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Abstract: The Tsallis entropy is a generalization of type α of the Shannon entropy (Tsallis, 1988) that is
a non-additive entropy unlike the Shannon entropy and some of other generalized entropy, such as Renyi
entropy that introduced by Renyi (1961). In this paper, we study the Tsallis entropy based on order statistics
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entropy of order statistics or record values. Also, we characterize symmetric distributions based on Tsallis
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variable are distribution free. The results are useful in modeling problems and testing statistical hypotheses.
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1. Introduction
Let X1,X2, . . . ,Xn be iid observations, each with the cumulative distribution function (cdf) F (x)

and probability density function (pdf) f(x). The order statistics of the sample is defined by the
smallest to the largest, denoted as X1:n ≤ X2:n ≤ . . . ≤ Xn:n. Order statistics have been used in
a wide range of problems like detection of outliers, characterization of probability distributions,
testing strength of materials, robust statistical estimation and entropy estimation, goodness-of-fit
tests and also in reliability theory it is well known that Xi:n represents the lifetime of a (n− i+1)-
out-of-n system. Particulary, X1:n and Xn:n give the lifetimes of the series and the parallel systems,
respectively (see Arnold et al., 1992 and David and Nagaraja, 2003, for more details).
Suppose that {Xi}i≥1, be a sequence of iid continuous random variables from the cdf F (x) and the
pdf f(x). An observation Xj will be called an upper record value if its value exceeds that of all
previous observation i.e. Xj >Xi, for every i < j. An analogous definition can be given for lower
record values. The times at which upper record values appear are given by the random variable
Tj which are called record times and are defined by T1 = 1 with probability 1, and for j ≥ 2,
Tj = min{i : Xi > XTj−1

} and T0 is defined 0. The sequence of upper record values can thus be
defined by Uj =XTj

, j = 1,2,3, · · · .
Records can be used in a wide range of problem, incluging seimology, sporting and athletic events,
meteorological analysis, industrial stress testing, hydrology, oil and minig surveys, characterization
of probability distribution and in reliability theory (see Arnold et al., 1998, for more details). Also,
record values are used in shock models and minimal repair systems, such that, if Xn denotes the
lifetime of the component and if n minimal repairs are allowed, then the survival function of the
Xn is the same as that of the (n+1)th upper record value (see Shaked and Shanthikumar, 1994 and
Kamps, 1994). Records can be viewed as order statistics from a sample whoes size is determined
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by the value and the order of occurrence of the observations. Also, one of the important applica-
tions of order statistics is to construct median filters for image and signal processing. Considering
importance of Tsallis entropy, order statistics and record values, we try to extend the concept of
Tsallis entropy using order statistics and record values which can be further used in image or signal
processing.
The concept of entropy is important for studies in many areas such as physics, probability and
statistics, communication theory and economics. An early definition of a measure of the entropy is
the Shannon entropy (Shannon, 1948). In information theory, the Shannon information is described
as a measure of the uncertainty of a source. The definition of this measure is

H(X) =−
∫ +∞

−∞
f(x) log f(x)dx=−E[log f(X)], (1.1)

whereX is a random variable having an absolutely continuous cdf F (x) with pdf f(x). The measure
1.1 is an additive entropy because, for any two independent random variables X and Y

H(X,Y ) =H(X)+H(Y ).

One main drawback of H(X) is that for some probability distribution, it may be negative and then
it is no longer an uncertainty measure. This drawback is removed in the generalized entropies. One
of this generalized entropies is the Tsallis entropy, was first introduced by Havrda and Charvat
(1967) in the context of cybernetics theory. Then, Tsallis (1988) exploited its non-extensive features
and placed it in a physical setting. This measure is defined as

Sα(X) =
1

α− 1

[
1−

∫ +∞

−∞
fα(x)dx

]
, α �= 1, α > 0, (1.2)

where X is a random variable having an absolutely continuous cdf F (x) with pdf f(x). As α−→ 1
in 1.2, it reduces to H(X) given in 1.1 (Tsallis, 1988).
By changing variable u= F (x) in 1.2, we have

Sα(X) =
1

α− 1

[
1−

∫ 1

0

fα−1(F−1
X (u))du

]
. (1.3)

Also, for a non-negative random variabel X, we can conclude that

Sα(X) =
1

α− 1

[
1− 1

α
EfX,α

[rα−1
X (X)]

]
, (1.4)

where fX,α(x) =
−dF̄α(x)

dx
= αF̄α−1(x)f(x); α> 1, F̄ (x) = 1−F (x) and rX(t) =

f(t)

F̄ (t)
is the hazard rate

function of X. Moreover, the Tsallis entropy is a non-additive entropy as for any two independent
random variables X and Y

Sα(X,Y ) = Sα(X)+Sα(Y )+ (1−α)Sα(X)Sα(Y ).

