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ABSTRACT

The study fi eld covering an area of about 1000 km2 is located in Sorgun town of the city of Yozgat. In the 
region Paleozoic, Campanian-Maastrichtian, Eocene, Miocene and Quaternary units are exposed. Among 
these units, the lower Eocene Çeltek formation hosts coal beds and oil shale. The Eocene epoch is important 
for organic matter deposition regarding oil and gas productivity and anoxic depositional conditions. In 
order to examine the paleo-sedimentary conditions of oil shales in the study area and their relation to Total 
Organic Carbon (TOC) contents and major-trace element contents, a total of 29 samples were collected 
from two boreholes and one Measured Stratigraphic Section (MSS). Samples have TOC contents varying 
from 1.97 to 16.17 wt% (average 6.30 wt%). The V/Cr, V/(V+Ni), U/Th, δU and Authigenic Uranium 
(AU) values of the Çeltek formation oil shales (ÇFOS) reveal that the oil shales have been deposited under 
variable paleo-environmental conditions. For paleo-salinity the Sr/Ba ratios indicate mostly deposition in 
a freshwater environment. Chemical Alteration Index (CIA) values and Sr/Cu ratios indicate that paleo-
climate conditions of ÇFOS were dry, hot and occasionally humid. The Fe/Ti and (Fe+Mn)/Ti ratios reveal 
hydrothermal activity during sedimentation of oil shales. Zr/Rb ratios of samples are indicative of very 
weak paleo-hydrodynamics during the deposition of oil shales. Such variable geochemical conditions in 
the basin resulted in variable paleo-environmental conditions.
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1. Introduction

Some trace elements behave in a sensitive manner 
under variable redox conditions; thus, they are very 
useful for the determination of the paleo-redox 
conditions in depositional environments (Calvert and 
Pedersen, 1993; Jones and Manning, 1994; Wignall, 
1994; Crusius et al., 1996; Dean, 1993, 1997; Yarincik 
et al., 2000; Morford et al., 2001; Pailler et al., 2002). 
These trace elements are signifi cantly accumulated in 
laminated organic-rich facies deposited under euxinic 
conditions. However, they are hardly ever found in 
bio-turbation and organic-poor facies.

There are several studies regarding the redox 
conditions during oil shale deposition and the relation 
between TOC content and redox-sensitive trace 
elements (Vine and Tourtelot, 1970; Holland, 1984; 

Robl and Barron, 1987; Özlük, 2010; Koca et al., 
2010; Sarı et al., 2010; Koca, 2011; Yavuz Pehlivanlı, 
2011; Sarı and Koca, 2012; Yavuz Pehlivanlı et al., 
2013; Koralay and Sarı, 2013; Sarı et al., 2016). 

For example, uranium exists as U6+soluble 
under oxic-suboxic conditions and its enrichment is 
restricted to oxic environments (Calvert and Pedersen, 
1993). Under anoxic conditions uranium is reduced to 
U4+form. Under reducing conditions, uranium within 
the sediments forms ligands in the presence of humic 
acids and is enriched as uraninite (UO2) at sediment-
water interface (Klinkhammer and Palmer, 1991). 
Although reducing of U6+is believed to be controlled 
by Fe redox reactions, the presence of H2S may 
also give rise to sulfate reduction (Langmuir, 1978; 
Klinkhammer and Palmer, 1991; Zheng et al., 2002).
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Figure 1- Geological map of the study area (Cicioğlu, 1995).

Vanadium, nickel and cobalt are very important 
for determining the redox conditions of depositional 
environments. Under oxic conditions vanadium exists 
as V+5 in vanadate ions (Wehrli and Stumm, 1989). 
Humic and fulvic acids catalyze the reduction from 
vanadate to vanadyl (Templeton and Chasteen, 1980).
Vanadium can be adsorbed as V4+ or transferred to 
the sediment as organometallic ligands (Morford and 
Emerson, 1999). Under extremely reducing conditions, 
e.g. in the presence of free H2S, V is reduced to 
V3+. Vanadium enters the medium in form of geo-
porphyrine, solid oxide (V2O3) or hydroxide (V(OH)3) 
(Breit and Wanty, 1991). Vanadium is reduced through 
a two-stage process which results in the formation of 
different V phases with different solubility under non-
sulfi dic anoxic versus euxinic conditions (Calvert and 
Pedersen, 1993). 

