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Abstract: A bivariate analysis of precipitation and runoff in the Hirfanli dam basin, Turkey, using copulas
is performed in this study. Two elliptical (Gaussian and Student-t) and three Archimedean family copulas
(Clayton, Frank and Gumbel) are tested in modeling of the dependence structure between these hydrological
variables. The regionally averaged annual precipitation depths and runoff volumes measured at the entrance
of the Hirfanli dam reservoir between 1954 and 2003 are utilized for the parameter estimation and model-
ing. Different graphical tools and numerical techniques are employed for the appropriate model selection,
parameter estimation and goodness-of-fit tests.
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1. Introduction
Copula functions are widely used for modeling the dependence structure in the statistical litera-

ture such as in survival analysis, actuarial science and finance. In recent years, numerous successful
applications of copulas have been reported in hydrological area [1]. Some authors used Archimedean
copulas in modeling of the dependence structure between peak and volume variables [2, 3, 4].
The main advantage of this approach for the hydrological applications is that the selection of

an appropriate model for the dependence between multiple variables can proceed independently
from the choice of the marginal distributions by the copula. The other purpose of using copula
for the hydrological data is related to dependence measure. The linear correlation assumes that
marginals of variables are normal distributions. In general, distributions of the hydrological data
such as the rainfall depths and runoff volumes have fatter tails than normal distributions. Hence,
the dependencies between these variables are described by the dependency parameters included in
copula functions instead of linear correlation.

This study investigates appropriate copula selection for the annual precipitation depths and
runoff volumes in the Hirfanli dam basin using the data between 1954 and 2003. The Maximum
Likelihood Estimation (MLE) and Inference Function for Margins (IFM) methods are respectively
used for estimating the parameters of marginal distributions and copula functions. Then, the
best fit copula function to describe the dependence structure of the bivariate hydrological data is
determined with goodness-of-fit tests according to Akaike Information Criterion (AIC), Schwartz
Information Criterion (SIC) and Hanna-Quinn Information Criterion (HQIC).
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2. Materials and Methods

2.1. Study area and hydrological data
With a drainage area of nearly 26700 km2 the study area is located at the upstream of the

Kizilirmak river, one of the major water resources of the Turkey (Figure 1). The Hirfanli dam basin
is generally characterized by high topography ranging from 780 to 2400 m and has a typical dry
climate with a mean temperature of 10◦C and a mean annual precipitation of about 400 mm which
is about 63% of the country average. Convective and frontal rainfall systems dominate across the
basin. Built in 1959 with 263 km2 surface area and 5980 hm3 volume at normal water surface level,
the Hirfanli dam reservoir is operated for hydropower, water supply and flood control purposes [5].

Figure 1. The Hirfanli dam basin (separated by the dashed line) and the meteorology stations within the basin

The precipitation time series obtained from the Turkish State Meteorology Directorate
(http://www.dmi.gov.tr) were utilized in the study. The regionally averaged annual precipita-
tions were calculated by the Thiessen polygons from 6 meteorology stations within the basin (see
Table 1).

Table 1. The meteorology stations in the Hirfanli dam basin

Index No Station Name Altitude (m) Latitude (◦N) Longitude (◦E)
1 Kirsehir 1007 39.09 34.10
2 Nevsehir 1260 38.35 34.40
3 Kayseri 1093 38.44 35.29
4 Gemerek 1173 39.11 36.04
5 Sivas 1285 39.45 37.01
6 Zara 1348 39.54 37.45

The runoff volumes measured at the entrance of the Hirfanli dam reservoir were obtained from
the Turkish State Water Works Directorate (http://www.dsi.gov.tr). Both hydrological time
series had no missing data and were found homogeneous. The annual precipitation depths and
runoff volumes between 1954 and 2003 were utilized for the bivariate analysis using copulas.
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Figure 2 clearly displays the dependence structure between precipitation depths (Xi) and runoff
volumes (Yi) in the Hirfanli dam basin. The scatter plots of 50 pairs (Xi, Yi) and the corresponding
pairs (Ui, V i) are shown in the figure.

