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1. Introduction
One can generally point out that data set has only one law in modelling and estimation problems.

However, it’s possible that obtained data appear as either mixture of same distribution family
or contaminated data set. For example, survival times of individuals having same illness which
includes two different risks or length of stay in hospital of patients who stay a specific unit, the
time until considering specific characteristics of married couples have their first child, intensity
of the daily raining (amount of precipitation per m2), the time till the guilty commits the same
crime (types of crime), divorce time of couples having different socio-cultural, first failure time of
products that have same function in different qualities can be modelled with mixture of exponential
distribution.
There are two disadvantages while making parameter estimation of mixture distribution. The

first of these, the more considering components of mixture distribution the more increasing number
of parameter estimation. In general, this disadvantage uncovers solving problems on software with
algorithm of nonlinear equations. The second, the model which consists of two mixture distribution
with very close shape parameters may interpret as one distribution. In this case, it may be possible
to ignore this disadvantage by putting necessary and appropriate conditions on the parameters.
For instance, the person buys a box, included light bulbs whose life times are 3 or 4 years with
same power, but he does not know their life time and wants to determine it. In this case the person
cannot determine that the life time comes from two different distributions since it’s difficult to
distinguish two nested distributions.
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2. Definitions
In the literature, [1] and [4] have mentioned finite mixture distributions and methods of parameter

estimation for them. In this section, mixed exponential distribution with two-component will be
considered.

2.1. Mixed exponential distribution with two-components
Probability density function (pdf) of mixed exponential distribution with two-component is given

below.

f (x;α,θ1, θ2) = αf1 (x;θ1)+ (1−α)f2 (x;θ2)= α
1

θ1
e
−x 1

θ1 +(1−α)
1

θ2
e
−x 1

θ2

where α ∈ (0,1), θi > 0 (i= 1,2), x > 0. Similarly the cumulative distribution function (cdf) is as
follows.

F (x;α,θ1, θ2) = αF1 (x;θ1)+ (1−α)F2 (x;θ2) = α(1− e
−x 1

θ1 )+ (1−α)(1− e
−x 1

θ2 )

Survival function,

S (x;α,θ1, θ2) = αS1 (x;θ1)+ (1−α)S2 (x;θ2) = α e
−x 1

θ1 + (1−α) e
−x 1

θ2

and the hazard function,

h (x;α,θ1, θ2) =
αh1(t)S1 (x;θ1)+ (1−α)h2(t)S2 (x;θ2)

αS1 (x;θ1)+ (1−α)S2 (x;θ2)

= h1(t)
αS1 (x;θ1)

αS1 (x;θ1)+ (1−α)S2 (x;θ2)
+h2(t)

(1−α)S2 (x;θ2)

αS1 (x;θ1)+ (1−α)S2 (x;θ2)
= h1(t)w1 (x;α,θ1, θ2)+h2(t)w2 (x;α,θ1, θ2)

where hi(t) =
1
θi

and w1 +w2 = 1 ([6], [7], [8] and [9]).

3. Parameter Estimation Methods
In this section, methods of moments (MOM), maximum likelihood estimation (MLE) and least

square estimation (LSE) are given for two-component mixed exponential distribution.

3.1. Methods of moments (MOM)
Since two-component mixed exponential distribution has three parameters such as α , θ1, θ2, the

first three sample moments are equalized to the first three population moments.

m1 =

∑n

i=1 xi

n
= α θ1 +(1−α)θ2

m2 =

∑n

i=1 x
2
i

n
= 2α θ1

2 +2(1−α) θ2
2

m3 =

∑n

i=1 x
3
i

n
= 6α θ1

3 +6(1−α) θ2
3

By arranging the equalities,

m1 = α θ1 +(1−α) θ2 (3.1)
m2

2
= α θ1

2 +(1−α) θ2
2 (3.2)

m3

6
= α θ1

3 +(1−α) θ2
3 (3.3)
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Then we have equations as below:

m3

6
=

m2

2
(θ1 + θ2)− θ1θ2m1

(3.4)
m2

2
= m1 (θ1 + θ2)− θ1θ2

(3.4) are solved by letting θ1 + θ2 = z1 and θ1θ2 = z2, we obtain

z1 = (
m3

6
− m1m2

2
)/(

m2

2
−m2

1) (3.5)

z2 = (
m1m3

6
− m2

2

4
)/(

m2

2
−m2

1) (3.6)

