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1. Introduction
In life testing experiments, a number of continuous models have been suggested and studied (see,

for example, Lawless [6] and Sinha [12]). However, it is sometimes impossible or inconvenient to
measure the life length of a device on a continuous scale. In practice, we come across situations,
where lifetime of a device is considered to be a discrete random variable.

In the last two decades, well known discrete distributions like geometric and negative binomial
have been employed to model lifetime data. However, there is a need to find more plausible discrete
lifetime distributions to fit to various types of lifetime data. For this purpose, recently some popular
continuous lifetime distributions are discretized.

Nakagawa [14] discretized the Weibull distribution. Stein and Dattero [15] discussed another
discrete type of Weibull distribution. Roy ([10], [11]) considered discrete normal and Rayleigh
distributions. Krishna and Pundir [4] proposed discrete Burr and Pareto distributions. Jazi et al.
[1] studied discrete inverse Weibull distribution. These authors have also studied distributional and
reliability properties of such discretized distributions.

Type I censoring is very common in nature. A life testing experiment may be terminated after
a certain number of cycles or weeks prefixed by an experimenter due to various constraints. This
gives rise to a natural Type I censored data set. As an example, Kulasekera [3] studied discrete
Weibull distribution based on Type I censored data. In this paper, estimation problem for discrete
Burr parameters are discussed under Type I censoring.

The paper is organized as follows: In Section 2, maximum likelihood (ML), modified maximum
likelihood (MML) and method of proportion (MP) estimators of discrete Burr [4] parameters based
on Type I censored sample are given. Simulation study is conducted to see the performance of
these estimators in Section 3. Finally, a numerical example is given in Section 4.
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2. Discrete Burr Distribution
Krishna and Pundir [4] defined the probability mass function (pmf) and the cumulative distribu-

tion function (cdf) of the discrete Burr distribution with parameter q and β are given, respectively,
by

f (x) = qlog(1+xβ)− qlog(1+(1+x)β), x= 0,1,2, . . . (2.1)

F (x) = 1− qlog(1+xβ), x= 0,1,2, . . . , (2.2)

where 0< q < 1 and β > 0 are parameters. It will be denoted by DBD(q, β).

2.1. Estimation Under Type I Censoring
Method 1: Maximum Likelihood Estimation

Let X0
1 ,X

0
2 , . . . , X

0
n be i.i.d. observations from DBD(q, β) and let each observation be Type I

censored by L1, . . . ,Ln respectively. Thus we observe

Xi =min
(
X0

i ,Li

)
, i= 1,2, . . . , n

along with the indicator variables (Kulasekera [3])

δi =

{
1, if Xi =X0

i

0, otherwise.

Then the log likelihood function for this data is given by

 (q, β) = log

{
n∏

i=1

f (xi)
δi (1−F (xi))

1−δi

}

=

n∑
i=1

δi log (f (xi))+

n∑
i=1

(1− δi) log (1−F (xi)) (2.3)

=

n∑
i=1

δi log
(
qlog(1+x

β
i )− qlog(1+(1+xi)

β)
)
+

n∑
i=1

(1− δi) log
(
qlog(1+x

β
i )
)

and the likelihood equations are given, respectively, by

∂ (q, β)

∂q
=

n∑
i=0

δi
q

⎛
⎝qlog(1+x

β
i ) log

(
1+xβ

i

)− qlog(1+x
β
i ) log

(
1+ (1+xi)

β
)

qlog(1+x
β
i )− qlog(1+(1+xi)

β)

⎞
⎠

+

n∑
i=0

(1− δi) log
(
1+xβ

i

)
q

= 0, (2.4)

∂ (q, β)

∂β
=

n∑
i=0

δi
qlog(1+x

β
i )xβ

i log (xi) log (q)

1+xβ
i

((
qlog(1+x

β
i )− qlog(1+(1+xi)

β)
))−1

−
n∑

i=0

δi
qlog(1+(1+xi)

β) (1+x)
β
log (1+xi) log (q)(

1+ (1+xi)
β
)((

qlog(1+x
β
i )− qlog(1+(1+xi)

β)
))

+

n∑
i �=0

(1− δi)x
β
i log (xi) log (q)

1+xβ
i

= 0. (2.5)
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The solution of these likelihood equations will provide the ML estimators of q and β and it will be
denoted by q̂ and β̂, respectively. Since Eq.(2.4) and Eq.(2.5) cannot be solved analytically for q
and β, some numerical methods such as Newton’s method must be employed.