Figure 2. The scatter plots of pairs (Xi, Yi) and (Ui, Vi)

The descriptive statistics, correlation and normality test results are given in Table 2. Here, one
can see that the annual precipitations are normal whereas the annual runoff volumes seem to be
nearly non-normal with a relatively higher skewness coefficient. The Pearson as well as ranked
based Spearman’s ρ and Kendal’s τ coefficients are utilized for the assessment of dependence. They
are respectively calculated as 0.7609,0.7361 and 0.5559, which reveal the presence of a relatively
high dependence between the two hydrological variables under consideration.

Table 2. Descriptive statistics, correlation and normality test results for the hydrological variables

Statistics Precipitation (mm) Runoff volume (hm3)
Sample Number 50 50
Mean 416.7738 2439.8
Std. deviation 70.5433 775.5209
Skewness 0.1849 0.6495
Excess of Kurtosis 3.1358 3.3289
Tests p-value χ2 stat. p-value χ2 stat.
Jarque-Bera 0.50∗ 0.3233 0.0771∗ 3.7404
Correlation tests Kendall’s τ Spearman’s ρ Pearson p-value

0.5559 0.7361 0.7609 0.0000∗∗

The p-value is the upper value of significance level of 5%.

(*) the null hypothesis of normal distribution is admitted.

(**) the correlation is significantly different from zero.

Table 3 shows the goodness of fit test results for the marginals of precipitation and runoff
volume data. It is shown that the precipitation can be represented by the Gaussian (Normal)
distribution and the runoff volumes can be modelled by the Gamma distribution according to the
lowest criterion values generated by different criteria and tests. Figure 3 depicts QQ-plots for the
annual precipitations and runoff volumes.
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Table 3. Goodness-of-fit test results for the marginal distributions of precipitation and runoff volume

Precipitation (mm)
Marginals Parameters MLE AIC BIC χ2 K-S A-D
Normal μ 416.774 570.7719 574.3407 7.9200 0.0758 0.4188

σ 70.543
Logistic μ 417.566 571.2796 574.8483 6.3200 0.0759 0.4082

σ 39.622
Weibull α 2.5829 571.7760 576.9903 8.8800 0.0993 0.5817

β 188.55
Laplace μ 422.98 574.0453 577.6140 8.5600 0.0843 0.5945

σ 77.5813
ExtValue a 382.242 574.8886 578.4573 11.1200 0.1369 1.1002

b 65.095
Runoff volume (hm3)

Marginals Parameters MLE AIC BIC χ2 K-S A-D
Gamma α 7.966 808.7518 813.9662 6.9600 0.0957 0.3113

β 272.86
Inv Gauss μ 3163.3 808.8030 814.0173 6.9600 0.0937 0.3069

λ 53313.3
Weibull α 2.1556 808.8252 814.0395 8.5600 0.1046 0.3618

β 1780.7
Log Normal μ 3138.9 808.8348 814.0491 6.9600 0.0925 0.3047

σ 771.43
Normal μ 2439.78 810.5027 814.0714 21.3600 0.1205 0.6022

σ 775.52
MLE: Maximum Likelihood Estimation, AIC: Akaike Information Criterion,

BIC: Bayesian Information Criterion, χ2: Chi-square test, K-S: Kolmogorov-Smirnov test,

A-D: Anderson–Darling test.

