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Abstract: This paper deals with the estimation problem of Renyi entropy of a continuous random variable.
Three estimators are obtained by correcting the coefficients of the Vasicek-type estimator of Renyi entropy.
We perform a simulation study to compare these estimators with the Vasicek-type estimator. The results
show that our estimators are better than the existing one in terms of bias and root mean squared error.
We also introduce goodness of fit tests for testing exponentiality based on the estimated Renyi entropy of
transformed data. By Monte Carlo simulation, the powers of the proposed tests under various alternatives
are compared with the famous existing tests.
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1. Introduction
Let X be an absolutely continuous random variable with distribution function (cdf), F (x), and

continuous density function (pdf), f(x). The basic measure of uncertainty contained in random
variable X is defined by Shannon (1948) as

H(f) =−
∫ +∞

−∞
f(x) lnf(x)dx=−E[lnf(X)]. (1.1)

Entropy has been used in a wide range of problems, including characterization of probability
distributions and goodness of fit tests, analysis of censored data and reliability theory.
By increasing applications of entropy measures, it seems necessary to find accurate and robust
nonparametric estimations of these measures. The estimation of (1.1) has been discussed by many
authors including Ahmad and Lin (1976), Vasicek (1976), Dudewicz and Van der Meulen (1981),
Bowman (1992), Van Es (1992), Ebrahimi et al. (1994), Correa (1995), Yousefzadeh and Arghami
(2008), Alizadeh (2010), Alizadeh and Arghami (2010) and Zamanzade and Arghami (2011).

Many researchers are also interested in developing entropy based goodness of fit tests including
Vasicek (1976), Arizono and Ohta (1989), Bowman (1992), Ebrahimi et al. (1992), Choi et al.
(2004), and Abbasnejad (2011a, 2011b).

After the Shannon work, interest has also increased in the applications of other measures of
uncertainty, such as Renyi entropy , cumulative residual entropy and survival entropy (See Rao et
al. (2004) and Abbasnejad et al. (2010)).

Renyi (1961) has generalized the entropy as

Hr(f) =− 1

r− 1
ln

∫ +∞

−∞
f r(x)dx=− 1

r− 1
lnE[f r−1(X)]. (1.2)
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It is to be noted that, as r→ 1, (1.2) reduces to H(f).
Wachowiak et al. (2005) have proposed an estimator of Renyi entropy which was based on the

fact that using p= F (x), (1.2) can be expressed as

Hr(f) =− 1

r− 1
ln

∫ 1

0

[
dF−1(p)

dp

]1−r
dp.

Replacing the distribution function F by the empirical distribution function Fn, and using a dif-
ference operator instead of the differential operator, the estimator is constructed as

HVr,m,n =− 1

r− 1
ln

{
1

n

n∑
i=1

[ n
2m

(Xi+m:n−Xi−m:n)
]1−r}

, (1.3)

where X1:n ≤ ...≤Xn:n, are order statistics of random sample X1, ...,Xn, m is a positive integer,
m≤ n

2
, and Xi:n =X1:n if i < 1, Xi:n =Xn:n if i > n.

In Section 2, we propose three modified estimators of Renyi entropy. In Section 3, we compare
the proposed estimators with the existing estimators based on their mean squared errors (MSEs).
In Section 4, a goodness of fit test for exponentiality is proposed based on Renyi distance. Trans-
formations of the observations are used to turn the test of exponentiality into one of uniformity
and a corresponding test based on Renyi entropy is given.

2. Three modified estimators
By rewriting equation (1.3) as

HVr,m,n =− 1

r− 1
ln

{
1

n

n∑
i=1

[
Fn(Xi+m:n)−Fn(Xi−m:n)

Xi+m:n−Xi−m:n

]r−1}
, (2.1)

we can see that inside the brackets in the equation (2.1) is the slope of the straight line that joins
points (Fn(Xi+m:n),Xi+m:n) and (Fn(Xi−m:n),Xi−m:n). It is clear that n

2m
(Xi+m:n−Xi−m:n) is not

a good approximation for the slope when i≤m or i≥ n−m+ 1. The main idea is to prepare the
better approximation for the slope and propose modified estimators of Renyi entropy.

If in equation (2.1) we replace Fn(Xi−m:n) by Fn(X1:n) = 1
n

for i ≤ m and Fn(Xi+m:n) by
Fn(Xn:n) = 1 for i≥ n−m+ 1, we obtain the first modified estimator of Renyi entropy as
− The first modified estimator

HEr,m,n =− 1

r− 1
ln

{
1

n

n∑
i=1

[
n

cim
(Xi+m:n−Xi−m:n)

]1−r}
,

where

ci =

 1 + i−1
m

1≤ i≤m
2 m+ 1≤ i≤ n−m
1 + n−i

m
n−m+ 1≤ i≤ n.