Nickel generally occurs as Ni-carbonate (NiCO3) 
or dissolved species accompanied by humic and fulvic 
acids (Achterberg et al., 1997). Under oxic conditions 
it occurs as Ni+2 or NiCl+ ions (Calvert and Pedersen, 
1993).The presence of organic compounds accelerates 
the transfer of Ni to the sedimentary environment 
and Ni is free in pore water at the sediment-water 
interface. Under anoxic conditions it may also be hold 
in pyrite as solid solution (Huerta-Diaz and Morse, 
1992; Morse and Luther, 1999).

At oxic conditions cobalt may form compounds 
of dissolved cations (Co+2) or humic and fulvic acids 
(Achterberg et al., 1997) and may exist as insoluble 
sulfi de (CoS) at anoxic conditions (Huerta-Diaz and 

Morse, 1992). Moreover, since Co is slowly absorbed 
due to kinetic reasons, it is rarely found in authigenic 
sulfi des (Morse and Luther, 1999).

Based on Ni/Co, V/Cr and V/(V+Ni) ratios 
the paleo-environmental conditions of organic-
rich sedimentary rocks can be assessed (Hatch and 
Leventhal, 1992; Jones and Manning, 1994; Rimmer, 
2004). Li et al. (2018) reconstructed the paleo-
environmental conditions through the V/Cr, V/(V+Ni), 
U/Th, δU and Authigenic Uranium (AU) values; the 
Sr/Ba ratio was used for paleo-salinity; paleo-climate 
data was used for Chemical Index of Alteration (CIA); 
and Sr/Cu ratios, Fe/Ti and (Fe+Mn)/Ti ratios for 
hydrothermal activity during sedimentation of oil 
shales, and Zr/Rb ratios for paleo-hydrodynamics.

The aim of this study is to examine the organic 
material abundance, the paleo-salinity, the paleo-
climate, the hydrothermal conditions during deposition 
and the factors affecting the paleo-environmental 
characteristics (e.g. paleo-hydrodynamics) of oil shale 
samples obtained from Çeltek formation in the vicinity 
of Sorgun, Yozgat area, Central Turkey (Figure 1).

2. Geological Setting

The study area covering an area of about 1000 km2 

is located close to Sorgun town of the city of Yozgat 
(Figure 1). In the region Paleozoic, Campanian-
Maastrichtian, Eocene, Miocene and Quaternary 
units crop out. The central Anatolian granitoids 
(Erler and Bayhan, 1993; Dönmez et al., 2005) are 



253

 Bull. Min. Res. Exp. (2019)  158: 251-263

the oldest rock units around the study area which 
are unconformably overlain by the lower Eocene 
Çeltek formation composed of sandstone, coal, oil 
shale, lenticular sandstone and mudstone alternations 
(Cicioğlu, 1995). This formation is unconformably 
covered by the lower-middle Eocene Boğazköy 
formation starting with a basal conglomerate and 
continuing to the top with volcanic-interbedded 
sandstone, fossiliferous limestone, clay stone, clayey 
limestone, marl and various volcanic rocks including 
rhyolite, rhyolitic tuff, agglomerate, dacite, andesite 
and basalt. At the end of Lutetian ophiolitic rocks 
of the İzmir-Ankara-Erzincan suture zone were 
thrusted over the Boğazköy formation. All these 
units are overlain by Neogene deposits (Figures 1 
and 2) (Cicioğlu, 1995; Beyazpirinç et al., 2014). The 
Kızılırmak formation, from bottom to the top consists 
of terrestrial conglomerate, sandstone, siltstone, 
claystone, mudstone and limestone (Beyazpirinç et 
al., 2014). It is covered by Anatolian granitoids and 
Plio-Quaternary units. 