Figure 3. QQ-plots showing the fit of marginal models for precipitation (a) and runoff volume (b) data in the
Hirfanli dam basin

2.2. Copula functions
Let X and Y be dependent continuous random variables. A two-dimensional copula is a distribu-

tion function on the unit square with uniform margins. [6] states that for any continuous random
vector (X,Y ), a copula, C : [0,1]2 → [0,1], uniquely determines F (x, y) =C(F1(x), F2(y)), where F
is the joint distribution function of X and Y random variables and Fi, i= 1,2, are the marginal
distributions of X and Y , respectively [5]. Further details about copulas can be found in ([7]-[9]).
There are various copulas in the literature. In our work, we concentrate on the elliptical copula
family including the Gaussian and the Student-t copulas, and the Archimedean copula family such
as the Clayton, the Frank and the Gumbel copulas which are widely used in the statistical and
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hydrological literature. Table 4 shows the copula functions and their parameter space used in this
study.

Table 4. The copula functions and their parameter space used in the study

Copula Cθ(u, v) Parameter space

Gaussian Φρ (Φ
−1 (u) ,Φ−1 (v)) =

Φ−1(u)

∫
−∞

Φ−1(v)

∫
−∞

1

2π
√

1−ρ2
exp

(
− 2ρst−s2−t2

2(1−ρ2)

)
ds ρ∈ (−1,1)

Student-t td,ρ(t
−1
d (u), t−1

d (v)) =
t−1
d (u)

∫
−∞

t−1
d (v)

∫
−∞

1

2π
√

1−ρ2

(
1+ s2+t2−2ρst

d(1−ρ2)

)− d+2
2

dsdt ρ∈ (−1,1) , d∈ (0,∞)

Clayton (u−θ + v−θ − 1)
−1/θ

θ ∈ (0,∞)

Gumbel exp
[
−(u−θ + v−θ)

−1/θ
]

θ ∈ [1,∞)

Frank − 1
θ
ln

[
1+

(e−θu−1)(e−θv−1)
(e−θ−1)

]
θ ∈ (−∞,∞)\{0}

In Table 4, Φρ is the bivariate standard normal distribution function with parameter ρ, and
Φ−1 is the functional inverse of the univariate standard normal c.d.f., and Φ. td,ρ is the bivariate
Student-t distribution, and t−1

d is the functional inverse of Student-t c.d.f. with d degrees of freedom
td.

2.3. Parameter estimation
There are different methods for estimating copula parameters. For example, Inference Function

for Margins (IFM) methods depend on the marginal distributions for this purpose. However, the
method based on the inversion of Kendall’s τ dependence measure and the Maximum Pseudo-
Likelihood (MPL) method estimate copula parameters without considering them. There is no
consensus, but a large number of researchers use the rank based estimation methods. It is argued
that IFM methods are non-robust against misspecification of marginal distributions, as the param-
eter estimation depends on the choice of the univariate marginal distributions and can be affected
if such models do not fit adequately [10]. Consequently, the inversion of Kendall’s τ and IFM
methods are both preferred in the present work. Kendall’s τ is a powerful and well-known measure
of concordance. The relationship between τ and a copula C is given in Equation (2.1) as follows:

τ = 4
1

∫
0

1

∫
0
C (u, v)dC (u, v)− 1 = 1− 4

1

∫
0

1

∫
0

∂C

∂u
(u, v)

∂C

∂v
(u, v)dudv (2.1)

The estimations based on the inversion of Kendall’s τ method for different copulas are given in
Table 5, which is taken from [9].

Table 5. The parameter estimations based on the inversion of Kendall’s τ method

Copula Gaussian Student-t Clayton Gumbel Frank
Kendall’s τ 2

π
arcsin (θ) 2

π
arcsin (θ) θ

θ+2
1− θ−1 1− 4

θ
[D1 (−θ)− 1]

In Table 5, D1 denotes the Debye function such that Dk (−θ) = Dk (θ) +
kθ
k+1

and Dk (θ) =

k
θ

θ

∫
0

tk

et−1
dt.

The IFM estimates the marginal distribution parameters separately from the copula parameters.
The estimation procedure of this method consists of two steps described by [9]. First, the param-

eters of the marginals are estimated as θ̂1 = argmaxθ1

T∑
t=1

2∑
i=1

log fi (xi,t;θ1) and then, given θ̂1, the
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parameters of the copula model are estimated as θ̂2 = argmaxθ2

T∑
t=1

log c
(
F1 (x1,t) , F2 (x2,t) ;θ2, θ̂1

)
.