Simulation results show that the bias of HEr,m,n is negative in most cases, that is, the first
modified estimator underestimates the value of Renyi entropy. It may be because of the fact that
we put too much weight on the extreme observations (Xi:n’s, 1 ≤ i ≤m and n−m+ 1 ≤ i ≤ n).
So replacing ci’s for 1≤ i≤m and n−m+ 1≤ i≤ n by smaller numbers could decrease the bias
without affecting the standard deviation of the estimator. Therefore, we propose the second and
third modified estimators as
− The second modified estimator

HAr,m,n =− 1

r− 1
ln

{
1

n

n∑
i=1

[
n

aim
(Xi+m:n−Xi−m:n)

]1−r}
,
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where

ai = min
i
ci =

 1 1≤ i≤m
2 m+ 1≤ i≤ n−m
1 n−m+ 1≤ i≤ n.

− The third modified estimator

HZr,m,n =− 1

r− 1
ln

{
1

n

n∑
i=1

[
n

bim
(Xi+m:n−Xi−m:n)

]1−r}
,

where

bi =


i
m

1≤ i≤m
2 m+ 1≤ i≤ n−m
n−i+1
m

n−m+ 1≤ i≤ n.
We choose the notations HE,HA and HZ because these estimators were obtained similar to
modified estimators of Shannon entropy proposed by Ebrahimi et al. (1994), Alizadeh and Arghami
(2010) and Zamanzade and Arghami (2011), respectively.

Monte Carlo studies show that these modifications reduce the bias and thus RMSE. In following
theorem we show that the order of estimators of Renyi entropy.

Theorem 1. Let X1:n, ...,Xn:n be an ordered random sample from an unknown continuous
distribution F with pdf f . Then

HVr,m,n ≤HEr,m,n ≤HAr,m,n ≤HZr,m,n. (2.2)

The second and third equalities hold if and only if m= 1.

Proof. For 1≤ i≤m, we have ci ≤ 2, then[ n
2m

(Xi+m:n−Xi−m:n)
]1−r
≤ (≥)

[
n

cim
(Xi+m:n−Xi−m:n)

]1−r
, r < 1 (r > 1).

Similar result holds for n−m+ 1≤ i≤ n and so the first inequality of (2.2) follows by definitions
of HVr,m,n and HEr,m,n. Also, we can similarly prove the second and third inequalities.

In the next theorem, it is shown that the bias and mean squared error of HEr,m,n, HAr,m,n,
HZr,m,n and HVr,m,n are scale invariant.

Theorem 2. Let Hr(X) and Hr(Y ) denote Renyi entropies of continuous random variables X
and Y , respectively and Y = bX, where b > 0. Then:
i) E

[
HiYr,m,n

]
=E

[
HiXr,m,n

]
+ ln b,

ii) V ar
[
HiYr,m,n

]
= V ar

[
HiXr,m,n

]
,

iii) MSE
[
HiYr,m,n

]
=MSE

[
HiXr,m,n

]
,

for i= 1,2,3,4, where the superscripts X and Y refer to the corresponding distribution and H1 =
HEr,m,n, H2 =HAr,m,n, H3 =HZr,m,n, H4 =HVr,m,n.

Proof. It is easy to see that

HEY
r,m,n = − 1

r− 1
ln

{
1

n

n∑
i=1

[
n

cim
(Yi+m:n−Yi−m:n)

]1−r}

= − 1

r− 1
ln

{
1

n

n∑
i=1

b1−r
[
n

cim
(Xi+m:n−Xi−m:n)

]1−r}
=HEX

r,m,n + ln b,
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and (i), (ii) and (iii) are proved easily. The proof for H2,H3 and H4 is similar to H1.

To study the behavior of the proposed modified estimators of Renyi entropy, a simulation study
was performed. We consider four estimators, Vasicek-type estimator HVr,m,n, the first modified esti-
mator HEr,m,n, the second modified estimator HAr,m,n and the third modified estimator HZr,m,n.

For our simulation we have used normal, exponential and uniform distributions which are the
same distributions considered in Correa (1995), Alizadeh (2010), Ebrahimi et al. (1994), Alizadeh
and Arghami (2010) and Zamanzade and Arghami (2011).

Table 1. RMSE and bias of the estimators of Renyi entropy of the uniform distribution.

RMSE Bias

n r HVrmn HErmn HArmn HZrmn HVrmn HErmn HArmn HZrmn

0.2 0.6868 0.4063 0.3354 0.3938 -0.6038 -0.2417 -0.0637 0.2208
0.5 0.4131 0.4210 0.3440 0.3827 -0.6314 -0.2602 -0.0873 0.1920
0.8 0.7482 0.4420 0.3585 0.3741 -0.6675 -0.2846 -0.1178 0.1591

5 1.2 0.8044 0.4736 0.3847 0.3648 -0.7246 -0.3215 -0.1644 0.1147
1.5 0.8614 0.5142 0.4290 0.3801 -0.7706 -0.3491 -0.2009 0.0843
2 0.9563 0.5713 0.4936 0.3897 -0.8542 -0.3991 -0.2656 0.0341
5 1.3113 0.8114 0.7702 0.5053 -1.1691 -0.5892 -0.5112 -0.1487

0.2 0.3327 0.1953 0.1655 0.2110 -0.2939 -0.1105 0.0568 0.1235
0.5 0.3668 0.2018 0.1594 0.1853 -0.3319 -0.1182 0.0359 0.0972
0.8 0.4160 0.2012 0.1613 0.1780 -0.3796 -0.1219 0.0121 0.0326

