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1. Introduction
The estimated hazard rate, because of the variety of its possible applications, is an important

issue in statistics.
This topic can (and should) be approached from several angles depending on the complexity

of the problem: presence of censoring in the observed sample (for example, common phenomenon
in medical applications), presence of dependence between the observed variables (for example,
common phenomenon in applications such as seismic or econometric) or presence of explanatory
variables. Many techniques have been studied in the literature to deal with these situations but all
deal only with random explanatory variables real and multidimensional.
Technical advances in collection and data storage can have more often statistical functional:

curves, images, tables, ... The data are modeled as realizations of a random variable taking values
in an abstract space of infinite dimension, and the scientific community was naturally interested
in recent years the development of statistical tools capable of handling this type of sample.
Thus, estimating a hazard rate in the presence of functional explanatory variable is a topical issue.

In this context, the first results were obtained by Ferraty et al. [6]. They studied the almost complete
convergence of a kernel estimator of the conditional hazard function assuming i.i.d observations
and the case of observations mixing for complete data and censored. The estimators that we define
are based on the techniques of convolution kernel.
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The study of functions (the hazard function and the conditional hazard function) is of obvious
interest in many scientific fields (biology, medicine, reliability, seismology, econometrics, ...), and
many authors have studied the construction of nonparametric estimators of hazard function. One
of the most common techniques for constructing estimators of the hazard function (respectively
the hazard function conditional) is to study a quotient of the density estimator (respectively the
conditional density) and an estimator of S (respectively the conditional survival function). The
article by Patil et al. [12] presented an overview of estimation techniques. The non-parametric
methods based on the ideas of convolution kernel, which are known for their good behavior problems
in density estimation (conditional or not), and are widely used in nonparametric estimation of
hazard function. A wide range of literature in this area is provided by the literature reviews of
Singpurwalla and Wong [15], Hassani et al. [9], Izenman [10], Gefeller and Michels [8] and Pascu
and Vaduva [11].
Advances in data collection processes have the immediate consequence of the opportunity for

statisticians to have more and more observations of functional variables. The works of Ramsay and
Silverman [13] and Ferraty and Vieu [5] offer a wide range of statistical methodologies, parametric
or not, recently developed to treat various problems of estimation are carried out in functional
random variables (ie with values in an infinite dimensional space).
The objective of this paper is to study a model in which the conditional random explanatory

variable X is not necessarily real or multi-dimensional but only supposed to be with values in an
abstract space F semi-normed.
As with any problem of nonparametric estimation, the dimension of the space F plays an impor-

tant role in the properties of concentration of the variable X. Thus, when this dimension is not
necessarily finite, the probability functions defined by small balls

φx(h) = P (X ∈B(x,h)) = P (X ∈ {x′ ∈F ,‖x−x′‖<h}) ,

intervene directly in the asymptotic behavior of any estimator nonparametric functional (see Fer-
raty et al. [4]). The asymptotic results that we present later in this article on convergence in mean
square of the conditional hazard function will not escape this rule.

2. General Notations and Conditions
We consider a random pair (X,Y ) where Y is valued in R and X is valued in some semi normed

vector space (F ,‖ · ‖) which can be of infinite dimension with semi-norm ‖ · ‖ so that d(x,x′) =
‖x−x′‖. We will say that X is a functional random variable and we will use the abbreviation frv.
From a sample of independent pairs (Xi, Yi), each having the same distribution as (X,Y ), our aim
is to study convergence mean square of the estimator of the conditional hazard function of a real
random variable conditional on one variable functional. The nonparametric estimate of function
related with the conditional probability distribution (cond-cdf) of Y given X = x. For x ∈ F , we
assume that the regular version of the conditional probability of Y given X = x exists denoted by
F x(y) and has a bounded density with respect to Lebesgue measure over R, denoted by fx(y). In the
following (x, y) will be a fixed point in F×R and Nx×SR will denote a fixed neighborhood of (x, y),
SR will be a fixed compact subset of R, and we will use the notation B(t, h) = {t′ ∈F/‖t′ − t‖<h}.
Our nonparametric models will be quite general in the sense that we will just need the following
simple assumption for the marginal distribution of X:

C2
B(F ×R) =

⎧⎪⎪⎨⎪⎪⎩
ϕ :F ×R−→R

(x, y)−→ϕ(x, y) such as :

∀z ∈Nx, ϕ(z, .)∈C2(SR) and

(
ϕ(., y),

∂2ϕ(., y)