From the years 2000 on, an increasingly wide spectrum of natural, artificial and social complex
systems have been identified which confirm the predictions and consequences that are derived from
this non-additive entropy, such as non-extensive statistical mechanics (Tsallis, 2009), which gen-
eralizes the Boltzmann-Gibbs theory. In a recent conference (Recent Innovations in Info-Metrics
An Interdisciplinary Perspective 2014, American University, Washington DC), Tsallis presented a
classification of physical systems according to their complexities and identified the systems where
additive entropy (Shannon entropy) is applicable and where it is not, so a non-addative measures
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of uncertainty (Tsallis entropy) is needed. Also, in physics, Tsallis entropy is used to describe a
number of non-extensive systems (Hamity and Barraco, 1996), image processing (Yu et al., 2009)
and signal processing (Tong et al., 2002). Properties of the Tsallis entropy have been investigated
by several authors including Nanda and Paul (2006), Zhang (2007), Wilk and Woldarczyk (2008)
and Kumar and Taneja (2011).
Several authors have studied the subject of characterization of distribution function F (x) based on
entropies of order statistics and record values. Raqab and Awad (2000, 2001) obtained a character-
ization of the generalization pareto distribution based on Shannon entropy of k-record statistics.
Baratpour et al. (2007, 2008) obtained several characterization based on Shannon entropy and
Renyi entropy of order statistics and record values. Fashandi and Ahmadi (2012) have derived
characterization result for the symmetric distributions based on Renyi entropy of order statistics,
k-record statistics and the FGM family of bivariate distributions. Thapliyal and Taneja (2013)
established a characterization based on past entropy of order statistics. Gupta et al. (2014) achieved
some characterization results based on dynamic entropy of order statictics. In this paper, we extend
the Tsallis entropy based on order statistics and record values and obtain some similar results. We
also study the Tsallis information measure in order statistics and record values and its properties.
The paper is organized as follows: In section 2, we express Tsallis entropy of ith order statistics.
Also, we obtain some characterization results based on Tsallis entropy for order statistics. Section
3 is devoted of Tsallis entropy of jth upper record values and characterization results for the record
values. Characterization of symmetric distributions by Tsallis entropy of k-records is explicitly
given. Finally, in section 4, we consider Tsallis information of order statistics and record values.

2. Tsallis entropy of order statistics Tsallis entropy associated with the ith order statistics
Xi:n is given by

Sα(Xi:n) =
1

α− 1

[
1−

∫ +∞

−∞
fα
i:n(x)dx

]
, (2.1)

where α �= 1, α > 0 and fi:n(x) is pdf of i
th order statistics, for i= 1,2, ..., n, that given by

fi:n(x) =
1

B(i, n− i+1)
F i−1(x)F̄ n−i(x)f(x), (2.2)

where

B(a, b) =

∫ 1

0

xa−1(1−x)b−1dx, a > 0, b > 0,

is beta function. Note that for n= 1, 2.1 reduces to 1.2.
Next, we have the following Lemma.

Lemma 1. Let X1,X2, . . . ,Xn be a random sample with size n from continuous cdf F (x) and
pdf f(x). Let Xi:n denotes the ith order statistics. Then the Tsallis entropy of Xi:n can be expressed
as

Sα(Xi:n) =
1

α− 1

[
1−CiE[fα−1(F−1(Zi))]

]
, (2.3)

where

Ci =
B (α(i− 1)+ 1, α(n− i)+ 1)

Bα(i, n− i+1)
,

and Zi has beta distribution with parameters α(i− 1)+ 1 and α(n− i)+ 1.