Method 2: Method of proportions

Khan et al. [2] proposed a method of proportions to estimate the parameters of discrete Weibull
distribution. Their method is applied to estimate the DBD(q, β) parameters.

Let X1,X2, . . . ,Xn be the Type I censored sample from DBD(q, β) and define indicator function

υ (Xi) =

{
1, Xi = 0
0, Xi > 0

(2.6)

Then Y = 1
n

n∑
i=1

υ (Xi) denotes the proportion of 0’s in the sample. It is clear that the proportion

Y is an unbiased and a consistent estimator of the probability f (0) = 1− (q)
log(2)

. Therefore, an
estimator of q can be offered as

q̃= (1−Y )
1/ log(2)

. (2.7)

Similarly, the proportion of 1’s in the sample, denoted by Z, is also an unbiased and a consistent

estimator of the probability f (1) = qlog(2)−qlog(1+2β). Hence the proportion estimator of β, is given
by

β̃ = log

(
exp

{
log

(
q̃log(2) −Z

)
log (q̃)

}
− 1

)
(log (2))

−1
, (2.8)

where q̃ is given in Eq.(2.7). Note that if there is no observations equal to 0 in the sample, one
can obtained proportion estimators by equating f (1) and f (2) to proportion of 1’s and 2’s in the
sample, respectively. In this case, the performance of proportion estimators may be changed.

Method 3: Modified Maximum Likelihood Estimation

Let X1,X2, . . . ,Xn be Type I censored sample from DBD(q, β). The ML estimators of q and
β are obtained by solving Eq. (2.4) and Eq. (2.5) for q and β. An iterative method such as
Newton-Raphson should be used to get the ML estimator. In order to avoid this process, we used
Kulasekera’s [3] approximation to obtain the ML estimators in the following fashion. Let us assume
Li > 0, i= 1,2, . . . , n. Let f1 (q,β) =LHS of (2.4) and f2 (q, β) =LHS of (2.5). Then to obtain the
ML estimators of q and β, following equations should be solved:

f1 (q, β) = 0
f2 (q, β) = 0

}
(2.9)

This system of equations cannot be solved analytically. Now, instead of solving Eq.’s (2.9), one
can solve the system(

f1 (q,β)+ (q̂∗−q)
∂f1(q, β)

∂q
+
(
β̂∗−β

) ∂f1(q, β)

∂β

)∣∣∣∣ q= q̃

β = β̃

= 0 (2.10)

(
f2 (q, β)+ (q̂∗−q)

∂f2(q,β)

∂q
+
(
β̂∗−β

) ∂f2(q, β)

∂β

)∣∣∣∣ q= q̃

β = β̃

= 0, (2.11)
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Table 1. Mean square errors of estimators DBD (q= 0.3, β = 0.5)

ML MP UMML MML

L n q̂ β̂ q̃ β̃ q̂∗∗ β̂∗∗ q̂∗ β̂∗
3 100 0.0024 0.0161 0.0024 0.0266 0.0025 0.0169 0.0024 0.0204