∂y2

)
∈C1

B(x)×C1
B(x),

⎫⎪⎪⎬⎪⎪⎭ (2.1)
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İSTATİSTİK: Journal of the Turkish Statistical Association 8(1-2), pp. 1–14, c© 2015 İstatistik 3

where C1
B(x) is the set of continuously differentiable functions to sens of Gteaux on Nx (see

Troutman [16] for this type of differentiability), which the derivative operator of order 1 at
point x is bounded on the unit ball B(0,1) the functional space F . Given i.i.d. observations
(X1, Y1), . . . , (Xn, Yn) of (X,Y ), where the variable X is of functional nature and Y is scalar. For-
mally, we will consider that X is a random variable valued in some semi normed functional space
F , and we will denote by ‖ · ‖ the associated semi norm defined above. The conditional cumulative
distribution of Y given X = x is defined for any y ∈R and any x∈F by

F x(y) = P(Y ≤ y|X = x),

while the conditional density, denoted by fx(y) is defined as the density of this distribution with
respect to the Lebesgue measure on R.
In a general functional setting, f and F are not standard mathematical objects. Because they are

defined on infinite dimensional spaces, the term operators may be a more adjusted in terminology.
Following in Ferraty et al. (2008), the conditional density operator fx(·) is defined by using

kernel smoothing methods

f̂x(y) =

n∑
i=1

h−1
n K

(
h−1
n d(x,Xi)

)
H

(
h−1
n (y−Yi)

)
n∑

i=1

K
(
h−1
n d(x,Xi)

) ,

withe the convention 0
0
= 0, where K and H are kernel functions and hn is sequence of smoothing

parameter. The conditional distribution operator F x(·) can be estimated by

F̂ x(y) =

n∑
i=1

Wni(x)1{Yi≤y}, ∀x∈R

with 1{·} being the indicator function and where Wni(x) =
h−1
n K(h−1

n d(x,Xi))∑n
j=1 K(h−1

n d(x,Xj))
, K is a kernel function

and hn is a sequence of positive real numbers which goes to zero as n goes to infinity. We then
construct the conditional hazard function of Y knowing X = x as follows:

∀x∈F , ∀y ∈R hx(y) =
fx(y)

1−F x(y)
=

fx(y)

Sx(y)
(2.2)

The main objective is to study the the nonparametric estimate ĥx(y) =
f̂x(y)

1− F̂ x(y)
of hx(y) =

fx(y)

1−F x(y)
when the explanatory variableX = x is valued in a space of eventually infinite dimension.

We give precise asymptotic evaluations of the quadratic error of this estimator.

3. Asymptotic Properties
As in any non-parametric functional data problem, the behavior of the estimates is controlled

by the concentration properties of the functional variable X = x.

φx(h) = P(X ∈B(x,h)),

where B(x,h) being the ball of center z and radius h, namely B(x,h) = P (f ∈F , d(x, f)<h) (for
more details, see Ferraty and Vieu (2006), Chapter 6 ).
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In the following, x will be a fixed point in F , Nx will denote a fixed neighborhood of x, SR will
be a fixed compact subset of R. We will led to the hypothesis below concerning the function of
concentration φx.
To establish the convergence in mean square of the estimator ĥx(y) to hx(y), we introduce the

following assumptions:
(H0) ∀h> 0, 0< P (Z ∈B(x,h)) = φx(h) and lim

h→0
φx(h) = 0

(H1) for all r > 0, the random variable Z = r−1(x−X) is absolutely continuous relative in the
measure μ. His density w(r,x, v) is strictly positive on B(0,1) and can be written as:

w(r,x, v) = φ(r)g(x, v)+ o(φ(r)) for all v ∈B(0,1), (3.1)

where
—φ is an increasing function with values in R

+.

— g is defined on F ×F , with values in R
+ where 0<

∫
B(0,1)

g(x, v)dμ(v)<∞.

(H2) The kernel K with compact support (0.1) satisfying 0<A3 <K(t)<A4 <∞,
(H3) H is a kernel bounded, integrable, positive, symmetric such that:∫

H(t)dt= 1,

∫
t2H(t)dt <∞,

(H4) lim
n→∞

hn = 0 and lim
n→∞

nhnφ(hn) =∞,

(H5) ∃τ <∞, fx(y)≤ τ,∀(x, y)∈F ×SR

(H6) ∃β > 0, F x(y)≤ 1−β,∀(x, y)∈F ×SR.