3. Material and Methods

Nineteen Çeltek formation oil-shale (ÇFOS) 
samples were collected from three different locations 
in the coal fi eld of the Yeni Çeltek Coal Management 
in Sorgun: nine surface samples from a Measured 
Stratigraphic Section (MSS) (YÇ) and 10 samples 
from two cores (SJ and Ç). The samples from the 
MSS were taken systematically and the core samples 
were collected at 10 cm intervals per meter (Figure 
3). Major and trace element contents were determined 
at the laboratories of the Bozok University. About 
30 g of each sample was grinded to pass the 90 μm 
mesh. For trace and rare earth element contents 0.5 g 
sample was analyzed through ICP-ES (ICP emission 
spectrometry) and ICP-MS (ICP mass spectrometry) 
techniques at the Acme Analytical Laboratories Ltd 
(Canada). Moreover, the samples were analyzed using 
a Rock-Eval VI pyrolysis device at the Laboratories of 
the Turkish Petroleum Corporation (TPAO).

Figure 2- Generalized stratigraphic section of the study area of 
Sorgun basin (Modifi ed from Beyazpirinç et al., 2014; 
Cicioğlu, 1995).

Figure 3- The lithological columns of the SJ and Ç cores and the 
YC Measured Stratigraphic Section (MSS) (not to scale).
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4. Results and Discussion 

4.1. Rock Eval Pyrolysis

The TOC (Total Organic Carbon) contents of oil 
shales range from 1.97 to 16.17 % with average of 6.30 
%. The values show very good to prefect source rock 
character (Table 1).The HI-OI and HI-Tmax diagrams 

indicate that the organic material consists of Type-1 
and Type-2 kerogen (Figure 4a and b). Considering 
the Tmax values (Table 2) and the kerogen types, the 
samples are generally within the oil window and 
depth-dependent variations of samples are indicative 
of immature to early mature stages (Espitalie et al., 
1984).

Figure 4 a- Characterization of organic matter in HI vs. OI diagram (Espitalie et al., 1977); b-Plot of Hydrogen Index (HI) vs. Tmax of the ÇFOS 
samples (Mukhopadhyay et al., 1995).

Peters and Cassa (1994) Tissot and Welte (1984) Jarvie (1991)

Sample TOC (%) Source Rock 
Quality

Corg
Oil Potential

TOC Source Rock 
Quality

TOC Source Rock 
Quality(%) (%) (%)

0-0.5 Weak 0.1-0.5 Weak 0-0.5 Insuffi cient

0.5-1 Middle 0.5-1 Middle 0.5-1 Middle C 1.97-
16.17

Good - Very 
Good

1-2 Good 1- 2 Good >1 Enough YC 2.14-
14.85 Very Good

2- 4 Very good 2 - 10 Rich   SJ 2.48-3.13 Very Good

Table 1- Source rock properties of ÇFOS based on Total Organic Carbon (TOC) content.

Table 2- Tmax limit values of ÇFOS according to kerogen types (Espitalie et al., 1984).

Type I Type II Type III Degree of Maturation Sample TMAX (°C)
<425 oC <435 oC Immature-Early Mature C 418-436

440-448 oC 425-450 oC 435-465 oC Oil window YC 427-439
>450 oC >465 oC Gas window SJ 404-433
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4.2. Elemental Composition

The distribution of major (>0.1 %), minor (between 
100 ppm and 0.1%) and trace elements (<100 ppm) 
refl ects the geochemical characteristics of the 
sediments. Although the use of element abundances 
is not the sole tool to determine the depositional 
conditions (Degens et al., 1958), all factors which 
are adsorbed from the water to organic and inorganic 
substances, which control the element contribution to 
the environment, are taken into consideration to fi gure 
out the paleo-environmental conditions. The enriched 
elements are retained within minerals or absorbed in 
organic material that formed in water at the immediate 
vicinity and are incorporated into authigenic minerals 
during or after the sedimentation (Cody, 1971).