3 300 0.0008 0.0063 0.0008 0.0097 0.0008 0.0063 0.0008 0.0061

3 500 0.0005 0.0038 0.0005 0.0058 0.0005 0.0038 0.0006 0.0052

5 100 0.0023 0.0118 0.0023 0.0262 0.0024 0.0123 0.0026 0.0152

5 300 0.0008 0.0042 0.0008 0.0095 0.0008 0.0042 0.0008 0.0042

5 500 0.0005 0.0024 0.0005 0.0057 0.0005 0.0024 0.0006 0.0029

7 100 0.0024 0.0116 0.0024 0.0256 0.0024 0.0113 0.0027 0.0135

7 300 0.0008 0.0037 0.0008 0.0093 0.0008 0.0037 0.0007 0.0036

7 500 0.0005 0.0022 0.0005 0.0056 0.0005 0.0022 0.0004 0.0022

∞ 100 0.0024 0.0116 0.0024 0.0254 0.0024 0.0112 0.0024 0.0124

∞ 300 0.0008 0.0024 0.0008 0.0091 0.0008 0.0024 0.0006 0.0038

∞ 500 0.0005 0.0015 0.0005 0.0055 0.0005 0.0015 0.0005 0.0015

where q̃ and β̃ are the proportion estimators. This procedure gives us MML estimators which are
obtained explicitly by

β̂∗ =
−f2 (q, β)

∂f1(q,β)

∂q
+ ∂f2(q,β)

∂q
f1 (q, β)−∂f2(q,β)

∂q

∂f1(q,β)

∂β
β+∂f2(q,β)

∂β

∂f1(q,β)

∂q
β

∂f2(q,β)

∂β

∂f1(q,β)

∂q
− ∂f2(q,β)

∂q

∂f1(q,β)

∂β

∣∣∣∣∣ q= q̃

β = β̃

(2.12)

and

q̂∗ = −f1 (q, β)−∂f1(q,β)

∂q
q+ ∂f1(q,β)

∂β
β̂∗−∂f1(q,β)

∂β
β

∂f1(q,β)

∂q

∣∣∣∣∣ q= q̃

β = β̃

. (2.13)

Revised estimators: Following Lee et al. [5] and Tiku and Vaughan [15] and Tiku and Akkaya
[14], we can update the estimators (2.12) and (2.13) by replacing q̃ and β̃ with q̂∗ and β̂∗. This
process needs to be repeated only a few times until the estimators stabilize sufficiently enough.
These estimators are called updated modified ML(UMML) estimators denoted by q̂∗∗ and β̂∗∗. After
simulation studies, it is observed that UMML estimators are almost identical to ML estimators. It
should be pointed out that the UMML estimators are almost the same as ML estimators and it is
not necessary to use any iteration method unlike the ML estimators from Eqs (2.4) and (2.5) are
obtained.

3. Simulation Study and Conclusion
In this section, ML, MP, UMML and MML estimators are compared in terms of MSE and

Bias under Type I censoring and complete sample cases by using Monte Carlo Simulation. 10000
trials are used to get the results given in Table 1-4. Simulation is performed for (n= 100,300,500),
Li =L= 3,5,7, i= 1, ..., n, and different values of parameters
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Table 2. Mean square errors of estimators DBD (q= 0.5, β = 1.5)

ML MP UMML MML

L n q̂ β̂ q̃ β̃ q̂∗∗ β̂∗∗ q̂∗ β̂∗
3 100 0.0032 0.0878 0.0032 0.1252 0.0031 0.0860 0.0072 0.0686

3 300 0.0011 0.0323 0.0011 0.0402 0.0011 0.0323 0.0028 0.0519

3 500 0.0006 0.0150 0.0006 0.0229 0.0006 0.0120 0.0010 0.0282

5 100 0.0032 0.0831 0.0032 0.1249 0.0032 0.0792 0.0055 0.0395

5 300 0.0011 0.0256 0.0011 0.0396 0.0011 0.0256 0.0010 0.0243

5 500 0.0006 0.0149 0.0006 0.0254 0.0006 0.0149 0.0010 0.0237

7 100 0.0031 0.0748 0.0031 0.1210 0.0035 0.0772 0.0052 0.0287

7 300 0.0011 0.0245 0.0011 0.0400 0.0011 0.0245 0.0012 0.0250

7 500 0.0007 0.0150 0.0007 0.0236 0.0007 0.0150 0.0009 0.0202

∞ 100 0.0030 0.0722 0.0031 0.1190 0.0035 0.0779 0.0044 0.0280

∞ 300 0.0011 0.0236 0.0011 0.0388 0.0011 0.0236 0.0009 0.0226

∞ 500 0.0006 0.0141 0.0006 0.0235 0.0006 0.0141 0.0008 0.0146

Table 3. Bias of estimators DBD (q= 0.3, β = 0.5)