Proof. By 2.1 and 2.2, and by changing variable z = F (x), we have

Sα(Xi:n) =
1

α− 1

[
1−

∫ 1

0

1

Bα(i, n− i+1)
zα(i−1)(1− z)α(n−i)fα−1(F−1(z))dz

]
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=
1

α− 1

[
1− 1

Bα(i, n− i+1)
B (α(i− 1)+ 1, α(n− i)+ 1)

×
∫ 1

0

1

B (α(i− 1)+ 1, α(n− i)+ 1)
zα(i−1)(1− z)α(n−i)fα−1(F −1(z))dz

]

=
1

α− 1

[
1− 1

Bα(i, n− i+1)
B (α(i− 1)+ 1, α(n− i)+ 1)

× E[ f α−1(F −1( ))]]. (2.4)

Thus, the proof is complete.
Example 1. Suppose that X is a random variable having the exponential distribution with

mean 1
λ
. Here, fα−1(F−1(t)) = λα−1(1− t)α−1. Then,

E[fα−1(F−1(Zi))] = λα−1B (α(i− 1)+ 1, α(n− i+1))

B (α(i− 1)+ 1, α(n− i)+ 1)
.

So, by 2.1, we have

Sα(Xi:n) =
1

α− 1

[
1− λα−1B (α(i− 1)+ 1, α(n− i+1))

Bα(i, n− i+1)

]
,

and for the sample minimum, i= 1, we find

Sα(X1:n) =
1

α− 1

[
1− (nλ)α−1

α

]
.

Also, by replacing n by 1, we conclude that

Sα(X) =
1

α− 1

[
1− λα−1

α

]
.

Thus, in this case, we find the fact that the sample minimum has an exponential distribution with
parameter nλ.
For the case of the sample maximum, i= n, we get

Sα(Xn:n) =
1

α− 1

[
1−nαλα−1B(α(n− 1)+ 1, α)

]
.

The Tsallis entropy of order statistics 2.3 for i= 1 and i= n, that are, the lifetimes of the series
and the paraller systems, respectively, for several well-known distributions are provided in Table
1.

2.1. Characterizations based on order statistics We know that the mth order statistics
in a sample of size n represents the life length of a (n−m+1)-out-of-n system. In this subsection,
we show that the parent distribution can be characterized by Tsallis entropy of Xm:n and Xn:m+n−1.
First, we recall the following lemma, due to Aliprantis and Burkinshaw (1981).

Lemma 2. If η is a continuous function on [0,1] such that
∫ 1

0
xnη(x)dx = 0, for n ≥ 0, then

η(x) = 0 for all x∈ [0,1].

Now, we use Lemma 2 in the proof of the following characterization theorem.



S. Baratpour and A. H. Khammar: Results on Tsallis entropy of order statistics and record values
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Table 1. Tsallis entropy of first and last order statistics for some common distributions

Density function Sα(X1:n) Sα(Xn:n)
Uniform distribution

f(x) = 1
b−a

, a < x< b 1
α−1

[
1− ( n

b−a
)α b−a

α(n−1)+1

]
1

α−1

[
1− ( n

b−a
)α b−a

α(n−1)+1

]

Beta distribution

f(x) = xθ−1

B(θ,1)
, 0< x< 1 1

α−1

[
1−nαθα−1B

( (α−1)(θ−1)
θ

, α(n− 1)+ 1
)]

1
α−1

[
1−nαθα−1B

(
αn+ 1−α

θ
,1

)]

Exponential distribution

f(x) = θe−θx, θ > 0 1
α−1

− (nλ)α−1

α(α−1)
1

α−1

[
1−nαλα−1B(α(n− 1)+ 1, α)

]

Pareto distribution

f(x) = λβλx−λ+1 1
α−1

[
1− (nλ)α

βα−1(nαλ+α−1)

]
1

α−1

[
1− (nλ)α

λβα−1 B(α(n− 1)+ 1, α+ α−1
λ

)
]

x≥ β > 0, λ > 0

Finite Range distribution

f(x) = a
b
(1− x

b
)a−1 1

α−1

[
1− (na)α

(αna+1−α)bα−1

]
1

α−1

[
1− (na)α

abα−1 B(α(n− 1)+ 1, α+ 1−α
a

)
]

a > 1, 0≤ x≤ b

Theorem 1. Let X and Y be two random variable with absolutely continuous cdfs F (x) and
G(y) and pdfs f(x) and g(y), respectively, then for a fixed m (1≤m≤ n) and for a change location
c,

X
d
= Y + c⇐⇒ Sα(Xm:n) = Sα(Ym:n), ∀n≥ 1,

where
d
= stands for equality in distribution.

Proof. The necessity is clear, hence it remains to prove the sufficiency part only.
By 2.1 and 2.2, we have

Sα(Xm:n) =
1

α− 1

[
1−

∫ +∞

−∞

1

Bα(m,n−m+1)
Fα(m−1)(x)

F̄α(n−m)(x)fα(x)dx

]
.