10 1.2 0.5026 0.2109 0.1848 0.1938 -0.4744 -0.1290 0.0821 -0.0248
1.5 0.5233 0.2167 0.1821 0.2256 -0.4945 -0.1373 0.0660 -0.0711
2 0.5745 0.2248 0.1890 0.3010 -0.5414 -0.1460 0.0277 -0.1461
5 0.8310 0.3085 0.3151 0.5925 -0.7741 -0.2132 -0.1491 -0.4290

0.2 0.1914 0.1002 0.1073 0.2450 -0.1753 -0.0542 0.0739 0.2240
0.5 0.2180 0.1022 0.0949 0.1990 -0.2030 -0.0564 0.0508 0.1772
0.8 0.2452 0.1044 0.0881 0.1610 -0.2305 -0.0593 0.0309 0.1351

20 1.2 0.3041 0.1083 0.1038 0.1228 -0.2913 -0.0645 0.0576 0.0765
1.5 0.3279 0.1102 0.0992 0.1152 -0.3140 -0.0654 0.0398 0.0356
2 0.3734 0.1140 0.1028 0.1335 -0.3549 -0.0714 0.0109 -0.0221
5 0.6615 0.1486 0.2428 0.3501 -0.6065 -0.1028 -0.1507 -0.2632

0.2 0.1441 0.0686 0.0950 0.2863 -0.1344 -0.0358 0.0790 0.2757
0.5 0.1647 0.0702 0.2587 0.2708 -0.1558 -0.0372 -0.1146 0.1069
0.8 0.1889 0.0706 0.0706 0.1863 -0.1796 -0.0380 0.0412 0.1758

30 1.2 0.2351 0.0740 0.0799 0.1365 -0.2269 -0.0416 0.0518 0.1194
1.5 0.2549 0.0765 0.0747 0.1105 -0.2456 -0.0441 0.0368 0.0825
2 0.2944 0.0783 0.0749 0.0951 -0.2817 -0.0475 0.0104 0.0271
5 0.5626 0.0979 0.1955 0.2511 -0.5147 -0.0661 -0.1284 -0.1847
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Table 2. RMSE and bias of the estimators of Renyi entropy of the standard exponential distribution

RMSE Bias

n r HVrmn HErmn HArmn HZrmn HVrmn HErmn HArmn HZrmn

0.2 1.7125 1.3761 1.2187 0.9734 -1.6157 -1.2536 -1.0791 -0.7912
0.5 1.1792 0.8726 0.7503 0.6044 -1.0340 -0.6638 -0.4929 -0.2128
0.8 0.9802 0.6958 0.6066 0.5450 -0.8144 -0.4324 -0.2663 0.0102

5 1.2 0.8860 0.6227 0.5679 0.5721 -0.6920 -0.2872 -0.1296 0.1509
1.5 0.8789 0.6149 0.5747 0.5952 -0.6686 -0.2417 -0.0924 0.1979
2 0.9257 0.6422 0.6163 0.6298 -0.6875 -0.2218 -0.0876 0.2257
5 1.1066 0.7653 0.7665 0.7325 -0.7975 -0.2100 -0.1298 0.2688

0.2 1.2732 1.1042 0.9345 0.8402 -1.2106 -1.0311 -0.8431 -0.7182
0.5 0.7648 0.5887 0.4812 0.4488 -0.6663 -0.4392 -0.2840 -0.2129
0.8 0.6061 0.4242 0.3732 0.3725 -0.4862 -0.1832 -0.0820 -0.0599

10 1.2 0.5439 0.3688 0.3926 0.3674 -0.4061 -0.0161 0.1521 -0.0129
1.5 0.5070 0.3663 0.4071 0.3836 -0.3631 0.0488 0.2029 -0.0167
2 0.5173 0.3776 0.4361 0.4250 -0.3541 0.1126 0.2287 -0.0425
5 0.6933 0.4371 0.4894 0.5747 -0.4967 0.1674 0.1547 -0.1498

0.2 1.0285 0.9132 0.7512 0.5550 -0.9872 -0.8635 -0.6828 -0.4291
0.5 0.5356 0.3933 0.3258 0.2913 -0.4660 -0.2695 -0.1753 -0.0020
0.8 0.3874 0.2756 0.2486 0.2677 -0.2994 -0.0362 -0.0198 0.0921

20 1.2 0.3330 0.2868 0.2654 0.2594 -0.2293 0.1199 0.1133 0.0923
1.5 0.3343 0.3068 0.2732 0.2654 -0.2234 0.1819 0.1219 0.0742
2 0.3706 0.3356 0.2856 0.2776 -0.2476 0.2342 0.1206 0.0474
5 0.6258 0.3729 0.3489 0.3633 -0.4712 0.2548 0.0458 -0.0615

0.2 0.9283 0.8210 0.6575 0.4173 -0.8952 -0.7789 -0.5979 -0.2699
0.5 0.4407 0.3168 0.2587 0.2708 -0.3834 -0.1945 -0.1146 0.1069
0.8 0.3027 0.2332 0.2028 0.2594 -0.2283 0.0288 0.0140 0.1602

30 1.2 0.2563 0.2844 0.2195 0.2353 -0.1665 0.1846 0.1033 0.1306
1.5 0.2575 0.3127 0.2235 0.2306 -0.1623 0.2349 0.1071 0.1104
2 0.2995 0.3447 0.2336 0.2309 -0.1960 0.2837 0.0949 0.0729
5 0.5644 0.3601 0.2869 0.2903 -0.4352 0.2820 0.0278 -0.0208

Table 3. RMSE and bias of the estimators of Renyi entropy of the standard normal distribution.