The IFM estimator is defined as θ̂=
(
θ̂1, θ̂2

)′
.

2.4. Goodness-of-fit testing
The aim of a goodness-of-fit testing is to select the appropriate copula that best represents

the dependence structure of variables via the observed data. AIC and SIC are widely used in the
literature for this purpose [12], [13]. SIC performs better for relatively large samples, while AIC
tends to be superior for relatively small samples [14]. HQIC is also used in the literature for model
selection.

Actually, the copula that provides the best fit is the one that corresponds to the lowest value of
the criteria used. In this study, we employed AIC, SIC and HQIC defined by Equations 2.2-2.4 to
select the best fit copula to the observed data.

AIC =−2 ·LL+2 · k (2.2)

SIC =−2 ·LL+ ln(n) · k (2.3)

HQIC = n · log
(
RSS

n

)
+2 · k · log(logn) (2.4)

where LL is loglikelihood, k is the number of parameters of the copula model, n is the number of
observations and RSS is the residual sum of squares that results from linear regression or other
statistical model.

3. Results and Discussion
A graphical test of the goodness-of-fit of the dependence structure taken in isolation is given in

Figure 4, which displays the simulated random sample of size 1000 from the five selected copulas
with parameters estimated by the method of IFM using the precipitation-runoff volume data. The
viability of the appropriate model for the bivariate analysis can be visually assessed in Figure 5,
where all five copulas seem to fit to the hydrological data.

Figure 4. Simulated random sample of size 1000 from the five selected copulas with parameters estimated by the
method of IFM using the precipitation-runoff volume data, whose pairs of ranks are indicated by an ”X”.
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Figure 5. Same data as in Fig.4, upon transformation of the marginal distributions as per the selected models for
the precipitation and the runoff volume data, whose pairs of observations are indicated by an ”X”

According to the goodness-of-fit test results tabulated in Table 6, for a given copula, the criterion
values produced by AIC, SIC and HQIC have no significant differences. As a member of elliptical
family, the Student-t copula has the lower criterion values as compared to the Gaussian copula.
The Clayton copula, on the other hand, emerges as the best Archimedean family copula with the
lowest criterion values.

Table 6. Goodness-of-fit test results for the selected copula models.

Copula Parameter Kendall’s τ IFM AIC SIC HQIC
Gaussian ρ 0.7758 0.7747 39.72 37.89 39.07
Student-t ρ 0.7758 0.7747 37.44 33.87 36.24

d 40.00 40.00
Clayton θ 2.5036 2.1629 20.10 16.54 18.90
Gumbel θ 2.2518 2.2391 32.09 28.52 30.89
Frank θ 6.858 7.6756 34.26 30.70 33.16

4. Conclusions
In this study, two elliptical family copulas (Gaussian and Student-t) and three Archimedean

family copulas (Clayton, Gumbel and Frank) are considered to select an appropriate copula model
for the bivariate analysis of the annual precipitation and runoff volumes in the Hirfanli dam basin,
Turkey. Regardless of their marginal distribution type, a bivariate analysis of the hydrological data
was successfully performed with the use of different family copulas. Three separate criteria were
utilized for goodness-of-fit testing to select the best fit copula function. The study results indicated
that the three criterion values were found very close for each individual copula under consideration.
Overall, the Student-t and the Clayton copulas, as two different family copulas, seemed to be more
appropriate to modeling of the dependence structure between the precipitation and runoff volume
data in the study area.

References
[1] C. Genest and A.C. Favre. (2007). Everything you always wanted to know about copula modeling but

were afraid to ask. Journal of Hydrologic Engineering, July/August, 347-368.



E. Kızılok Kara and O. Yıldız: Bivariate analysis of precipitation and runoff in the Hirfanli Dam, Turkey, using copulas
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