Now, let Sα(Xm:n) = Sα(Ym:n), for all n ≥m. Substituting u = F (x) on the above equation and
also using u=G(y) for Sα(Ym:n) and taking n−m= j, we find

∫ 1

0

uα(m−1)(1−u)αj
(
fα(F−1(u))− gα(G−1(u))

)
du= 0,

for all j ≥ 0. Using the transformation v= (1−u)α, we get

∫ 1

0

(1− v
1
α )α(m−1)

αvα−
1
α

(fα(F−1(1− v
1
α ))− gα(G−1(1− v

1
α )))vjdv= 0,

for all j ≥ 0. So, from Lemma 2, we can conclude that f(F−1(1− v
1
α )) = g(G−1(1− v

1
α )) for all

v ∈ (0,1). By taking 1−v
1
α = u, we have f(F−1(u)) = g(G−1(u)) for all u∈ (0,1). Thus, d

du
F−1(u) =

d
du
G−1(u) for all u ∈ (0,1). It then follows that F−1(u) =G−1(u) + c for all u ∈ (0,1), where c is a

constant. This means F (x) and G(y) belong to the same family of distribution, but for a location
shift. Thus, the proof is completed. Thapliyal et al. (2015) proved the above theorem by the hazard
rate function.
By taking m= 1 in the Theorem 1, we have the following corollary, that characterizes the lifetime
of the series system.

Corollary 1. Under the assumption of Theorem 1, we have

X
d
= Y + c⇐⇒ Sα(X1:n) = Sα(Y1:n), ∀n≥ 1.
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Theorem 2. Under the assumption of Theorem 1, for a fixed m and for a change location c,
we have

X
d
= Y + c⇐⇒ Sα(Xn:m+n−1) = Sα(Yn:m+n−1), ∀n≥ 1.

Proof. The necessity is clear, hence it remains to prove the sufficiency part. By using 2.1 and
2.2, we have

Sα(Xn:m+n−1) =
1

α− 1

[
1−

∫ +∞

−∞

1

Bα(n,m)
Fα(n−1)(x)

F̄α(m−1)(x)fα(x)dx

]
. (2.5)

Now, let Sα(Xn:m+n−1) = Sα(Yn:m+n−1), for all n≥ 1 and fixed m. By using u= F (x) in 2.5 and
u=G(y) for Sα(Yn:m+n−1), we have

∫ 1

0

uα(n−1)(1−u)α(m−1)
(
fα(F−1(u))− gα(G−1(u))

)
du= 0,

for all n≥ 1. Substituting v= (1−u)α, we get

∫ 1

0

(1− v
1
α )α(n−1)

αvα−
1
α

(fα(F−1(1− v
1
α ))− gα(G−1(1− v

1
α )))vm−1dv= 0,

for all n≥ 1. So, from Lemma 2, we can conclude that f(F−1(1− v
1
α )) = g(G−1(1− v

1
α )) for all

v ∈ (0,1). The rest of the proof is similar to the proof of Theorem 1. Thus, the proof is complete.
By taking m= 1 in the Theorem 2, we have the following corollary, that characterizes the lifetime
of a parallel system.

Corollary 2. Under the assumptions of Theorem 2, we have

X
d
= Y + c⇐⇒ Sα(Xn:n) = Sα(Yn:n), ∀n≥ 1.

The previous results can be used in the modeling problems and testing statistical hypotheses. For
example, testing H0 : F (x) =G(y)+ c against all alternatives is equivalent to testing

H0 : Sα(X1:n) = Sα(Y1:n)[Sα(Xn:n) = Sα(Yn:n)], ∀n≥ 1.

Baratpour et al. (2007) obtained similar properties based on Shannon entropy of order statistics.

2.2. Characterizations of symmetric distributions based on order statistics We
know that the class of symmetric distributions is broad and includes several well-know distribu-
tions. In this subsection, we show that symmetric distributions can be characterized by Tsallis
entropy of Xi:n. We use the following lemma in the proof of the Theorem 3.

Lemma 3. Let X be a continuous random variable with cdf F (x) and pdf f(x) with support
SX . Then, the identity

f(F−1(u)) = f(F−1(1−u)), for almost all u∈ (0,1), (2.6)

implies that there exists a constant c such that F (c−x) = 1−F (c+x) for all x∈ SX .