RMSE Bias

n r HVrmn HErmn HArmn HZrmn HVrmn HErmn HArmn HZrmn

0.2 1.3896 1.0480 0.8898 0.6473 -1.3281 -0.9648 -0.7901 -0.5013
0.5 1.1210 0.7855 0.6455 0.4614 -1.0454 -0.6729 -0.5024 -0.2198
0.8 1.0227 0.6893 0.5649 0.4261 -0.9366 -0.5529 -0.3872 -0.1087

5 1.2 0.9696 0.6318 0.5253 0.4223 -0.8721 -0.4699 -0.3117 -0.0342
1.5 0.9836 0.6363 0.5396 0.4384 -0.8752 -0.4569 -0.3051 -0.0255
2 1.0201 0.6527 0.5734 0.4636 -0.8911 -0.4432 -0.3033 -0.0147
5 1.2089 0.7571 0.7213 0.5323 -1.0301 -0.4678 -0.3740 -0.0407

0.2 0.9779 0.8178 0.6365 0.5404 -0.9431 -0.7772 -0.5804 -0.4562
0.5 0.7116 0.5429 0.3980 0.3470 -0.6613 -0.4781 -0.2960 -0.2041
0.8 0.6172 0.4328 0.3244 0.3030 -0.5552 -0.3471 -0.1870 -0.1242

10 1.2 0.6402 0.3579 0.2640 0.3012 -0.5836 -0.2516 -0.0280 -0.1011
1.5 0.6093 0.3370 0.2637 0.3098 -0.5485 -0.2119 0.0091 -0.1124
2 0.5870 0.3053 0.2736 0.3396 -0.5188 -0.1574 0.0436 -0.1371
5 0.6671 0.2960 0.3338 0.5147 -0.5627 -0.0763 0.0356 -0.2993

0.2 0.7726 0.6770 0.4919 0.3034 -0.7519 -0.6526 -0.4533 -0.2110
0.5 0.4960 0.3728 0.2573 0.2008 -0.4623 -0.3251 -0.1795 0.0047
0.8 0.3995 0.2768 0.1968 0.1888 -0.3577 -0.2105 -0.0797 0.0412

20 1.2 0.3648 0.2123 0.1802 0.1828 -0.3165 -0.1118 0.0187 0.0314
1.5 0.3342 0.1884 0.1823 0.1831 0.0395 -0.0676 0.0395 0.0083
2 0.3121 0.1783 0.1876 0.2021 -0.2465 -0.0140 0.0484 -0.0405
5 0.3431 0.2142 0.2138 0.3544 -0.2375 0.0950 -0.0115 -0.2168

0.2 0.6873 0.6070 0.4218 0.2076 -0.6714 -0.5879 -0.3893 -0.0734
0.5 0.4146 0.3178 0.1961 0.1970 -0.3886 -0.2802 -0.1233 0.1045
0.8 0.3117 0.2105 0.1515 0.1929 -0.2763 -0.1843 -0.0381 0.1212

30 1.2 0.2626 0.1586 0.1461 0.1646 -0.2205 -0.0480 0.0395 0.0829
1.5 0.2348 0.1504 0.1500 0.1546 -0.1851 -0.0026 0.0506 0.0520
2 0.2099 0.1559 0.1540 0.1564 -0.1486 0.0500 0.0517 0.0001
5 0.2316 0.2289 0.1865 0.2747 -0.1372 0.1692 -0.0298 -0.1659
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İSTATİSTİK: Journal of the Turkish Statistical Association 9(2), pp. 42–55, c© 2016 İstatistik 47

Tables 1-3 contain the results of 10000 simulations (of samples of size 5,10,20 and 30) per each
case, to obtain the RMSE (Root of Mean Squared Error) values of the four estimators at different
sample sizes for each of the three considered distributions. The optimal choice of m (the value
which results the minimum value of RMSE for given n) is still an open problem. Grzegorzewski and
Wieczorkowski (1999) suggested the heuristics formula for choosing m for estimation of Shannon
entropy as m= [

√
n+ 0.5].

We perform the simulation study for all values of m≤ n/2 and choose the value of m which gives
the minimum RMSE for most of the values of r for three distributions. Our simulation results show
that the optimal choice of m for proposed modified estimators are as
• Vasicek-type estimator

m=

{
[
√
n+ 0.5]− 1 r < 1

[
√
n+ 0.5] + 1 r > 1.

• The first modified estimator
m= [n/2].