4. Remarks
Remark 1 (Notes on variable functional). : The hypothesis (H1) on the functional

variable X can be divided into two parts:
1. The first part is rarely used in non-parametric statistical functional, because it requires the

introduction of a reference measurement of the functional space. However, in this paper the objec-
tive that we impose this condition. In other words, it allows us to achieve a natural generalization
of the squared error obtained by Vieu [17] in the vector case.
The hypothesis (H1) is not very restrictive. Indeed, the first part of this hypothesis is verified,

when, for example X is a diffusion process satisfying standard conditions (see Niang [3]).
2. The second part (3.1) is less restrictive than the following condition, given for all (r, v) ∈

R
+
∗ ×B(0,1) (x fixed):

∃C1,C2 > 0, 0<C1φ(r)g(x, v)≤w(r,x, v)≤C2φ(r)g(x, v).

which is a classic property in functional analysis. Note that, this assumption is used to describe
the phenomenon of concentration of the probability measure of the explanatory variable X, since
we have:

P(X ∈B(x, r)) =

∫
B(0;1)

w(r,x, v)dμ(v)

= φ(r)

∫
B(0,1)

g(x, v)dμ(v)+ o(φ(r))> 0.

This is a simple asymptotic separation of variables. This condition is designed to be able to
adapt traditional techniques of the case if different multi functional, even if the reference measure
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μ does not have the same properties of the Lebesgue measure, such as translation invariance and
homogeneity.
In the case of finite dimension, the hypothesis (H1) is satisfied when the density of the explanatory

variable X is of class C1 and strictly positive. Indeed, the density of Z = r−1(x−X) and w(r,x, v) =
rpf(x− rv), where f is the density of X and p dimension, therefore w(r,x, v) = rpf(x)+ o(rp).

Remark 2 (Notes on non-parametric model). In this paper, we chose a condition of
derivability as our goal is to find an expression for the rate of convergence explicitly, asymptotically
exact and keeps the usual form of the squared error (see Vieu [17]). However, if one proceeds by a
Lipschitz condition for example the conditional density of type:

∀(y1, y2)∈ SR ×SR,∀(x1, x2)∈Nx ×Nx,

|fx1(y1)− fx2(y2)| ≤Ax((d(x1, x2)
2)+ |y1 − y2|2)

which is less restrictive than the condition (2.1), we obtain a result for the conditional distribution
and conditional density respectively for example of type:

E

[
(F̂ x(y)−F x(y))2

]
=O(h4

n)+O
(

1

nφ(hn)

)
,

E

[
(f̂x(y)− fx(y))2

]
=O(h4

n)+O
(

1

nhnφ(hn)

)
.

But such an expression (implicitly) the rate of convergence will not allow us to properly determine
the smoothing parameter. In other words, this condition of differentiability is a good compromise
to obtain an explicit expression for the rate of convergence. Note that this condition is often taken
in the case of finite dimension.

5. Main Results

5.1. Mean Squared Convergence The first result concerns the L2-consistency of ĥx(y).

Theorem 1. Under hypotheses (H0)-(H6) and if F x(y) (resp. fx(y))∈C2
B(F ×R) then

MSE ĥx(y) ≡ E

[
(ĥx(y)−hx(y))

]2
≡ Bn(x, y)+

σ2
h(x, y)

nhnφx(hn)
+ o(h4

n)+ o

(
1

nhnφx(hn)

)
where

Bn(x, y) =
(Bf

H(x, y)−hx(y)BF (x, y))h
2
n +(Bf

K(x, y)−hx(y)BF
K(x, y))hn

1−F x(y)

with

Bf
H(x, y) =

1

2

∂2fx(y)

∂y2

∫
t2H(t)dt,

Bf
K(x, y) =

∫
B(0,1)

K(‖v‖)Dxf
x(y)[v]g(x, v)dμ(v)∫

B(0,1)
K(‖v‖)g(x, v)dμ(v)

BF (x, y) =
1

2

∂2F x(y)

∂y2

∫
t2H(t)dt

BF
K(x, y) =

∫
B(0,1)

K(‖v‖)DxF
x(y)[v]g(x, v)dμ(v)∫

B(0,1)
K(‖v‖)g(x, v)dμ(v) .

and

σ2
h(x, y) =

β2h
x(y)

(β2
1(1−F x(y))

(with βj =

∫
B(0,1)

Kj(‖v‖)g(x, v)dμ(v), for, j = 1, 2).

where Dx means the derivative with respect to x.
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T his proof is based on the decomposition

ĥx(y)−hx(y) =
f̂x(y)