Due to the definitions of z1and z2, obtained solutions must always be positive. Thus, as mentioned
in [3], the conditions (i) and (ii) are given below.

i. If m2
2

>m2
1 , m3

6
> m1m2

2
and m3

6
m1 > (m2

2
)
2
which implies 1

m1
> m1

m 2
2

>
m2
2

m3
6

ii. If m2
2

<m2
1,

m3
6
< m1m2

2
and m3

6
m1 < (m2

2
)
2

which implies 1
m1

< m1
m 2

2

<
m2
2

m3
6

In order to be able to get the easier solution, another equality such as θ1 − θ2 = ±
√

z21 − 4z2 is
required as well as z1 and z2 . If θ1 > θ2, the positive part of ±

√
z21 − 4z2 is used for the solution.

Then the estimation process will be followed straightforwardly the equalities θ1 + θ2 = z1 and
θ1 − θ2 =

√
z21 − 4z2 .

To be noted that one more condition is needed. The condition is that z21 − 4z2 must be positive
valued. Conditions (i) and (ii) given above will be checked whether they are sufficient or not. In
case of sample moments there is a linear relationship between z1 and z2 as

z2 =m1z1 +
m1

2m2
2
− (m2

2
)
2

m2
2
−m1

2

thus,

z2 =m1z1 − m2

2
(3.7)

Then
z21 − 4z2 = (z1 − 2m1)

2
+4(

m2

2
−m1

2) (3.8)

and if m2
2

>m2
1, z

2
1 −4z2 ≥ 0. In case of (ii), which is m2

2
<m2

1, the expression (z1 − 2m1)
2−4(m1

2−
m2
2
) is a convex function of z1. It has min point at z1

∗ = 2m1 and the value of this convex function
is negative signed at this point. This means that the statement z21 − 4z2 can take negative values
in some situations. Therefore, condition (ii) is not enough alone. In addition to (ii), z21 ≥ 4z2is
provided for real solutions of θ1 and θ2. Moreover, even if condition (ii) is satisfied, this condition
and z21 ≥ 4z2 can not guarantee the range of mixing parameter since m1

2− m2
2
= α (1−α) (θ1 − θ2)

2
.

In case of θ1 > θ2,

θ̂1 =
z1 +

√
z21 − 4z2
2

and θ̂2 =
z1 −

√
z21 − 4z2
2

(3.9)

and, from m1 = αθ̂1 +(1−α)θ̂2

α̂=
m1 − θ̂2

θ̂1 − θ̂2
(3.10)

are obtained. An illustrative example is given below in order to support the above argument such
that two simulated data sets containing 50 sample units are generated with the population param-
eters as θ1 = 5, θ2 = 3 and α= 0.60.
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Table 1. Simulated data sets

Data1
8.31 7.8 4.17 3.42 20.06 1.1 9.67 0.04 0.13 4.41
6.97 3.67 0.18 8.28 13.65 7.97 6.72 15.99 0.27 5.32
1.39 0.11 20.95 4.42 0.35 0.4 0.63 3.86 7.26 1.3
8.4 7.73 9.92 0.01 0.61 1.27 2.64 2.61 4.21 3.2
5.54 7.11 0.48 0.27 4.85 4.82 3.23 7.63 0.12 8.35

Data2
2.97 17.44 1.19 0.91 0.18 1.35 4.39 6.89 3.55 0.34
1.29 0.12 1.18 0.71 4.52 5.24 5.98 0.61 3.25 8.02
4.57 7.17 4.6 0.99 4.38 1.45 8.04 15.94 2.93 14.54
4.21 4.29 3.28 12.66 0.56 6.49 3.53 11.44 4.9 7.38
3.62 3.62 3.75 0.14 0.76 9.4 3.12 0.97 12.3 10.58