• The second modified estimator

m=

{
[
√
n+ 0.5] r < 1

[
√
n+ 0.5] + 1 r > 1.

• The third modified estimator

m=

{
[
√
n+ 0.5] n< 10

[
√
n+ 0.5]− 1 n≥ 10.

From Tables 1-3, we observe that mostly, the main competition is between HAr,m,n and HZr,m,n.
The third modified estimator has less RMSE and absolute of bias than the second modified estima-
tor for small values of n. However by increasing n, HAr,m,n behaves better than HZr,m,n. On the
other hand, if we compare the estimators for small and large values of r, it is seen that generally
for small values of r, (r= 0.2,0.5), HZr,m,n behaves better than HAr,m,n. Also, for r= 5, HEr,m,n
compete favorably with HAr,m,n and HZr,m,n.

3. Testing exponentiality

3.1. Test statistics
In many situations such as life testing, when X is the life of a product, it is assumed that X

has an exponential distribution. Suppose X1, ...,Xn be a random sample from a continuous non-
negative probability distribution function F with a density function f . we are interested in testing
the hypothesis

H0 : f(x) = f0(x;θ),

where f0(x;θ) = θe−θx, x > 0 and θ is unknown, against the H1 : f(x) 6= f0(x;θ).
In order to obtain a test statistic, we use the following transformations.

Let X1 and X2 be two independent observations from a continuous distribution function F . It is
shown by Kotz and Stentel (1983), that W = X1

X1+X2
is distributed as U(0,1) if and only if F is

exponential. Also, Alizadeh and Arghami (2011) proved that Y =
∣∣∣X1−X2
X1+X2

∣∣∣ is distributed as U(0,1)

if and only if F is exponential.
Let X1:n, ...,Xn:n be an ordered random sample of size n. Consider the following transformations

of the sample data as

Wij =
Xi:n

Xi:n +Xj:n

, i 6= j, j = 1, ..., n,
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Vij =
Xi:n−Xj:n

Xi:n +Xj:n

, i > j, j = 1, ..., n.

Under the null hypothesis, each Wij and Vij have uniform distribution on (0,1). Hence, to test

H0, we can transform Xi to Wij or Vij and test H ′0 : g(u) = g0(u), where g0(u) = 1, 0<u< 1.

The asymmetric Renyi distance of g from g0 is:

Dr(g, g0) =
1

r− 1
ln

∫ 1

0

[
g(u)

g0(u)

]r−1
g(u)du

=
1

r− 1
ln

∫ 1

0

gr(u)du=−Hr(g), (3.1)

where the Hr(g) is the Renyi entropy of order r of distribution with density g. Dr(g, g0)≥ 0 and

the equality holds if and only if H ′0 holds.

If a sample comes from an exponential distribution, Dr(g, g0) should be close to zero value and

thus, large values of Dr(g, g0) lead us to reject the null hypothesis H ′0 in favor of the alternative

hypothesis H ′1.

To derive a test statistic by evaluating the information function (3.1), the density g must be

completely specified, which is not operational. Thus, it is necessary to estimate the information

function (3.1) from a sample.

Toward this end, we use four estimators of Renyi entropy HVr,m,n, HEr,m,n, HAr,m,n and HZr,m,n
based on the transformed data Wi for i= 1,2, ..., n′, where n′ = n(n− 1) and Vi for i= 1,2, ..., n′′,

where n′′ = n(n− 1)/2. Since the performance of the first and second transformations were similar

in terms of power, we just consider the second transformation, that is, we have four test statistics

as:

TV =HVr,m,n′′ =− 1

r− 1
ln

 1

n′′

n′′∑
i=1

[
n′′

2m
(Vi+m:n′′ −Yi−m:n′′)

]1−r ,

TE =HEr,m,n′′ =− 1

r− 1
ln

 1

n′′

n′′∑
i=1

[
n′′

cim
(Vi+m:n′′ −Vi−m:n′′)

]1−r ,

TA=HAr,m,n′′ =− 1

r− 1
ln

 1

n′′

n′′∑
i=1

[
n′′

aim
(Vi+m:n′′ −Vi−m:n′′)

]1−r ,

TZ =HZr,m,n′′ =− 1

r− 1
ln

 1

n′′

n′′∑
i=1

[
n′′

bim
(Vi+m:n′′ −Vi−m:n′′)

]1−r .

We reject the null hypothesis for small values of the test statistics.

Critical points are determined by the quantiles of the distributions of the test statistics under

hypothesis H ′0. Since the sampling distributions of test statistics are intractable, we determine the

critical points using Monte Carlo method. Unfortunately, there is no choice criterion of r∗ and

m∗ (the optimum values of r and m). In general they depends on the type of the alternatives.