1− F̂ x(y)
− fx(y)

1−F x(y)

=
1

1− F̂ x(y)

[
(f̂x(y)− fx(y))+

fx(y)

1−F x(y)
(F̂ x(y)−F x(y))

]
=

1

f̂D(x)− ĝN(x, y)

(
f̂N(x, y)−Ef̂N(x, y)

)
+

hx(y)

f̂D(x)− ĝN(x, y)
(EĝN(x, y)−F x(y))

+
1

f̂D(x)− ĝN(x, y)

[(
Ef̂N(x, y)− fx(y)

)
+

hx(y)

f̂D(x)− ĝN(x, y)

(
1−EĝN(x, y)−

(
f̂D(x)− ĝN(x, y)

))]
(5.1)

where

f̂D(x) :=
1

nE[K1(x)]

n∑
i=1

K(h−1
K ‖x−Xi‖), K1(x) =K(h−1

K ‖x−Xi‖)

ĝN(x, y) :=
1

nE[K1(x)]

n∑
i=1

K(h−1
K ‖x−Xi‖)1{Yi≤y}

f̂N(x, y) := ĝ
(1)
N (x, y) :=

1

nhHE[K1(x)]

n∑
i=1

K(h−1
K ‖x−Xi‖)H(h−1

H (y−Yi)).

which leads to a constant C <∞:

∣∣∣ĥx(y)−hx(y)
∣∣∣ ≤ C

∣∣∣f̂x(y)− fx(y)
∣∣∣+ ∣∣∣F̂ x(y)−F x(y)

∣∣∣∣∣∣1− F̂ x(y)
∣∣∣ ,

Then, Theorem (1) can be deduced from both lemmas above Lemma (1) and Lemma (2).

Lemma 1. Under hypotheses (H0)-(H5) and if fx(y)∈C2
B(F ×R) then:

E

[
(f̂x(y)− fx(y))

]2
= B2

H(x, y)h
4
n +B2

K(x, y)h
2
n +

σ2
f (x, y)

nhnφ(hn)

+o(h4
n)+ o

(
1

nhnφ(hn)

)
(5.2)

where

σ2
f (x, y) =

(fx(y))
(∫

B(0,1)
K2(‖v‖)g(x, v)dμ(v)

)∫
H2(t)dt(∫

B(0,1)
K(‖v‖)g(x, v)dμ(v)

)2 ,

Lemma 2. Under hypotheses (H0)-(H4), (H6) and if F x(y)∈C2
B(F ×R) then:

E

[
(F̂ x(y)−F x(y))

]2
= B2

F (x, y)h
4
n +BF

K

2
(x, y)h2

n +
σ2
F (x, y)

nφ(hn)

+o(h4
n)+ o(h2

n)+ o

(
1

nφ(hn)

)
(5.3)
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with

σ2
F (x, y) =

F x(y) (1−F x(y))
(∫

B(0,1)
K2(‖v‖)g(x, v)dμ(v)

)
(∫

B(0,1)
K(‖v‖)g(x, v)dμ(v)

)2 ,

Remark 3. Observe that, the result of this lemmas Lemma 1 and Lemma 2 permits to write

[EĝN(x, y)−F x(y)] =O(hn)

and [
Ef̂N(x, y)− fx(y)

]
=O(h2

n).

[ Proof of Lemma (1)] According to the previous decomposition is demonstrated by a separate
calculation of both parties, party bias and variance for part two quantities, as the squared error
can be expressed as

E

[
(f̂x(y)− fx(y))2

]
=
[
E

(
f̂x(y)

)
− fx(y)

]2
+V ar

[
f̂x(y)

]
.

We define the quantities Ki(x) =K(h−1
K ‖x−Xi‖), Hi(y) =H(h−1

H (y− Yi)) for all i= 1, . . . , n and
we set

ĝN(x, y) =
1

nφ(hn)

n∑
i=1

Ki(x)1{Yi≤y}, f̂D(x) =
1

nφ(hK)

n∑
i=1

Ki(x)

and

f̂N(x, y) = ĝ
(1)
N (x, y) =

1

nhnφ(hn)

n∑
i=1

Ki(x)Hi(y)

We will calculate both sides of this equation (party bias and variance part) to arrive at the calcu-

lation of E
[
f̂x(y)− fx(y)

]2
.