Proof. See Fashandi and Ahmadi (2012).
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Theorem 3. Let X1,X2, · · · ,Xn be a random sample with size n from continuous cdf F (x) and
pdf f(x). Then, F (x) is symmetric if and only if for a fixed m≥ 1, Sα(Xm:n) = Sα(Xn−m+1:n), for
all n≥m.

Proof. The necessity is clear, because if F (x) is a symmetric distribution function about μ

(without loss of generality take μ= 0), then Xm:n
d
=−Xn−m+1:n. Therefore, the Tsallis entropy of

this two statistics are equal.
Now, for proving the sufficiency part, let Sα(Xm:n) = Sα(Xn−m+1:n). By using 2.3, we have

1

α− 1

[
1−CmEgm [f

α−1(F−1(Zm))]

]

− 1

α− 1

[
1−Cn−m+1Egn−m+1

[fα−1(F−1(Zn−m+1))]

]
= 0, (2.7)

where for i=m, we said that Cm = B(α(m−1)+1,α(n−m)+1)

Bα(m,n−m+1)
, and Zm has the beta distribution with

parameters (α(m− 1) + 1) and (α(n−m) + 1). By using 2.7 and noting that Cm = Cn−m+1 and

Zn−m+1
d
= 1−Zm, we can conclude that

Egn−m+1

[
fα−1(F−1(1−Zm))

]
−Egm

[
fα−1(F−1(Zm))

]
= 0.

Thus, we find ∫ 1

0

(1− z)α(m−1)

[
fα−1(F−1(1− z))− fα−1(F−1(z))

]
zα(n−m)dz = 0. (2.8)

Now, by taking zα = u and n−m= k in 2.8, we get∫ 1

0

(1−u
1
α )α(m−1)u− k

α

[
fα−1(F−1(1−u

1
α ))− fα−1(F−1(u

1
α ))

]
ukdu= 0, (2.9)

for all k≥ 0.
Using Lemma 2, we conclude that

f(F−1(1−u
1
α )) = f(F−1(u

1
α )), (2.10)

for all u∈ (0,1). By taking v= 1−u
1
α in 2.10, we have f(F−1(v)) = f(F−1(1−v)), for all v ∈ (0,1).

Then, by using Lemma 3, this means F (x) is symmetric. Thus, the proof is completed. Fashandi
and Ahmadi ( 2012) obtained similar properties based on Renyi entropy of order statistics.

3. Tsallis entropy of record values Tsllis entropy of the jth upper record value, Uj, is
given by

Sα(Uj) =
1

α− 1

[
1−

∫ +∞

−∞
fα
Uj
(x)dx

]
, (3.1)

where α �= 1, α> 0 and fUj
(x) is the pdf of jth record value, for j = 1,2, · · · , n, that given by

fUj
(x) =

{− log(F̄ (x))}j−1

Γ(j)
f(x), −∞<x<+∞, (3.2)

where Γ(j), the complete gamma function, is defined as

Γ(j) =

∫ ∞

0

tα−1e−tdt, x > 0, α > 0.

Note that for j = 1, (3.1) reduces to (1.2).
Next, we prove the following lemma.
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Lemma 4. Let X1,X2, · · · ,Xn be a random sample with size n from continuous cdf F (x) and
pdf f(x). Let Uj denotes the jth upper record. Then, the Tsallis entropy of Uj can be expressed as

Sα(Uj) =
1

α− 1

[
1− Γ(α(j− 1)+ 1)

Γα(j)
E
[
fα−1(F−1(1− e−Vj ))

]]
, (3.3)

where Vj has gamma distribution with parameters α(j− 1)+ 1 and 1.

Proof. By (3.1) and (3.2), and by substituting u=− log(F̄ (x)), we have

Sα(Uj) =
1

α− 1

[
1− 1

Γα(j)

∫ ∞

0

uα(j−1)e−ufα−1(F−1(1− e−u))du

]
,

where F−1(x) is the inverse function of F (x). It can be rewritten as

Sα(Uj) =
1

α− 1

[
1− Γ(α(j− 1)+ 1)

Γα(j)
E
[
fα−1(F−1(1− e−Vj ))

]]
, (3.4)

where α �= 1, α > 0. Thus, the proof is complete.

Lemma 5. Under the assumptions of Lemma 4, if Lj denotes the jth lower record, then the
Tsallis entropy of Lj can be expressed as

Sα(Lj) =
1

α− 1

[
1− Γ(α(j− 1)+ 1)

Γα(j)
E
[
fα−1(F−1(e−Vj ))

]]
,

where Vj is as Lemma 4.