We suggest to choose r∗ = 1.5 based on simulation results. The results are given in Tables 4-8 for

r∗ = 1.5 and different values of m.
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Table 4. Critical values of the TV , α= 0.05.

m

n 5 10 15 20 25 30 35 40 45 50
5 -0.8413
6 -0.7413
7 -0.6825 -0.5689
8 -0.6380 -0.5099
9 -0.6180 -0.4673 -0.4581
10 -0.5976 -0.4516 -0.4181 -0.4150
15 -0.4782 -0.3765 -0.3259 -0.3045 -0.2916 -0.2901 -0.2938 -0.3017 -0.3120 -0.3201
20 -0.3996 -0.3222 -0.2790 -0.2568 -0.2422 -0.2396 -0.2362 -0.2311 -0.2311 -0.2351
30 -0.2925 -0.2461 -0.2243 -0.2050 -0.1855 -0.1812 -0.1794 -0.1725 -0.1698 -0.1733
40 -0.2476 -0.2085 -0.1841 -0.1751 -0.1608 -0.1544 -0.1455 -0.1372 -0.1388 -0.1362
50 -0.2137 -0.1766 -0.1618 -0.1549 -0.1419 -0.1332 -0.1322 -0.1258 -0.1156 -0.1181

Table 5. Critical values of the TE, α= 0.05.

m

n 5 10 15 20 25 30 35 40 45 50
5 -0.6312
6 -0.5767
7 -0.5493 -0.3957
8 -0.5230 -0.3679
9 -0.5263 -0.3485 -0.3092
10 -0.5018 -0.3466 -0.2903 -0.2670
15 -0.4361 -0.3193 -0.2588 -0.2213 -0.2016 -0.1882 -0.1801 -0.1789 -0.1743 -0.1676
20 -0.3730 -0.2814 -0.2330 -0.2089 -0.1844 -0.1747 -0.1632 -0.1529 -0.1444 -0.1417
30 -0.2808 -0.2269 -0.1986 -0.1747 -0.1549 -0.1467 -0.1411 -0.1330 -0.1284 -0.1259
40 -0.2409 -0.1957 -0.1690 -0.1539 -0.1395 -0.1325 -0.1228 -0.1127 -0.1128 -0.1060
50 -0.2095 -0.1692 -0.1496 -0.1403 -0.1256 -0.1172 -0.1142 -0.1066 -0.0980 -0.0976

Table 6. Critical values of the TA, α= 0.05.

m

n 5 10 15 20 25 30 35 40 45 50
5 -0.4885
6 -0.4790
7 -0.4639 -0.2449
8 -0.4587 -0.2544
9 -0.4664 -0.2576 -0.1769
10 -0.4559 -0.2682 -0.1821 -0.1215
15 -0.4060 -0.2777 -0.2052 -0.1557 -0.1196 -0.0931 -0.0728 -00543 -0.0318 -0.0070
20 -0.3555 -0.2534 -0.1987 -0.1675 -0.1362 -0.1194 -0.0973 -0.0814 -0.0656 -0.0551
30 -0.2734 -0.2117 -0.1789 -0.1523 -0.1311 -0.1192 -0.1095 -0.0979 -0.0897 -0.0830
40 -0.2367 -0.1866 -0.1568 -0.1396 -0.1232 -0.1147 -0.1027 -0.0917 -0.0900 -0.0821
50 -0.2071 -0.1630 -0.1420 -0.1281 -0.1128 -0.1038 -0.0997 -0.0922 -0.0820 -0.0807

Table 7. Critical values of the TZ, α= 0.05.

m

n 5 10 15 20 25 30 35 40 45 50
5 -0.2095
6 -0.2913
7 -0.3101 0.0257
8 -0.3314 -0.0510
9 -0.3634 -0.0952 0.0573
10 -0.3661 -0.1303 0.0012 0.1408
15 -0.3608 -0.1985 -0.1159 -0.0412 0.0164 0.0643 0.1171 0.1692 0.2251 0.2913
20 -0.3320 -0.2028 -0.1406 -0.0986 -0.0552 -0.0288 0.0057 0.0373 0.0652 0.0911
30 -0.2617 -0.1841 -0.1426 -0.1131 -0.0883 -0.0738 -0.0559 -0.0424 -0.0290 -0.0151
40 -0.2300 -0.1712 -0.1348 -0.1128 -0.0942 -0.0854 -0.0648 -0.0576 -0.0524 -0.0410
50 -0.2035 -0.1538 -0.1253 -0.1088 -0.0941 -0.0797 -0.0711 -0.0655 -0.0558 -0.0523

3.2. Power Study

For power comparisons, we choose the competitor tests from the existing exponentiality tests

discussed in Henze and Meintanis (2005). The test statistics of competitor tests are as follows. We



Abbasnejad: Modified Estimators of Renyi Entropy with Application in Testing Exponentiality Based on Transformed Data
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will denote the scaled observations xi/x̄ by yi.
(1) The Kolmogorov-Smirnov test statistic (D’Agostino and Stephens, 1986):

KS = sup
x≥0
|Fn(x)− (1− exp(−x))|

= max

{
max
1≤i≤n

[
i

n
− z(i)

]
, max
1≤i≤n

[
z(i)−

i− 1

n

]}
,

where zi = (1− exp(−yi)).

(2) The Cramer-von Mises test statistic (D’Agostino and Stephens, 1986):

CV =
1

12n
+

n∑
i=1

(
2i− 1

n
− z(i)

)2

.

(3) The Watson test statistic:

W = Tn−n(z̄− 1

2
)2.