We come at the following to writing:

f̂x(y) =
f̂N(x, y)

Ef̂D(x)

[
1− f̂D(x)−Ef̂D(x)

Ef̂D(x)

]
+

(
f̂D(x)−Ef̂D(x)

)2

(
Ef̂D(x)

)2 f̂x(y),

from which we draw:

Ef̂x(y) =
Ef̂N(x, y)

Ef̂D(x)
− A1

(Ef̂D(x))2
+

A2

(Ef̂D(x))2
,

as
A1 =Ef̂N(x, y)

(
f̂D(x)−Ef̂D(x)

)
=Cov(f̂N(x, y), f̂D(x))

and

A2 =E

(
f̂D(x)−Ef̂D(x)

)2

f̂x(y)

Can be written as

f̂x(y)− fx(y) =

(
f̂N(x, y)

Ef̂D(x)
− fx(y)

)

−
(
f̂N(x, y)−Ef̂N(x, y)

)(
f̂D(x)−Ef̂D(x)

)
(
Ef̂D(x)

)2
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−
(
Ef̂N(x, y)

)(
f̂D(x)−Ef̂D(x)

)
(
Ef̂D(x)

)2

+

(
f̂D(x)−Ef̂D(x)

)2

(
Ef̂D(x)

)2 f̂x(y) (5.4)

which implies

E

[
f̂x(y)

]
− fx(y) =

(
(Ef̂D(x))

−1
E(f̂N(x, y))− fx(y)

)
−
(
(Ef̂D(x))

−2Cov(f̂N(x, y), f̂D(x))
)

+
(
Ef̂D(x)

)−2

E

(
f̂D(x)−Ef̂D(x)

)2

f̂x(y)

=
(
(Ef̂D(x))

−1
E(f̂N(x, y))− fx(y)

)
−
(
(Ef̂D(x)

)−2

A1 +
(
(Ef̂D(x)

)−2

A2.

Now you need to write each of these terms and calculate three integrals corresponding to them
by a change of variable of type z = (x−u)/h.
Regarding the term A2 as the kernel H is bounded and since K is positive, we can bounded

f̂x(y) by a constant C > 0, as f̂x(y)≤C/hn, hence

E

[
f̂x(y)

]
− fx(y) =

(
(Ef̂D(x))

−1
E(f̂N(x, y))− fx(y)

)
−
(
(Ef̂D(x))

−2Cov(f̂N(x, y)), f̂D(x)
)

+
(
Ef̂D(x)

)−2

V ar
(
f̂D(x)

)
O(h−1

n ).

For the par dispersion we inspire techniques Sarda and Vieu [14]and Bosq Lecoutre [1] and by
under expression (5.4), we find that

V ar
[
f̂x(y)

]
=

V ar
[
f̂N(x, y)

]
(
(Ef̂D(x)

)2 − 2

[
Ef̂N(x, y)

]
Cov

[
f̂N(x, y), f̂D(x)

]
(
(Ef̂D(x)

)3

+V ar
(
f̂D(x)

) (Ef̂N(x, y))
2(

Ef̂D(x)
)4 + o

(
1

nhnφ(hn)

)
. (5.5)

Finally, Lemma (1) is a consequence of Corollaries below

Corollary 1. Under conditions of Lemma 1 we have

f̂N(x, y)

Ef̂D(x)
− fx(y) =Bf

H(x, y)h
2
H +Bf

K(x, y)hn + o(h2
n).

Corollary 2. Under conditions of Lemma 1 we have

V ar
[
f̂N(x, y)

]
=

∫
B(0,1)

K2(‖v‖)g(x, v)dμ(v)
nhnφ(hn)

(
fx(y)

∫
H2(t)dt

)
+ o

(
1

nhnφ(hn)

)
Corollary 3. Under conditions of Lemma 1 we have

Cov
[
f̂N(x, y), f̂D(x)

]
=

1

nφ(hn)
(fx(y))

∫
B(0,1)

K2(‖v‖)g(x, v)dμ(v)+ o

(
1

nφ(hn)

)
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Corollary 4. Under conditions of Lemma 1 we have

V ar
[
f̂D(x)

]
=

∫
B(0,1)

K2(‖v‖)g(x, v)dμ(v)
nφ(hn)

+ o

(
1

nφ(hn)

)
[ Proof of Corollary 1] By definition of f̂N(x, y) we have

Ef̂N(x, y) =
1

nhnφ(hn)

n∑
i=1

E (Ki(x)Hi(y))

=
1

hnφ(hn)
E

[
K1(x)H1

(
y−Yi

hn

)]
=

1

hnφ(hn)
E
(
K1(x)

[
E
(
H1(h

−1
n (y−Yi)|X)