ML MP UMML MML

L n q̂ β̂ q̃ β̃ q̂∗∗ β̂∗∗ q̂∗ β̂∗
3 100 0.0071 0.0466 0.0071 0.0463 0.0065 0.0447 -0.0075 0.0395

3 300 0.0005 0.0033 0.0005 0.0029 0.0005 0.0033 -0.0012 0.0028

3 500 0.0005 0.0015 0.0005 0.0016 0.0005 0.0015 -0.0010 -0.0014

5 100 0.0018 0.0140 0.0018 0.0322 0.0015 0.0132 -0.0013 0.0134

5 300 0.0005 0.0031 0.0005 0.0010 0.0005 0.0031 -0.0010 0.0024

5 500 0.0004 0.0013 0.0004 0.0013 0.0004 0.0013 -0.0009 -0.0013

7 100 0.0020 0.0116 0.0020 0.0135 0.0012 0.0083 -0.0010 0.0111

7 300 0.0002 0.0019 0.0010 0.0040 0.0002 0.0019 -0.0009 0.0021

7 500 0.0004 0.0012 0.0004 0.0016 0.0004 0.0012 -0.0008 0.0010

∞ 100 0.0016 0.0113 0.0016 0.0115 0.0011 0.0079 -0.0010 -0.0083

∞ 300 0.0010 0.0013 0.0010 0.0040 0.0010 0.0013 -0.0009 -0.0018

∞ 500 0.0003 0.0010 0.0004 0.0015 0.0003 0.0010 -0.0007 0.0010

From Table 1-4, It is observed that MSE and Bias of estimators decrease when n increases as
expected for all estimators discussed here. When L (censoring bound) increases then bias and MSE
decrease as also expected for all estimators. ML and UMML estimators of β are better than the
others in terms of MSE in almost all sample size and censoring schemes. All estimator of parameter
q have the same performance in terms of MSE criterion. From Table 3 and 4, the bias of estimators
decrease when L or n increases.

4. A real data example
Here, we consider the recordings of Phyo [9] of the total number of carious teeth among the four

deciduous molars in a sample of 100 children 10 and 11 years old. Symmetry between right and
left molars is presumed and only the right molars are considered with a time unit of two years.
The data are given in Table 5.
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Table 4. Bias of estimators DBD (q= 0.5, β = 1.5)

ML MP UMML MML

L n q̂ β̂ q̃ β̃ q̂∗∗ β̂∗∗ q̂∗ β̂∗
3 100 0.0023 0.0366 0.0013 0.0360 -0.0031 0.0320 -0.0027 0.0415

3 300 0.0007 0.0123 0.0007 0.0115 0.0007 0.0123 -0.0014 -0.0221

3 500 -0.0002 0.0091 -0.0002 0.0086 -0.0002 0.0091 0.0009 0.0182

5 100 0.0011 0.0362 0.0011 0.0354 0.0012 0.0319 -0.0015 -0.0302

5 300 0.0005 0.0137 0.0005 0.0117 0.0005 0.0137 -0.0013 0.0140

5 500 0.0005 0.0085 0.0005 0.0070 0.0005 0.0085 -0.0009 -0.0074

7 100 0.0006 0.0307 0.0006 0.0344 0.0010 0.0266 -0.0014 0.0220

7 300 0.0003 0.0118 0.0010 0.0102 0.0003 0.0118 -0.0009 0.0123

7 500 0.0002 0.0086 0.0006 0.0071 0.0002 0.0084 -0.0005 -0.0073

∞ 100 0.0005 0.0284 0.0004 0.0310 0.0009 0.0211 -0.0012 0.0116

∞ 300 -0.0002 0.0096 -0.0002 0.0063 -0.0002 0.0096 -0.0004 0.0071

∞ 500 0.0002 0.0084 0.0002 0.0059 0.0002 0.0084 -0.0004 0.0069

Table 5. Total number of carious teeth

Total number of carious
teeth(x)