In this study, all the samples evaluated are organic-
rich oil shales. Major, trace elements and average 
concentrations of ÇFOS samples were computed 
(Tables 3 and 4). 

4.3. Element Enrichments 

Element enrichment of ÇFOS samples were 
computed on the basis of average shale values 
(Turekian and Wedepohl, 1961) using the equation:

 [EFelement X = (X/Al)sample / (X/Al)standard] (Brumsack, 
2006). 

Values >1 represent element enrichment whilst 
those <1 element depletion (Table 5). Results of 
calculations reveal that Si, Pb, U and As elements 
in almost all the samples show enrichment. It is 
noticeable that uranium appears enriched in all the 
elements with an enrichment factor varying from 1.19 
to 153.7 (Table 5).

4.4. Paleo-environmental Conditions

The paleo-environmental conditions exert a great 
control on the preservation of organic matter (Li et 

al., 2018). Some redox-sensitive elements are used 
for determining the paleo-environmental conditions. 
In this study, some element ratios such as V/Cr, V/
(V+Ni), U/Th, δU[dU=2U/(U+Th/3)] and authigenic 
uranium (AU=U-Th/3) were used to investigate the 
paleo-environmental conditions. V/Cr ratios > 4.25 are 
indicative of strong reducing conditions, those between 
2 and 4.25 depict moderate reducing conditions and 
V/Cr ratios < 2 show oxidative conditions (Teng et 
al., 2004). V/(V+Ni) ratios > 0.5 are indicative of 
reducing conditions but ratios lower than this value 
depict oxidative conditions (Tribovillard et al., 2006). 
U/Th ratios > 1.25 are indicative of strong reducing 
conditions, those between 0.75 and 1.25 depict 
moderate reducing but ratios lower than this value 
represent oxidation (Ernst, 1970; Jones and Manning, 
1994). δU values < 1 indicate oxidation and those > 
1 depict reducing conditions (Zhao et al., 2016). AU 
values > 12 ppm are indicative of strong reducing 
conditions, those between 5-12 ppm moderate 
reducing conditions and values < 5 ppm represent 
oxidation (Deng and Qian, 1993; Teng et al., 2005).

Paleo-environmental assessment for ÇFOS 
samples based on these parameters are listed in table 
6. The average V/Cr, V/(V+ Ni), U/Th, δU and AU 
values of ÇFOS samples are 3.32, 0.89, 0.61, 1.10 and 
34.86, respectively (Table 6). Results of assessments 
and depth-dependent changes of V/Cr and U/Th reveal 
variable sedimentation processes and strong reducing 
to oxidative conditions (Figures 5 and 6).

4.5. Paleo-salinity

The Sr/Ba ratio is used to assess the paleo-salinity 
in the depositional environment. According to Wang 
and Wu (1983), Sr/Ba ratio> 1 is indicative of seawater 
infl uence, those between 1 and 0.6 depict brackish 
water and ratios < 0.6 represent freshwater conditions. 
The Sr/Ba ratios of ÇFOS samples are between 0.05 
and 1.27 with a basin average of 0.57. These values 
indicate that the basin was mostly supplied with 
freshwater which was occasionally replaced by saline 
and brackish water (Table 6).

Table 3- Average main element contents (in %) of the ÇFOS samples from Sorgun Basin.

Sample SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO Cr2O3

C avr (n=10) 42.06 20.42 4.18 0.46 1.13 0.17 2.02 0.51 0.06 0.06 0.003

YC avr (n=9) 46.38 22.23 6.25 0.93 0.66 0.19 2.42 0.48 0.10 0.12 0.005

SJ avr (n=10) 59.94 13.72 4.63 1.28 4.73 1.14 3.91 0.52 0.10 0.06 0.005

ÇFOS Average 49.46 18.79 5.02 0.89 2.17 0.50 2.78 0.50 0.08 0.08 0.004
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Figure 6- According to U/Th ratios,  Depth-dependent redox changes of ÇFPS.