)])
(5.6)

for the calculation of E (H1(h
−1
n (y−Yi)|X)) considering the change of variable t= h−1

n ((y− z), we
have

E
(
H1(h

−1
n (y−Yi)|X)

)
=

1

hn

∫
H

(
y− z

hn

)
fx(z)dz

=

∫
H(t)fx(y−hnt)dt

Just develop the function fx(y − hnt) in the neighborhood of y, which is possible since fx(·)
being a function of class C2 in y, then, we can use the Taylor expansion of the function fx(·):

fx(y−hnt) = fx(y)−hnt
∂fx(y)

∂y
+

h2
nt

2

2

∂2fx(y)

∂y2
+ o(h2

n)

which gives, under the assumption (H3)

E(H1|X) = fx(y)+
h2
nt

2

2

∂2fx(y)

∂y2

∫
t2H(t)dt+ o(h2

n).

We replace in equation (5.6) found

Ef̂N(x, y) =
1

hnφ(hn)

[
E (K1(x)f

x(y))+
h2
nt

2

2

∫
t2H(t)dt E

(
K1(x)

∂2fx(y)

∂y2

)]
+ o(h2

n) (5.7)

To simplify the writing of this equation we set ψl(·, y) = ∂lfx(y)

∂yl
, l ∈ {0,2}.

The function ψl(·, y) defined on the functional space F denotes the one or other of the two

functions ψ0(·, y) = fx(y) et ψ2(·, y) = ∂2fx(y)

∂y2
.

The kernel K is assumed compact support, then, for all l ∈ {0,2} we have

E (K1ψl(X,y)) = EK(h−1
n ‖x−X‖)ψl(x−hn(h

−1
K (x−X)), y)

=

∫
B(0,1)

K(‖v‖)ψl(x−hnv, y)w(hn, x, v)dμ(v).

The function ψl(·, y) is of class C1 in the neighborhood of x, then

ψl(x−hnv, y) = ψl(x, y)−hn

∂ψl(x, y)[v]

∂x
+ o(hn)
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and we find that

E (K1ψl(X,y)) = ψl(x, y)

∫
B(0,1)

K(‖v‖)w(hn, x, v)dμ(v)

−hn

∫
B(0,1)

K(‖v‖)∂ψl(x, y)[v]

∂x
w(hn, x, v)dμ(v)

+o(hn)

∫
B(0,1)

K(‖v‖)w(hn, x, v)dμ(v)

Therefore we have

Ef̂N(x, y) =
1

hnφ(hn)

[
ψ0(x, y)

∫
B(0,1)

K(‖v‖)w(hn, x, v)dμ(v)

−hn

∫
B(0,1)

K(‖v‖)∂ψ0(x, y)[v]

∂x
w(hn, x, v)dμ(v)

+
h2
n

2

∫
t2H(t)dt

(
ψ2(x, y)

∫
B(0,1)

K(‖v‖)w(hn, x, v)dμ(v)

−hn

∫
B(0,1)

K(‖v‖)∂ψ2(x, y)[v]

∂x
w(hn, x, v)dμ(v)

)]
+ o(h2

n).

multiplying by g(x, v), adding and subtracting the two terms

Ef̂N(x, y) =
1

hnφ(hn)
ψ0(x, y)

∫
B(0,1)

K(‖v‖)w(hn, x, v)dμ(v)

−hn

∫
B(0,1)

K(‖v‖)∂ψ0(x, y)[v]

∂x
g(x, v)dμ(v)

−hn

∫
B(0,1)

K(‖v‖)∂ψ0(x, y)[v]

∂x

(
w(hn, x, v)

hnφ(hn)
− g(x, v)

)
dμ(v)

+
h2
n

2

∫
t2H(t)dt

[ 1

φ(hn)
ψ2(x, y)

∫
B(0,1)

K(‖v‖)w(hn, x, v)dμ(v)

−hn

∫
B(0,1)

K(‖v‖)∂ψ2(x, y)[v]

∂x
g(x, v)dμ(v)

−hn

∫
B(0,1)

K(‖v‖)∂ψ2(x, y)[v]

∂x

(
w(hn, x, v)

hnφ(hn)
− g(x, v)

)
dμ(v)

]
+ o(h2

n).