(4) The Anderson-Darling test statistic:

AD=−n−
n∑
i=1

2i− 1

n

[
lnz(i) + ln(1− z(n−i+1))

]
.

(5) The test statistic of D’Agostino and Stephens (1986) which is based on the normalized spacings
Di = (n+ 1− i)(Xi:n−Xi−1:n), i= 1, ..., n,X0:n = 0:

S = 2n− 2

n

n∑
i=1

iy(i:n).

(6) The test statistic of Cox and Oakes (1984):

CO= n+
n∑
i=1

(1− yi) ln(yi).

(7) The test statistic of Epps and Pulley (1986):

EP =
√

48n

(
1

n

n∑
i=1

exp(−yi)−
1

2

)
.

(8) The test statistic of Baringhaus and Henze (1991) which is based on the empirical Laplace
transform:

BH = n

∫ ∞
0

[(1 + t)ψ′n(t) +ψn(t)]
2
exp(−at)dt,

where ψn(t) = 1/n
∑n

i=1 exp(−tyi) is the empirical Laplace transform of the exponential distribu-
tion. Their suggested value of a is 2.5.

(9) The test statistic of Ebrahimi et al. (1992) which is based on Kullback-Leibler information:

KL=
exp(Hmn)

exp(ln x̄+ 1)
,
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where Hmn = 1
n

∑n

i=1 ln
[
n
2m

(Xi+m:n−Xi−m:n)
]

is Vasicek’s (1976) entropy estimator of Shannon
entropy. We have taken m= 3, following the recommendation of Ebrahimi et al. (1992).

(10) The test statistic of Henze (1993) which is based on the empirical Laplace transform:

H = n

∫ ∞
0

[
ψn(t)− 1

1 + t

]2
exp(−at)dt,

where ψn(t) = 1/n
∑n

i=1 exp(−tyi) is the empirical Laplace transform of the exponential distribu-
tion. His suggested value of a is 2.5.

(11) The Kolmogorov-Smirnov and Cramer-von Mises-type statistics proposed by Baringhaus and
Henze (2000):

KS =
√
n sup
t≥0

∣∣∣∣∣ 1n
n∑
i=1

min(yi, t)−
1

n

n∑
i=1

I{yi≤t}

∣∣∣∣∣ ,
CV = n

∫ ∞
0

[
1

n

n∑
i=1

min(yi, t)−
1

n

n∑
i=1

I{yi≤t}

]2
exp(−t)dt,

where I{A} is the indicator of the event A.

(12) The test statistics proposed by Henze and Meintanis (2005) which are based on the empirical
characteristic function:

T (1)
n,a =

a

n

n∑
j,k=1

[
1

a2 + y2jk−
+

1

a2 + y2jk+

]
−2a

n2

n∑
j,k=1

n∑
l=1

[
1

a2 + (yjk−− yl)2
+

1

a2 + (yjk−+ yl)2

]
+
a

n3

n∑
j,k=1

n∑
l=1

[
1

a2 + (yjk−− ylm−)2
+

1

a2 + (yjk−+ ylm−)2

]
,

T (2)
n,a =

1

2n

√
π

a

n∑
j,k=1

[
exp

(
−
y2jk−
4a

)
+ exp

(
−
y2jk+
4a

)]
− 1

n2

√
π

a

n∑
j,k=1

n∑
l=1

[
exp

(
−(yjk−− yl)2

4a

)
+ exp

(
−(yjk−+ yl)

2

4a

)]
+

1

2n3

√
π

a

n∑
j,k=1

n∑
l=1

[
exp

(
−(yjk−− ylm−)2

4a

)
+ exp

(
−(yjk−+ ylm−)2

4a

)]
,

where yjk− = yj−yk, yjk+ = yj+yk and a> 0. We have taken a= 2.5, following the recommendation
of Henze and Meintanis (2005).

(13) The test statistics proposed by Alizadeh and Arghami (2011) which are based on the Shannon
entropy of transformed data:

T1 = =− 1

n′

n′∑
i=1

ln

[
n′

2m
(wi+m:n−wi−m:n)

]
,
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T2 = =− 1

n′

n′∑
i=1

ln

[
n′

2m
(ti+m:n− ti−m:n)

]
+

2

n′

n′∑
i=1

ln(1 + ti),

T3 = =− 1

n′

n′∑
i=1

ln

[
n′

2m
(zi+m:n− zi−m:n)

]
+ ln2,

where n′ = n(n− 1),wij = xi
xi+xj

, tij = xi
xj

and zij =
xi−xj
xi+xj

for i 6= j = 1, ..., n.

