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Lyapunov-type inequality for a Riemann-Liouville
fractional di�erential boundary value problem
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Abstract

The aim of this paper is to present a Lyapunov-type inequality for a
Riemann-Liouville fractional di�erential equation of order 2 < α ≤ 3
subject to mixed boundary conditions.
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1. Introduction

In this paper, we present a Lyapunov's inequality for the following boundary value
problem: {

(aD
αu)(t) + q(t)u(t) = 0, a < t < b, 2 < α ≤ 3,

u(a) = u′(a) = u′(b) = 0,
(1.1)

where a and b are consecutive zeros of the solution u. As u = 0 is a trivial solution, only
non-negative solutions are taken in consideration.
We prove that problem (1.1) has a non-trivial solution for α ∈ (2, 3] provided that the
real and continuous function q satis�es

(1.2)

∫ b

a

|q(t)| dt > Γ(α)

(b− a)(α−1)

(
α− 1

α− 2

)α−2

.
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Before we prove this result, let us dwell upon some references.
For the problem {

u′′(t) + q(t)u(t) = 0, a < t < b
u(a) = u(b) = 0,

where a and b are consecutive zeros of u and the function q ∈ C([a, b];R). Lyapunov [7]
proved a necessary condition of existence of non-trivial solutions is that

(1.3)

∫ b

a

|q(t)| dt > 4

b− a .

After this result, similar type inequalities have been obtained for other kind of di�erential
equations and boundary conditions see [3], [8].
Concerning di�erential equation with fractional derivative's in [2], Ferreira derived Lya-
punov's inequality for the problem{

(aD
αu)(t) + q(t)u(t) = 0, a < t < b, 1 < α ≤ 2,

u(a) = u(b) = 0,
(1.4)

where q ∈ C([a, b],R), a and b are consecutive zeros of u, and aD
α is the Riemann-

Liouville fractional derivative of order α > 0 de�ned for an absolute continuous function
on [a, b] by

(aD
αf)(t) =

1

Γ(1− α)

dn

dtn

∫ t

a

(t− s)αf(s) ds

where n ∈ N, n < α ≤ n + 1 (For more details of fractional derivatives see [6]). His
inequality reads

(1.5)

∫ b

a

|q(t)| dt > Γ(α)

(
4

b− a

)α−1

= Γ(α)

(
22(α−1)

(b− a)(α−1)

)
,

which in the particular case α = 2 corresponds to Lyapunov's classical inequality (1).

Then, Ferreira [3] and Jleli and Samet [5] dealt with fractional di�erential boundary
value problems with Caputo's derivative which is de�ned for a function f ∈ ACn[a, t] by

(CaD
αf)(t) =

1

Γ(1− α)

∫ t

a

(t− s)αf (n)(s) ds.

For the boundary value problem{
(CaD

αu)(t) + q(t)u(t) = 0, a < t < b, 1 < α ≤ 2,
u(a) = u(b) = 0,

(1.6)

where q ∈ C([a, b];R) and a and b are consecutive zeros of u, Ferreira [2] proved that if
(1.6) has a nontrivial solution, then the following necessary condition is satis�ed

(1.7)

∫ b

a

|q(t)| dt > Γ(α)αα

[(α− 1)(b− a)]α−1
·

In [5], Jleli and Samet considered the equation (1.6) subject to either

(1.8) u′(a) = 0, u(b) = 0,

or

(1.9) u(a) = 0, u′(b) = 0.

They showed that the associated non trivial solution exists if

(1.10)

∫ b

a

(b− s)α−2|q(t)| dt ≥ Γ(α)
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is satis�ed.
However, in the case of (1.9), the corresponding nontrivial solution exists if:

(1.11)

∫ b

a

(b− s)α−2|q(t)| dt ≥ Γ(α)

max{α− 1, 2− α} (b− a)
.

It was shown in [4] that a non trivial solution corresponding to equation (1.6) where
q ∈ C([a, b];R), a and b are consecutive zeros of u, subject to the boundary conditions

(1.12) u(a)− u′(a) = u(b) + u′(b) = 0,

exists if the following necessary condition

(1.13)

∫ b

a

(b− s)α−2(b− s+ α− 1)|q(s)| ds ≥ (b− a+ 2) Γ(α)

max{b− a+ 1, 2−α
α−1

(b− a)− 1}

is satis�ed.

2. Main results

2.1. A Lyapunov-type inequality for problem (1.1). The strategy in getting Lyapunov-
type inequality for (1.1) is to re-write the considered problem in its equivalent integral
form.
As in [2], the solution can be written in the integral form

u(t) =

∫ t

a

G(t, s)q(s)u(s) ds+

∫ b

t

G(t, s)q(s)u(s) ds,

where the Green function G(x, t) is de�ned by

(2.1) Γ(α)G(t, s) =


(t−a)α−1

(b−a)α−2 (b− s)α−2 − (t− s)α−1, a ≤ s ≤ t,

(t−a)α−1

(b−a)α−2 (b− s)α−2, t ≤ s ≤ b.

(2.2) =

{
g1(t, s), a ≤ s ≤ t ≤ b,
g2(t, s), a ≤ t ≤ s ≤ b,

which in the particular case a = 0, b = 1 corresponds to that of M. El-Shahed [1].