Ef̂N(x, y) =
1

hnφ(hn)
ψ0(x, y)

∫
B(0,1)

K(‖v‖)w(hn, x, v)dμ(v)

−hn

∫
B(0,1)

K(‖v‖)∂ψ0(x, y)[v]

∂x
g(x, v)dμ(v)

+
h2
n

2

∫
t2H(t)dt

[
1

hnφ(hn)
ψ2(x, y)

∫
B(0,1)

K(‖v‖)w(hn, x, v)dμ(v)

]
+ o(h2

n).

On the other hand we have

Ef̂D(x) =
EK1

φ(hn)
=

1

φ(hn)

∫
B(0,1)

K(‖v‖)w(hn, x, v)dμ(v). (5.8)

by substituting in the formula for EfN(x, y) it follows that

EfN(x, y) = ψ0(x, y)(Ef̂D(x)) − hn

∫
B(0,1)

K(‖v‖)∂ψ0(x, y)[v]

∂x
g(x, v)dμ(v)

+
h2
H

2

∫
t2H(t)dt

[
(Ef̂D(x))ψ2(x, y)

]
+ o(h2

n).
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Using the hypothesis (H1), equation (5.8) can be expressed as

Ef̂D(x) =

∫
B(0,1)

K(‖v‖)g(x, v)dμ(v)+ o(1). (5.9)

Finally we arrive at

(Ef̂D(x))
−1
E

[
f̂N(x, y)

]
− fx(y) = −hn

∫
B(0,1)

K(‖v‖) ∂fx(y)[v]

∂x
g(x, v)dμ(v)∫

B(0,1)

K(‖v‖)h(x, v)dμ(v)

+
hn

2

∂2fx(y)[v]

∂y2

∫
t2H(t)dt+ o(h2

n). (5.10)

[ Proof of Corollary 2] By definition of f̂N(x, y) we have

V ar
(
f̂N(x, y)

)
=

1

(n(hnφ(hn))2

n∑
i=1

V ar(Ki(x)Hi(y))

=
1

n(hnφ(hn))2
V ar(K1(x)H1(x))

=
1

n(hnφ(hn))2
(
E(K1(x)H1(y))

2 − (E(K1(x)H1(y)))
2
)

=
1

n(hnφ(hn))2
E(K1(x)H1(y))

2 −n−1

(
(EK1(x)H1(y))

hnφ(hn)

)2

.

By Corollary 1 and equation (5.9) we have
(EK1(x)H1(y))

hnφ(hn)
=Ef̂N(x, y) =O(1), and the fact that

V ar
(
f̂N(x, y)

)
=

1

n(hnφ(hn))2
E(K1(x)H1(y))

2 + o

(
1

nhnφ(hn)

)
.

Just now evaluate the quantity E(K1(x)H1(y))
2. Indeed, the proof is similar to the one used for

previous lemma, by conditioning x and considering the usual change of variables (y− z)/h−1
n = t

we obtain

E(K1(x)H1(y))
2 = E

(
K1(x)

2E(H2
1 (y)|X = x)

)
=

1

h2
n

E

(
K1(x)

2

∫
H2

(
y− z

hn

)
fx(z)dz

)
=

1

hn

E

(
K2

1 (x)

∫
H2(t)fx(y−hnt)dt

)
,

by a Taylor expansion of the order 1 from y we show that for n large enough

fx(y−hnt) = fx(y)+O(hn) = fx(y)+ o(1).

Hence

E(K1(x)H1(y))
2 =

1

hn

∫
H2(t)dtE

(
K2

1 (x)f
x(y)

)
+ o

(
1

hn

)
.

The same way and with the same techniques used in the above proof of Corollary 1, we show
that it suffices now to estimate the amount E(K1(x)H1(y))

2. Indeed, for a demonstration similar to
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12 İSTATİSTİK: Journal of the Turkish Statistical Association 8(1-2), pp. 1–14, c© 2015 İstatistik

the proof lemma, in conditioning by X and considering the usual change of variable (y−z)/h−1
n = t

we find that:

E(K2
1 (x)f

x(y)) = EK2(h−1
n ‖x−X‖) f(x−hn(h

−1
K (x−X)), y)

=

∫
B(0,1)

K2(‖v‖)fx(y−hnv)w(hn, x, v)dμ(v)

= φ(hn)f
x(y)

∫
B(0,1)

K2(‖v‖)g(x, v)dμ(v)+ o(φ(hn)).

such that ‖v‖= h−1
n ‖x−X‖, this allows us to conclude

E(K1(x)H1(y))
2 =

1

hn

∫
H2(t)dt

(
φ(hn)f

x(y)

∫
B(0,1)

K2(‖v‖)g(x, v)dμ(v)
)
+ o

(
φ(hn)

hn

)
.

