,y(0) + 0u) = O} (23)

In what follows Br» denotes the closed unit ball in R™ and 0,, denotes the null element in R™. Consider
f:R™ — R™ an arbitrary given function.

Definition 2.5. Differential inclusion (1.1) is said to be f-locally controllable around y(.) if f(y(T)) €
int(f(Rp(T))).

In particular, differential inclusion (1.1) is said to be locally controllable around the solution y(.) if
y(T) € int(Rp(T)).
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Finally a key tool in the proof of our results is the following generalization of the classical open mapping
principle due to Warga (|17]).
For k € N we define

Sk= {8 = (B1, ., Br); Zﬂ,g Bi=0,i=1,2,..,k}.

Lemma 2.6. ([17]) Let § < 1, let g(.) : R® — R™ be a mapping that is C' in a neighborhood of 0,
containing 0 Brn. Assume that there exists § > 0 such that for every 6 € 6%, BBrm C ¢'(0)2,. Then, for
any continuous mapping ¢ : 05, — R™ that satisfies supgess,. [9(0) — o(8)] < % we have ¢(0y,) + %BRm C
©(03,).

3. The main result

In order to prove our result we assume that Hypothesis H3 is satisfied, C is a regular tangent cone to
Xp at y(0) and Cj is a regular tangent cone to X at y'(0). We denote by S, the set of all solutions of the
differential inclusion

w” € A(t)w + L(t,w), w(0) € Co, w'(0) € Cy
and by R (T) = {z(T); =(.) € S} its reachable set at time 7.
Theorem 3.1. Assume that Hypothesis H3 is satisfied and let f : R™ — R™ be a Lipschitz function with m

its Lipschitz constant.
Then, differential inclusion (1.1) is f-locally controllable around the solution y(.) if

Om € int(hRL(T)) Vh € df(y(T)). (3.1)

Proof. hRpr(T) is a convex cone, thus, by (3.1), it follows that hR.(T) = R™ Vh € 0f(y(T)). Taking
into account that the set df(y(7T')) is compact (e.g., [11]), we have that for every v > 0 there exist k € N
and wj € Rp(T) j =1,2,..., k such that

YBrm C h(w(Xg)) Vh e 0f(y(T)), (3:2)
with
(Ek = {w Zﬁjwja /817 7616) € Zk}'

Using an usual separation theorem we deduce the existence of v1,r; > 0 such that for all h € L(R™, R™)
with d(h,df(y(T))) < r; we have
’leRm C h(w(Ek)) (33)

Since wj € Rr(T), j = 1,...,k, there exist (w;(.),q;(.)), j = 1, ...,k trajectory-selection pairs of (2.7)
such that w; = w;(T), j .,k. We note that v > 0 can be taken small enough such that |w;(0)| < 1,
j=1,..k

Define

k k
s) = Zsjwj(t), q(t,s) = Zsjqj(t), Vs = (s1,..., s) € RF.
j=1 j=1

Obviously, w(.,s) € St, Vs € k.
From the definition of Cy and C; we find that for every ¢ > 0 there exists a continuous mapping

0 : X, — R"™ such that

0

ot

y(0) + ew(0, 5) + 0:(s) € Xo, ¥'(0) +22(0, 5) + 0-(s) € X1 (3.4)
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lim max [0=(s)]
e—=0+ seXy IS

= 0. (3.5)

Define 1
pe(s)(t) == —d(q(t, s), (¢, y(t) + ew(t, s)) — g(t)),

k
=Y lllagON+ 1) [y (DI, t e 1.
J=1

Then, for every s € X one has

pe(5)() < [at, )| + Ldu (0n, F(1,y(0) + cult, 5)) — 9(0)) < [a(t,5)|+ 50
L (F (6 y(0), F (6 y(0) + et 90) < 15|+ (0w ]| < () |

Next, if 51,89 € X, one has

|pe(51)(1) = pe(s2)(?)

| < [a(t,s1) —a(t, s2)| + cdm (F(
F(t,y(t) + ew(t,s2))) < |s1 l

| — 82|.man:1’qu]'(t ’ +

thus p(.)(¢) is Lipschitz with a Lipschitz constant not depending on e.
At the same time, from (2.8) it follows that

lim p-(s)(t) =0 a.e.(I), VseX

e—0

and hence

Jim, max pe(s)(t) =0 ae. (). (3.7)

Lebesgue’s dominated convergence theorem, (3.6) and (3.7) imply that

li t)dt = 0. .
i, | = )

From (3.4), (3.5), (3.8) and the upper semicontinuity of the Clarke generalized Jacobian we can find
€9, €0 > 0 such that

H Eo B!
max T=>—— grelag: Peo(8)()dE < o5, (3.9)
eow(T, s) < 5 Vs € Y. (3.10)

We define
y(s)(t) = y(t) +eow(t,s), g(s)(t) = g(t) +eoq(t,s) s € R,

ao(s) := y(0) + ow(0, 8) + 0y (5), ai1(s) :=y'(0) + 608 (0,5) + 0 (5), s € RF,

ot

and we apply Theorem in order to obtain that there exists a continuous function z(.) : ¥ — C(I,R")
such that for any s € 3y the function z(s)(.) is a mild solution of the differential inclusion z” € A(t)z +
F(t,z), x(s)(0) =ap(s), (z(s))'(0) = a1(s) Vs € X} and one has

[|2(s)(T) = y(s)(T)]] < ;ﬂ Vs € Xy (3.11)

We define
fo(z) :== / flz —ay)x(y)dy, =e€R",
Rn

P(s) := fo(y(T) + eow(T, 5)),
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where x(.) : R” — [0,1] is a C* function with the support contained in Br~ that satisfies [g, x(y)dy = 1
and a = min{ %,

Hence fo(.) is of class C*° and verifies

1f(z) = fo()]| <m - a, (3.12)

folw)= | f'(z—ay)x(y)dy. (3.13)
In particular,
fo(x) eco{f (u); |lu—=z|| <a, f'(u)exists},
V' (s)u = foy(T) + eow(T, s))eow(T, ) Vi € By
If we denote h(s) := fi(y(T) + eow(T, s)), then ¢'(s)u = h(s)eow (T, p) Yy € B

Taking into account, again, the upper semicontinuity of the Clarke generalized Jacobian we obtain

d(h(s),0f((T))) = d(fo(y(T) + eow(T, 5)), 0f (y(T))) < sup{d(fo(w), 0 (y(T)));
lu = y(D)I < [Ju = (Y(T) + cow(T, 5))[| + [leow(t, s)|| < eo,  f'(u) exists} < ry.

The last inequality together with (3.3) gives
’leRm C h(s)w(Ek)

and therefore
50’)/1-BRT” C h(S)&O’w(Ek) = h(s)eow(T, ,LL) = 1//(3)/% \V/M € Ek?

ie.,
o1 Brm C ' (s)%,
Finally, for s € ¥, we put ¢(s) = f(z(s)(T)).
Obviously, ¢(.) is continuous and from (3.11), (3.12), (3.13) one may write

lp(s) = P(s)| = [f(2(s)(T)) = fo(y(s)(T)] < [f(x(s)(T)) = f(y(s)(T)) |+
[f(@(s)(T)) = fo(y(s)(T)] < mlz(s)(T) —y(s)(T)| +m-a < =g+ + =+ = =5+

It remains to apply Lemma [2.6] and to find that

F@(0R)(T)) + - Br © 9(24) € F(Re(T)).

Finally, |f(y(T)) — f(z(0x)(T))| < =5*, so we have f(z(T)) € int(f(Rr(T))), which completes the proof.
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