2.1. Theorem. The Green function G satis�es:

(1) G(t, s) ≥ 0 for all a ≤ t, s ≤ b.
(2) maxt∈ [a,b] G(t, s) = G(b, s), s ∈ [a, b],
(3) G(b, s) has a unique maximum given by:

max
s∈ [a,b]

G(b, s) =
1

Γ(α)
(b− a)(α−1)

(
α− 2

α− 1

)α−2

.

Proof. For the proof of Theorem 2.1, we start with the function g1(t, s). The function g1
is non-decreasing. Indeed, to show this fact, we need to make the following observation
of Ferreira in [2]:

(a+
(s− a)(b− a)

t− a ) ≥ s is equivalent to s ≥ a;
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this allows us to write

(t− s)α−1 = (t− a+ a− s)α−1 = [(t− a)(1 +
a− s
t− a )]α−1

= [(b− a)(1 +
a− s
t− a )]α−1 (t− a)α−1

(b− a)α−1

= [b− (a+
(s− a)(b− a)

t− a )]α−1 (t− a)α−1

(b− a)α−1
,

which is used to show that g1 is positive and non-decreasing.
Indeed,

For a ≤ s ≤ t ≤ b,

g1(t, s) :=
(t− a)α−1

(b− a)α−2
(b− s)α−2 − (t− s)α−1

=
(t− a)α−1

(b− a)α−2
(b− s)α−2 − [b− (a+

(s− a)(b− a)

t− a )]α−1 (t− a)α−1

(b− a)α−2

≥ (t− a)α−1

(b− a)α−2
(b− s)α−2 − (b− s)α−2 (t− a)α−1

(b− a)α−2

≥ 0.

On the other hand

∂g1
∂t

(t, s) = (α− 1)
(t− a)α−2

(b− a)α−2
(b− s)α−2 − (α− 1)(t− s)α−2

= (α− 1)
(t− a)α−2

(b− a)α−2
(b− s)α−2 − (α− 1)[b− (a+

(s− a)(b− a)

t− a )]α−2

(t− a)α−2

(b− a)α−2

= (α− 1)(t− a)α−2

(
(b− s)α−2

(b− a)α−2
− [b− (a+

(s− a)(b− a)

t− a )]α−2 1

(b− a)α−2

)
≥ (α− 1)(t− a)α−2

(
(b− s)α−2

(b− a)α−2
− (b− s)α−2 1

(b− a)α−2

)
≥ 0.

Consequently,

max
t,s∈[a,b]

g1(t, s) = max
s∈[a,b]

g1(b, s).

In view of (2.1)− (2.2), g1(b, s) is de�ned by: g1(b, s) = (b− s)α−2(s− a). Its derivative
with respect to s takes the form

∂g1
∂s

= (b− s)α−3[s(1− α) + a(α− 2) + b].

∂g1
∂s

= 0 ⇔ s = s∗ =
a(α− 2) + b

α− 1
.

Hence

max
s∈[a,b]

g1(b, s∗) = (b− a)α−1

(
α− 2

α− 1

)
.

The function g2 is clearly positive and non decreasing in t, so

max
t,s∈[a,b]

g2(t, s) = max
s∈[a,b]

g2(b, s) = g2(s, s) =
(s− a)α

(b− a)α−2
=: F (s).



1451

The function F is increasing for

s ≤ s∗ =
(α− 2)a+ (α− 1)b

2α− 3
;

and is decreasing for

s ≥ s∗ =
(α− 2)a+ (α− 1)b

2α− 3
.

So

max F (s) = max g2(s, s) = g2(s∗, s∗),

where

g2(s∗, s∗) = (b− a)α−1

(
α− 2

α− 1

)α−2

.

Now we need to compare g1(b, s∗) and g2(s∗, s∗).

Since 2 ≤ α ≤ 3 then (2α− 3)α−3 ≥ (α− 1)2α−3 and therefore

(b− a)α−1

(
α− 2

α− 1

)α−2

≥ (b− a)α−1 (α− 1)α−1(α− 2)α−2

(2α− 3)2α−3
.

Consequently

max
s∈[a,b]

G(b, s) =
1

Γ(α)
(b− a)(α−1)

(
α− 2

α− 1

)α−1

.

�

We are now ready to prove the Lyapunov's type-inequality for problem (1.1).

2.2. Theorem. Let u be a solution satisfying the following boundary value problem{
(aD

αu)(t) + q(t)u(t) = 0, a < t < b, 2 < α ≤ 3,
u(a) = u′(a) = u′(b) = 0,

(2.3)

where a and b two consecutive zeros of u. Then (2.3) has a non-trivial solution provided

that the real and continuous function q satis�es the condition

(2.4)

∫ b

a

|q(t)| dt > Γ(α)

(b− a)α−1

(
α− 1

α− 2

)α−1

.

Proof. For the proof of Theorem 2.2, we equip the Banach space C[a, b] with the Cheby-
chev norm ||u|| = maxt∈[a,b] |u(t)|.
As

u(t) :=

∫ b

a

G(t, s)q(s)u(s) ds,

we have

||u|| ≤
∫ b

a

max
t,s∈[a,b]

|G(t, s)| |q(s)| ds ||u||.

Then since u is a non trivial solution, in view of Theorem 2.1, we get

1 ≤
∫ b

a

1

Γ(α)
(b− a)(α−1)

(
α− 2

α− 1

)α−1

|q(s)| ds.

Using the properties of G, the inequality (2.4) is obtained. �
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