Figure 5- According to V / Cr ratios,  Depth-dependent redox changes of ÇFOS.
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4.6. Paleo-climate

The climate generally affects mineral alteration, 
transport and source rock chemistry (Zhang et al., 
2011).Thus, the Chemical Index of Alteration (CIA) 
may be modifi ed by paleo-climate conditions (Bai et 
al., 2015). The CIA is computed from the equation 
CIA=100x[Al2O3/(Al2O3+CaO*+Na2O+K2O)] (Cox 
et al., 1995). 

CIA values between 50 and 65 refl ect cold and 
dry climate conditions during sedimentation. The 
values between 65 and 85 are indicative of a warm 
and humid climate regime. If CIA is in the range of 
85 to 100, the climate is hot and humid. CIA values of 
ÇFOS samples vary from 32.98 to 96.55 and the basin 
average is 78.48 (Table 6). These values show that 
the paleo-climatic conditions change from cold to dry 
and hot to humid conditions from time to time, but the 
environment may have been generally hot and humid.

The Sr/Cu ratios are also informative for paleo-
climate conditions. Sr/Cu ratios of 1.3 to 5.0 refl ect 
hot and humid climate regime whilst ratios >5 are 
indicative of dry and hot conditions (Liang et al., 2015).
The Sr/Cu values of ÇFOS samples vary from 3.46 
to 114.04 and basin average is 20.87. These fi ndings 
imply paleo-climate conditions show dry and hot and 
occasionally hot-humid environment (Table 6).

4.7. Hydrothermal Depositional Conditions 

Sediments associated with hydrothermal fl uids 
are called hydrothermal deposits (Zhong et al., 
2015). Hydrothermal fl uids exert a great control on 
trace element concentrations and the abundance of 
organic material accumulated in sedimentary rocks 
(Chu et al., 2016). The Fe/Ti and (Fe+Mn)/Ti ratios 
refl ect a hydrothermal contribution to the sediments 
(Li et al., 2018). Fe/Ti ratios >20 and (Fe+Mn)/Ti 
ratios of 20±5 show hydrothermal interaction with 

Table 6- The parameters characterizing the paleo-depositional environment of the ÇFOS samples.