0 1 2 3 4 Total

Frequency 64 17 10 6 3 100

Table 6. Estimations of Discrete Burr parameters for real data in Table 5

Complete data L= 2 L= 3
q β q β q β

ML 0.2312 1.4408 0.2322 1.4820 0.2314 1.4124
MP 0.2290 1.0604 0.2290 1.0604 0.2290 1.0604
MML 0.2163 1.3240 0.2197 1.3529 0.2195 1.3125
UMML0.2312 1.4408 0.2322 1.4820 0.2314 1.4124

The ML, MP, MML and UMML estimates of q and β based on the real data set given in Table
6.

In Table 7, we also reported the χ2 goodness of fit test results for discrete Burr distribution
based on the ML, MP and MML estimates of q and β. Since the MP method has smaller χ2value,
so it provides a better fit.
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Table 7. χ2 goodness of fit test results.

Total number of carious
teeth(xi)

oi Using
MLE

Using MP Using
MMLE

0 64 63.7677 64 65.3979
1 17 21.6015 17 19.9364
2 10 7.1432 6.9645 6.8449
3 6 3.0354 3.5924 3.0225
4 3 1.5326 2.1226 1.5739

χ2 =
6.4239

χ2 =
3.2994

χ2 =
6.1422

Sig=0.0403 Sig=0.1921 Sig=0.0464

References
[1] Jazi, M.A., Lai, C.D. and Alamatsaz, M.H. (2009). A discrete inverse Weibull distribution and estimation

of its parameters, Statistical Methodology, 7, 121-132.

[2] Khan, M.S.A., Khalique, A. and Abouammoh, A.M. (1989). On estimating parameters in a discrete
Weibull distribution. IEEE Transactions on Reliability, 38 (3), 348-350.

[3] Kulasekera, K. B. (1994). Approximate MLE’s of the Parameters of a Discrete Weibull Distribution
with Type I Censored Data.Microelection Reliability, 34(7), 1185-1188.

[4] Krishna, H. and Pundir, P.S. (2009). Discrete Burr and discrete Pareto distributions.Statistical Method-
ology, 6, 177-188.

[5] Lee, K. R., Kapadia, C. H. and Dwight, B. B. (1980). On estimating the scale parameter of Rayleigh
distribution from censored samples. Statistische Hefte, 21, 14-20.

[6] Lawless, J.F. (1982). Statistical Models and Methods for Lifetime Data. John Wiley & Sons, New York.

[7] Nakagawa, T. and Osaki, S. (1975). This discrete Weibull distribution. IEEE Transactions on Reliability,
24, 300-301.

[8] Nelder, J.A. and Mead, R. (1969). A simplex method for function minimization. The Computer Journal,
7, 308-313.

[9] Phyo, I. (1973). Use of a chain binomial in epidemiology of caries. Journal of Dental Research, 52,
750-752.

[10] Roy, D. (2003). The discrete normal distribution.Communications in Statistics Theory and Methods, 32
(10), 1871-1883.

[11] Roy, D. (2004). Discrete Rayleigh distribution. IEEE Transactions on Reliability, 53 (2), 255-260.

[12] Sinha, S.K. (1986). Reliability and Life testing. Wiley Eastern Ltd, New Delphi.

[13] Stein, W.E. and Dattero, R. (1984). A new discrete Weibull distribution. IEEE Transactions on Relia-
bility, R-33, 196-197.

[14] Tiku, M. L. and Akkaya, A. D. (2004). Robust Estimation and Hypothesis Testing. New Age Interna-
tional, New Delhi.

[15] Tiku, M. L. and Vaughan, D. C. (1997). Logistic and nonlogistic density functions in binary regression
with nonstochastic covariates. Biometrical Journal, 39, 883-898.