For power comparisons, we consider the same alternatives listed in Henze and Meintanis (2005)

and Alizadeh and Arghami (2011) and their choices of parameters:

• the Weibull distribution with density θxθ−1 exp(−xθ), denoted by W (θ),

• the gamma distribution with density Γ(θ)−1xθ−1 exp(−x), denoted by Γ(θ),

• the lognormal distribution with density (θx)−1(2π)−1/2 exp(−(lnx)2/(2θ2)), denoted by LN(θ),

• the half-normal distribution with density Γ(2/π)1/2 exp(−x2/2), denoted by HN ,

• the uniform distribution with density 1, 0≤ x≤ 1, denoted by U(0,1),

• the modified extreme value distribution with distribution function 1− exp(θ−1(1− ex)), denoted

by EV (θ),

• the linear increasing failure rate law with density (1 + θx) exp(−x− θx2/2), denoted by LF (θ),

• Dhillon’s (1981) law with distribution function 1− exp(−(ln(x+ 1))θ+1), denoted by DL(θ),

• Chen’s (2000) distribution with distribution function 1− exp(2(1− exθ)), denoted by CH(θ).

These distributions comprise of widely used alternatives to the exponential model and include

densities f with decreasing hazard rates, increasing hazard rates as well as models with non-

monotone hazard functions.

Tables 8 and 9 shows the estimated powers of the tests TV , TE, TA and TZ and those of the

competing tests, at the significance level α = 0.05, based on the results of 10000 simulations of

sample size 20. The maximum power are given in bold type.

For these alternatives, we have taken m= 50 for n= 20 (n′ = 190), based on simulation results.

It is evident from Tables 8 and 9 that, the test statistic TZ has the greatest power for almost

all alternatives among the test statistics based on entropy and among other test statistics T (1)
n,a has

the best performance in terms of the powers.

In general, we can not say a single test perform the best for all alternatives. We observe that the

proposed test statistics based on Renyi entropy perform very well compared with the other tests

for Weibull(0.8), gamma(2), lognormal(0.8) and Dhillon, DL(θ) alternatives. However, the test of

Henze and Meintanis (2005), T (1)
n,a, has the greatest powers for almost all other alternatives.
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Table 8. Power comparison of various exponentiality tests for n= 20 with α= 0.05.

Altern. KS CV W AD EP KS CV S CO BH HE T (1)
n,a T (2)

n,a

W (0.8) 18 20 14 28 24 14 22 28 24 24 24 4 10
W (1.4) 28 35 28 31 36 35 35 35 37 36 37 45 42
Γ(0.4) 70 74 63 90 76 62 75 76 91 77 79 33 50
Γ(1) 5 5 5 5 5 5 5 5 5 5 5 5 5
Γ(2) 40 47 41 45 48 46 47 46 54 48 48 55 50
LN(0.8) 32 35 37 34 25 28 27 24 33 26 29 27 22
LN(1.5) 58 63 49 63 67 55 66 67 60 67 66 18 38
HN 18 21 18 17 21 24 22 21 19 21 21 33 31
U 51 68 61 64 66 72 70 70 50 65 62 86 85
CH(0.5) 56 62 51 79 63 47 61 63 80 63 63 23 37
CH(1) 12 14 12 11 15 18 16 15 13 14 14 25 23
CH(1.5) 69 81 72 77 84 79 83 84 81 84 84 91 91
LF (2) 24 29 23 24 28 32 30 29 28 28 28 42 39
LF (4) 35 41 35 36 42 44 43 42 37 42 42 56 54
EV (0.5) 12 15 12 12 15 18 16 15 13 14 15 25 23
EV (1.5) 34 42 36 36 45 48 47 46 37 44 43 63 61
DL(1) 19 23 22 21 20 22 21 19 25 21 20 25 21
DL(1.5) 58 67 60 64 64 62 63 62 72 64 64 67 61

Table 9. Power comparison of exponentiality tests based on entropy for n= 20 with α= 0.05.

Altern. KL T1 T2 T3 TV TE TA TZ

W (0.8) 28 16 13 16 16 14 12 6
W (1.4) 29 35 36 35 44 39 42 45
Γ(0.4) 88 86 82 85 83 80 79 68
Γ(1) 5 5 5 5 5 5 5 5
Γ(2) 44 55 55 55 60 63 64 67
LN(0.8) 35 51 50 50 56 60 61 64
LN(1.5) 66 10 7 9 17 15 13 13
HN 16 18 18 17 20 21 22 23
U 61 52 55 51 50 48 47 44
CH(0.5) 77 73 67 70 70 66 64 51
CH(1) 11 13 14 13 14 14 15 16
CH(1.5) 76 72 74 72 77 77 77 77
LF (2) 23 23 25 24 26 27 27 28
LF (4) 34 34 36 35 37 38 38 39
EV (0.5) 11 13 14 13 14 14 15 16
EV (1.5) 37 34 35 34 36 37 37 37
DL(1) 21 31 31 31 36 39 40 44
DL(1.5) 63 74 75 74 80 82 83 84

4. Conclusion
In this paper, we proposed three modified estimators of Renyi entropy and compared them with

the existing estimator based on their RMSEs. It is observed that one of these estimators has better
performance than other estimators especially for small sample sizes.

Also we introduced a goodness of fit test for exponentiality based on Renyi distance. At first we
use transformations of data which turn the test of exponentiality into one of uniformity and then
we use a corresponding test based on estimators of Renyi entropy. We can see that the proposed
tests performs well for some alternatives.
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54 İSTATİSTİK: Journal of the Turkish Statistical Association 9(2), pp. 42–55, c© 2016 İstatistik
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