Table 2. Estimation results of Data1 and Data2

1

m1

m1

m 2
2

m2
2

m3
6

z1 z2 z21 − 4z2 θ̂1 θ̂2 α̂

Data1 0.20 0.21 0.23 18.81 70.16 73.05 13.68 5.13 -0.01

Data2 0.21 0.23 0.26 8.76 21.47 -9.17 - - -

The condition (ii) seems to be provided by both the datasets. However, while we can estimate
the corresponding population parameter for data1 (except α), we bring the solution that does not
belong in parameter space for data2. Therefore, we need to warn readers to be faced with unwanted
results even if condition (ii) is satisfied.

3.2. Maximum likelihood estimations (MLE)
In general, MLE for parameter set Φ is obtained by solving the likelihood equation systems with

equalizing first derivative of the logarithm of the likelihood function to zero. This equation systems
dont have analytical solution since they are not linear equations. Because of this, the numerical
methods are preferred for the solution of likelihood equations. One of them is Newton-Raphson
and the other is EM algorithm. In this paper, EM algorithm that studied in [2] [5] and [11] will be
mentioned.
Let X = {X1,X2, ...,Xn} be a random sampling with independent and identically distributed as

two-component mixed exponential distributions having a pdf f (x ; Φ). Φ= (α,θ1, θ2)is a parameter
set of this distribution and the likelihood function of Φ is given below.

L(Φ, x) =
n∏

j=1

[
2∑

i=1

αi

1

θi
exp(−xj

θi
)

]
(3.11)

logL=
n∑

j=1

log

[
2∑

i=1

αi

1

θi
exp(−xj

θi
)

]
−λ (

2∑
i=1

αi − 1) ,
2∑

i=1

αi = 1 (3.12)

d logL

dαi

=
n∑

j=1

1
θi
exp(−xj

θ i
)∑2

i=1αi
1
θi
exp(−xj/θi)

−λ= 0
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then
n∑

j=1

1
θi
exp(−xj

θ i
)∑2

i=1αi
1
θi
exp(−xj/θi)

= λ (3.13)

If the both side of 3.13 is multiplied with αi and sum over index i:

n∑
j=1

2∑
i=1

αi
1
θi
exp

(
−xj

θi

)
∑2

i=1αi
1
θi
exp

(
−xj

θi

)
︸ ︷︷ ︸

1

= λαi

then n= λ. Based on Bayes rule, the probability that xj belongs to ith component when Xj = xj

is observed is as follows:

P (i|xj) =
n∑

j=1

αi
1
θi
exp(−xj/θi)∑2

i=1αi
1
θi
exp(−xj/θi)

Thus,

α̂i =

∑n

j=1P (i|xj)

n
, i= (1,2) (3.14)

If the derivative of logL with respect to θi is equalized to zero,

d logL

dθi
=

n∑
j=1

αi
θi

(
xj

θi
2

)
exp

(
−xj

θi

)
− αi

θi
2 exp(−xj/θi)∑2

i=1αi
1
θi
exp(−xj/θi)

= 0

...

θ̂i =

∑n

j=1 xj P (i|xj)∑n

j=1P (i|xj)
, i= (1,2)

is obtained. Its reminded that P (2|xj) = 1−P (1|xj), then the solutions will be

θ̂1 =
1

nα̂i

n∑
j=1

xj P (i|xj) (3.15)

θ̂2 =
1

n(1− α̂i)

n∑
j=1

xj (1−P (i|xj)) (3.16)

These are step solutions obtained by Expectation-Maximization algorithm (EM) which steps are

given in below.