Proof. The proof is similar to that of Lemma 4.
Example 2. Suppose that X is a random variable having the exponential distribution with

mean 1
λ
. Here, fα−1(F−1(1− e−t)) = λα−1e−t(α−1). Then, we have

E
[
fα−1(F−1(1− e−Vj ))

]
=

λα−1

αα(j−1)+1
.

By Lemma 4, we find

Sα(Uj) =
1

α− 1

[
1− λα−1Γ(α(j− 1)+ 1)

Γα(j)αα(j−1)+1

]
. (3.5)

Example 3. Suppose that X is a random variable having the weibull distribution with pdf

f(x) = abxb−1 exp{−axb}, a, b > 0, x > 0. Here, fα−1(F−1(1− e−t)) = (ba
1
b )α−1t

(α−1)(b−1)
b e−t(α−1).

Then, we have

E
[
fα−1(F−1(1− e−Vj ))

]
=

[
(ba

1
b )α−1Γ(αj− α+1

b
)

Γ(α(j− 1)+ 1)α(αj−α+1
b )

]
.

From Lemma 4, we obtain

Sα(Uj) =
1

α− 1

[
1− (ba

1
b )α−1Γ(αj− α+1

b
)

Γα(j)α(αj−α+1
b )

]
. (3.6)

Remark 1. For b= 1, (3.6) reduces to (3.5). and by taking b= 2 in (3.6), we have

Sα(Uj) =
1

α− 1

[
1− (2

√
a)α−1Γ(αj− α+1

2
)

Γα(j)α(αj−α+1
2 )

]
,

that is the Tsallis entropy of the jth record value from a Rayleigh distribution with parameter
a> 0.



S. Baratpour and A. H. Khammar: Results on Tsallis entropy of order statistics and record values
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3.1. Characterizations based on record values In this subsection, we show that the
parent distributions can be uniquely specified up to a location change by the equality of Tsallis
entropy of record values. First, we recall the following lemma due to Goffman and Pedrick (1965).

Lemma 6. A complete orthonormal system for the space L2(0,∞) is given by the sequence of
Laguerre functions

Φn(x) =
1

n!
e−

x
2Ln(x), n≥ 0,

where Ln(x) is the Laguerre polynomial, defined as the sum of coefficients of e−x in the nth deriva-
tive of xne−x, that is

Ln(x) = ex
dn

dxn
(xne−x) =

n∑
k=0

(−1)k
(
n
k

)
n(n− 1) · · · (k+1)xk.

The meaning of the completeness of Laguerre functions in L2(0,∞) is that if f ∈L2(0,∞) and∫ ∞

0

f(x)e−
x
2Ln(x)dx= 0, ∀n≥ 0,

then f is zero a.e. .

Now, we use the this lemma in the proof of the following characterization theorem.

Theorem 4. Let X and Y be two random variables with absolutely cdfs F (x) and G(y) and
pdfs f(x) and g(y), respectively. Let E(f2(X))<∞ and E(g2(X))<∞, then for a change location
c,

X
d
= Y + c⇐⇒ Sα(U

X
j ) = Sα(U

Y
j ), ∀n≥ 1,

where UX
j and UY

j are the jth upper records of X and Y , respectively.

Proof. The necessity is clear, hence it remains to prove the sufficiency part only. By (3.1) and
(3.2) and substituting u= (− log F̄ (x))α, we have

Sα(U
X
j ) =

1

α− 1

[
1− 1

αΓα(j)

∫ ∞

0

u
1
α−1uj−1e−u

1
α
[
fα−1(F−1(1− e−u

1
α ))

]
du

]
.

Similarly using u= (− log Ḡ(y))α, we find

Sα(U
Y
j ) =

1

α− 1

[
1− 1

αΓα(j)

∫ ∞

0

u
1
α−1uj−1e−u

1
α
[
gα−1(G−1(1− e−u

1
α ))

]
du

]
.

If for two cdfs F (x) and G(y), these measures coincide, we conclude that∫ ∞

0

e−u
1
α u

1
α−1

[
gα−1(G−1(1− e−u

1
α ))− fα−1(F−1(1− e−u

1
α ))

]
uj−1du= 0, (3.7)

for all j ≥ 1. Thus, by (3.7), we obtain∫ ∞

0

e
u
2
−u

1
α u

1
α
−1

[
gα−1(G−1(1− e−u

1
α ))− fα−1(F−1(1− e−u

1
α ))

]
e−

u
2 Lj(u)du= 0, (3.8)

for all j ≥ 1, where Lj(u) is Laguerre polynomial given in Lemma 6. Using Lemma 6, in (3.8) and
after some simplifications, we can conclude that

f

(
F−1(1− e−u

1
α )

)
= g

(
G−1(1− eu

1
α )

)
, ∀u∈ (0,1).