The hypothesis (H3) implies that the kernel H is square summable, therefore

V ar
(
f̂N(x, y)

)
=

1

(nhnφ(hn))

[
fx(y)

∫
H2(t)dt

∫
B(0,1)

K2(‖v‖)g(x, v)dμ(v)
]
+ o

(
1

nhnφ(hn)

)
[ Proof of Corollary 3] By definition of f̂N(x, y) and f̂D(x) we obtain

Cov
(
f̂N(x, y), f̂D(x)

)
=

1

n(hnφ(hn))2
Cov(K1(x)H1(y),K1(x))

=
1

n(hnφ(hn))2
(EK2

1 (x)H1(y)−EK1(x)H1(y)EK1(x))

=
EK2

1 (x)H1(y)

n(hnφ(hn))2
−
(
EK1(x)H1(y)

n(hnφ(hn))2

)(
EK1(x)

n(hnφ(hn))2

)
.

The proof of this Corollary is very similar to the one used for Corollary 1. To do this, replace

K2
1 with K1 then using the fact that

(EK1(x)H1(y))

φ(hK)
=O(1) and

(EK1(x))

φ(hn)
=O(1) we deduce that

Cov
(
f̂N(x, y), f̂D(x)

)
=

1

n(φ(hn)
(fx(y))

∫
B(0,1)

K2(‖v‖)g(x, v)dμ(v)+ o

(
1

nφ(hn)

)
. (5.11)

[ Proof of Corollary 4] By definition of f̂D(x) we have

V ar
(
f̂D(x)

)
=

1

n(φ(hn)2
(V ar(K1))

=
EK2

1 (x)

n(φ(hn)2
−n−1

(
EK1(x)

φ(hn)

)
=

∫
B(0,1)

K2(‖v‖)g(x, v)dμ(v)
n(φ(hn)

+ o

(
1

nφ(hn)

)
. (5.12)

This allows us to complete the proof of Lemma 1.
[ Proof of Lemma 2] The calculation of the squared error of the conditional distribution is with

the same techniques used in the previous theorem (1) by a separate calculation of two parts: part
bias and some variance for the two quantities, as the squared error the conditional distribution can
be expressed as

E

[
(F̂ x(y)−F x(y))2

]
=
[
E

(
F̂ x(y)

)
−F x(y)

]2
+V ar

[
F̂ x(y)

]
.
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For i= 1, . . . , n, we consider the quantities Ki(x) =K(h−1
n ‖x−Xi‖) be defined as

ĝN(x, y) =
1

nφ(hn)

n∑
i=1

Ki(x)1{Yi≤y}, f̂D(x) =
1

nφ(hn)

n∑
i=1

Ki(x).

Finally, Lemma 2 can be deduced from following corollary

Corollary 5. Under hypotheses (H0)-(H4) and (H6), we have

ĝN(x, y)

Ef̂D(x)
−F x(y) =BF (x, y)h

2
n +BF

K(x, y)hn + o(h2
n),

V ar [ĝN(x, y)] =

∫
B(0,1)

K2(‖v‖)g(x, v)dμ(v)
nφ(hn)

(
F x(y)

∫
H2(t)dt

)
+ o

(
1

nφ(hn)

)
,

Cov
[
ĝN(x, y), f̂D(x)

]
=

1

nφ(hn)
(F x(y))

∫
B(0,1)

K2(‖v‖)g(x, v)dμ(v)+ o

(
1

nφ(hn)

)
.

Remark 4 (Notes on the squared error). The ”dimensionality” of the observations
(resp. model) is used in the expression of the rate of convergence of the two theorems (1) and (2).
We find the ”dimensionality” of the model in the way, while the ”dimensionality” of the variable
in the functional dispersion bias the property of concentration of the probability measure of the
functional variable which is closely related to the topological structure of the functional space of
the explanatory variable. Ours asymptotique results highlights the importance of the concentration
properties on small balls of the probability measure of the underlying functional variable. This
highlights the role of semi-metric the quality of our estimate. A suitable choice of this parameter
allows us to an interesting solution to the problem of curse of dimensionality. (see [4]). Another
argument has a dramatic effect in our estimation. This is the smoothing parameter hK (resp. hH).
The term of our rate of convergence, decomposed into two main parts: part bias proportional to hK

(resp. hH), and part dispersion inversely proportional to hK (resp. hH)(φ is an increasing function
depending on the hK), makes this relatively easy choice minimizing the main part of this expression
to determine this parameter.
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