1. Input the initial values. ( α
(0)

i , θ
(0)
i ), (i= 1,2)

2. Calculate the P (i|xj).

3. Calculate α̂
(k)
i , θ̂

(k)

i .
4. After calculations of α̂i and θ̂i, the values replace in logL and get the value of function. For

ε > 0 selected small enough

logL(k) − logL(k−1) ≤ ε

is provided then the values on the kth step will be used for parameter estimations. Steps 2-5 are

repeated until converge is accomplished.
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3.3. Least squares estimations (LSE)
This method is based on the idea that there is a regression relationship between empirical F̂

and parametric F distributions. Considering ordered observations x(1) ≤ x(2) ≤ ... ≤ x(n) versus

empirical distribution F̂
(
x(i)

) ≡ i
n+1

, the vector Φ which minimizes the following expression is
tried to determine. Detailed study was given in [10] for non-mixture Generalized Exponential
Distribution.

Q (Φ) =
n∑

i=1

(
F
(
x(i);Φ

)− F̂
(
x(i)

))2

dQ

dα
=

n∑
i=1

(
i

n+1
−α

(
1− e

−x(i)
1
θ1

)
− (1−α)

(
1− e

−x(i)
1
θ2

))(
e
−x(i)

1
θ1 − e

−x(i)
1
θ2

)
= 0

dQ

dθ1
=

n∑
i=1

(
i

n+1
−α

(
1− e

−x(i)
1
θ1

)
− (1−α)

(
1− e

−x(i)
1
θ2

))(
αx(i)

θ21
e
−x(i)

1
θ1

)
= 0

dQ

dθ2
=

n∑
i=1

(
i

n+1
−α

(
1− e

−x(i)
1
θ1

)
− (1−α)

(
1− e

−x(i)
1
θ2

))(
(1−α)x(i)

θ22
e
−x(i)

1
θ2

)
= 0

Since the equations that obtained after derivation are related to θ, it is difficult to obtain the
solutions. Therefore it is necessary to use numerical ways.

4. Results and Discussion
Parameter estimations and RMSE values (in parenthesis) obtained by MOM, LSE and MLE are

given in the following tables, respectively n= 20, 40 and 100 for repeated simulation with r= 1000.
MATLAB is used in simulation study.

RMSEα =

√∑r

k=1 (α̂k −α)
2

r
and RMSEθi =

√∑r

k=1 (θ̂k − θi)
2

r
(i= 1,2)
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Table 3. Simulation results for n= 20

Table 4. Simulation results for n= 40
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Table 5. Simulation results for n= 100

In addition to simulation studies, these methods are applied on a real data. Following table
below includes the time intervals (in days) of the successive earthquakes with magnitudes greater
than or equal to 6Mw.

Table 6. Time intervals of the successive earthquakes in North Anatolia fault zone

1163 3258 323 159 756 409
501 616 398 67 896 8592
2039 217 9 633 461 1821
4863 143 182 2117 3709 979

(Source: [12])
Parameter estimations, KS statistics and p values obtained by MOM, LSE and MLE are given

in the table below.

Table 7. Parameter estimations for raw data

MOM LSE MLE

α̂ θ̂1 θ̂2 α̂ θ̂1 θ̂2 α̂ θ̂1 θ̂2

0.7 2068.0 85.6 0.3 4058.5 592.9 0.4519 2549.37 506.134

KS Stat. p value KS Stat. p value KS Stat. p value

0.2234 0.1559 0.0729 0.9985 0.0762 0.9971
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As seen in Table 7 LSE gives the best estimates according to Kolmogrov-Simirnov statistics.

5. Conclusions
In simulation studies by considering MOM, the condition (ii), proposed in [3], is not sufficient

alone. Thus this situation is discussed by suggesting another condition. This additional condition
is important in terms of the usability of parameter estimators obtained by MOM.
Examining the estimators for small samples in results of simulation study, MOM and LSE give

better estimations with regard to RMSE when the averages of the distribution diverge from each
other. In contrast, LSE is found the most powerful method but MLE is better to estimate θ2.

Examining the estimators for large samples, MLE is found the best method with regard to
RMSE. Considering the other two methods, LSE gives better estimation than MOM.
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