By taking 1− e−u
1
α = v, we have f(F−1(v)) = g(G−1(v)) for all v ∈ (0,1). The rest of the proof is

similar to the proof of Theorem 1. Thus, the proof is complete. We have the following remark for
lower records
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Remark 2. Under the assumptions of Theorem 4, we have

X
d
= Y + c⇐⇒ Sα(L

X
j ) = Sα(L

Y
j ), ∀n≥ 1,

where LX
j and LY

j are the jth lower records of X and Y , respectively.
Remark 3. By letting α→ 1, the result of this subsection are seen to hold for Shannon entropy,

as it was shown directly by Baratpour et al. (2007).

3.2. Characterization of symmetric distributions based on k-records Suppose that
{Xi}i≥1, be a sequence of iid continuous random variables from the cdf F (x) and pdf f(x) with
support SX . An upper k-record process is defined in terms of the kth largest observation in a partial
sample. Here, for the continuous case, we consider the formal definition given in Arnord et al.
(1998): for a fixed k, the sequence of upper k-record values are defined as RU

j,k =XTU
j,k−k+1:Tj,k

, j ≥ 1,

where TU
1,k = k and for j ≥ 2 , TU

j,k =min{j : j > TU
j−1,k,Xj >XTU

j−1,k−k+1:TU
j−1,k

}. It is clear that the
first k-records is the first smallest observation in a finit sequence X1,X2, · · · ,Xk, i.e. R

U
1,k =X1:k.

In the literature, {TU
j,k, j ≥ k} is said to be the k-record times sequence. In reliability theory the

jth upper k-record value can be regarded as the life length of a k-out-of-TU
j,k system. An analogous

definition can be given for lower k-record values. The sequence of lower k-record values are defined
as RL

j,k. We recall that RU
j,k is identical in distribution with the jth usual upper record (k= 1) from

cdf G(x) = 1− (1−F (x))k. Hence, the marginal pdf of RU
j,k is given by

fRU
j,k
(x) =

kj

Γ(j)

[− log(F̄ (x))
]j−1

(F̄ (x))k−1f(x), x∈ SX . (3.9)

Replacing F (x) by F̄ (x) in (3.9) the pdf of RL
j,k is deduced. In this subsection we show that

symmetric distributions can be characterized by Tsallis entropy of k-record values. We use the
following theorems and the Lemma 3, in the proof of the characterization Theorem 7.

Theorem 5 (Higgins, 2004, pp. 95-96). The set {xλ1 , xλ2 , · · · : 1≤ λ1 < λ2 < · · · } forms a
complete sequence in L2(0,1) if and only if

+∞∑
j=1

λ−1
j =+∞, where 1≤ λ1 <λ2 < · · · . (3.10)

This theorem is well-known as the Muntz-Szasz Theorem.

Theorem 6 (Hwang and Lin, 1984). Let f(x) be an absolutely continuous function on
(a, b) with f(a)f(b) ≥ 0, and let its derivative satisfies f ′(x) �= 0 a.e. on (a, b). Then, under the
assumption (3.10), the sequence {fλj (x), j ≥ 1} is complete on (a, b) if and only if the function
f(x) is monotone on (a, b).

Theorem 7. Let {Xi}i≥1 be a sequence of iid continuous random variables from cdf F (x) and
pdf f(x). Then, F (x) is symmetric if and only if for a fixed k, Sα(R

U
λj ,k

) = Sα(R
L
λj ,k

), such that

+∞∑
j=1

λ−1
j =+∞,

where 1≤ λ1 <λ2 < · · · .



S. Baratpour and A. H. Khammar: Results on Tsallis entropy of order statistics and record values
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Proof. The necessity is trivial. For proving sufficiency part, by (3.1) and (3.2), and substituting
u=− log F̄ (x), we can conclude that

Sα(R
U
n,k) =

1

α− 1

[
1− kαnΓ(α(n− 1)+ 1)

Γα(n)(α(k− 1)+ 1)α(n−1)+1
E
[
fα−1(F−1(1− e−Vn))

]]
, (3.11)

that is the Tsallis entropy of the nth upper k-record, and Vn has gamma distribution with param-
eters α(n− 1) + 1 and α(k − 1) + 1. Now, let Sα(R

U
n,k) = Sα(R

L
n,k), for a fixed k. By (3.11), we

have
E
[
fα−1(F−1(e−Vn))

]−E
[
fα−1(F−1(1− e−Vn))

]
= 0. (3.12)

So, by (3.12), we find
∫ 1

0

uα(k−1)(− logu)−α

[
fα−1(F−1(u))− fα−1(F−1(1−u))

][
(− logu)α

]n
du= 0. (3.13)

If (3.13) holds for n= λj, such that
∑+∞

j=1 λ
−1
j =+∞ where 1≤ λ1 <λ2 < · · · , then by Theorem 6,

we can conclude that
f(F−1(u)) = f(F−1(1−u)),

for almost all u∈ (0,1). Thus, by using Lemma 3, the proof is completed.
Remark 4. By taking k = 1 in Theorem 7, similar result given in Theorem 7, holds for usual

records.

4. Tsallis information of order statistics and record values Some goodness-of-fit tests
provided based on entropy and information measures. Vasicek (1975) used the sample Shannon
entropy estimation to test normality. Ebrahimi et al. (1992) introduced a test for exponentiality
based on Kullback-Leibler information. Ebrahimi et al. (2004) studied Kullback-Leibler information
measure and its properies for order statistics using Shannon entropy for order statistics. Park (2005)
introduced a goodnees-of-fit test for exponentiality based on Kullback-Leibler information of order
statistics. Habibi et al. (2007) presented a goodness-of-fit test for exponentiality based on Kullback-
Leibler information of records. Abbasnejad and Arghami (2011) proposed Renyi information for
order statistics and record values based on Renyi entropy. In this section, we will study the Tsallis
information for order statistics and record values.
Tsallis (1998) introduced a generalization of the Kullback-Leibler entropy in the framework of the
non-extensive thermodynamics. The Tsallis information between density function f(x) and g(y) is
given as

Tα(f, g) =
1

α− 1

[∫ +∞

−∞

(f(x)
g(x)

)α−1
f(x)dx− 1

]
. (4.1)

In the case of α→ 1, the Tsallis information becomes the Kullback-Leibler information between
f(x) and g(y) that is defined by

D(f, g) =

∫ +∞

−∞
f(x) log

f(x)

g(x)
dx,

(see Kullback and Leibler, 1951, for more details).

Lemma 7. The Tsallis information between the distribution of ith order statistic fi:n and the
original distribution f is given by

Tα(fi:n, f) =−Sα(Wi),

where Wi has beta distribution with parameters i and n− i+1.
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Proof. By (4.1), we have

Tα(fi:n, f) =
1

α− 1

[∫ +∞

−∞

(fi:n(x)
f(x)

)α−1
fi:n(x)dx− 1

]
.

Substituting u= F (x), we can conclude that

Tα(fi:n, f) =
1

α− 1

[∫ 1

0

(
Γ(n+1)

Γ(i)Γ(n− i+1)
ui−1(1−u)n−i

)α

du− 1

]

=−Sα(Wi).

Hence, the Tsallis information between the distribution of order statistics and the original distri-
bution is distribution free.

Lemma 8. The Tsallis information between the distribution of the jth upper record fUj
and the

original distribution f is given by

Tα(fUj
, f) =−DjSα(Hj),

where Dj = αα(j−1)+1 and Hj has gamma distribution with parameters j and 1.

Proof. From (4.1), we have

Tα(fUj
, f) =

1

α− 1

[∫ ∞

−∞
(
fUj

(x)

f(x)
)α−1fUj

(x)du− 1

]
.

Substituting u=− log(F̄ (x)), we conclude that

Tα(fUj
, f) =

1

α− 1

[∫ ∞

0

uα(j−1)

Γα(j)
e−udu− 1

]
.

Now, by taking h= u
α
, we can write

Tα(fUj
, f) =

1

α− 1

[∫ ∞

0

α(
(αh)j−1e−h

Γ(j)
)αdh− 1

]

=
αα(j−1)+1

α− 1

[∫ ∞

0

(
hj−1e−h

Γ(j)
)αdh− 1

]

=−αα(j−1)+1Sα(Hj).

Thus, the proof is completed. Hence, the Tsallis information between the distribution of the upper
record values and the original distribution is destribution free.
Remark 5. Similar result as stated in Lemma 8, holds for lower record values.
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