Sample V/Cr V/(V +Ni) U/Th δU AU Sr/Ba CIA Sr/Cu Fe/Ti  (Fe+ Mn)/Ti Zr/Rb

C5 2.30 0.90 0.38 1.07 2.07 0.42 75.66 18.44 6.43 6.65 1.85
C8 4.46 0.87 0.54 1.23 6.07 0.63 58.84 22.34 24.97 25.82 1.54
C10 2.92 0.84 0.41 1.10 3.53 0.59 88.06 8.52 14.94 15.05 1.08
C12 3.25 0.89 0.28 0.91 -2.73 0.48 87.88 11.87 11.58 12.08 1.11
C19 2.75 0.89 0.24 0.83 -5.53 0.45 87.99 11.80 7.96 8.09 1.28
C22 2.25 0.88 0.28 0.92 -2.53 0.32 84.30 14.76 5.52 5.54 2.53
C28 4.46 0.97 0.65 1.32 35.00 0.87 94.70 6.96 3.43 3.45 0.72
C29 6.92 0.94 3.69 1.83 224.23 0.05 96.55 15.45 48.32 48.42 1.00
C32 3.62 0.95 0.41 1.10 4.40 0.97 93.34 18.29 9.36 9.39 1.05
C33b 6.31 0.95 0.18 0.69 -18.47 1.00 95.28 8.81 4.76 4.78 0.63
YC2 6.54 0.95 0.29 0.92 -4.17 0.69 94.88 5.04 12.92 12.94 0.65
YC5 2.96 0.91 0.22 0.80 -5.47 0.47 86.07 12.94 22.84 23.91 1.37
YC6 3.47 0.88 0.31 0.96 -1.47 0.45 88.79 9.83 7.75 7.94 1.18
YC7 4.19 0.89 0.31 0.96 -1.27 0.48 87.73 8.86 10.68 10.75 1.21
YC10 2.80 0.87 0.25 0.86 -2.90 0.46 88.61 3.46 14.00 14.19 0.61
YC12 4.28 0.90 0.25 0.85 -3.27 0.54 87.34 8.30 21.19 21.52 0.65
YC13 3.36 0.91 0.27 0.89 -3.07 0.53 88.46 5.62 18.15 18.63 0.61
YC14 3.05 0.91 0.26 0.88 -2.63 0.52 85.97 5.49 12.53 12.82 0.65
YC15 2.59 0.87 0.91 1.46 19.67 0.54 87.33 4.84 17.73 17.81 0.58
SJ2 1.15 0.76 0.23 0.82 -2.27 0.45 49.55 35.32 8.60 8.77 1.34
SJ4 2.83 0.87 0.97 1.49 35.33 0.96 32.98 37.38 20.16 21.18 1.64
SJ6 1.71 0.84 2.67 1.78 72.30 0.47 56.88 22.33 9.79 9.96 1.10
SJ8 1.19 0.89 0.30 0.95 -0.83 1.27 34.98 114.04 9.68 10.01 1.75
SJ10 2.48 0.81 1.33 1.60 28.57 0.68 80.30 9.71 16.67 16.72 0.76
SJ12 2.53 0.89 1.97 634.80 0.63 80.35 9.10 8.41 8.43 1.06
SJ14 3.14 0.92 0.90 1.46 10.07 0.42 70.16 66.42 4.97 5.00 1.08
SJ16 2.63 0.94 0.18 0.69 -3.70 0.51 74.64 24.02 12.62 12.66 1.40
SJ19 2.57 0.89 0.29 0.93 -1.37 0.38 70.51 33.06 7.38 7.43 1.06
SJ22 3.62 0.92 0.18 0.71 -3.50 0.40 67.92 52.12 8.58 8.63 1.15
ÇFOS 
Average

3.32 0.89 0.61 1.10 34.86 0.57 78.48 20.87 13.17 13.40 1.13
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the sediments (Boström,1983). Fe/Ti and (Fe+Mn)/
Ti ratios of ÇFOS samplesreveal that hydrothermal 
fl uids occasionally contributed to element enrichment 
during sedimentation (Table 6).

4.8. Paleo-hydrodynamics 

Zircon is typically deposited in terrestrial and 
shallow marine environments. Due to its active 
chemical properties, Rb is likely transported and 
accumulated in deep water (Teng et al., 2005). 
Therefore, Zr/Rb can be used for the assessment of 
changes in water depth. Lower Zr/Rb ratios are a result 
of deeper sedimentary water circulation and weaker 
hydrodynamic forces. It is suggested that Zr/Rb ratio 
of around 0.92 represents weak hydrodynamic forces 
whilst higher ratios from 1.25 to 4.76 are indicative 

of an environment with strong paleo-hydrodynamic 
forces (Teng, 2004; Zhao et al., 2016). The Zr/Rb 
ratios of ÇFOS samples vary from 0.58 to 2.53 and 
basin average is 1.13. These values imply that both 
weak and strong hydrodynamic prevailed from time to 
time during the sedimentation in the basin (Table 6).

4.9. Factors Controlling the Paleo-environmental 
Conditions During the Total Organic Carbon 
(TOC) in Oil Shales 

Paleo-environmental data (V/Cr, V/(V+Ni), U/Th, 
δU, authigenic uranium (AU), Sr/Ba, CIA, Sr/Cu, Fe/
Ti, (Fe+Mn)/Ti and Zr/Rb ratios) of the ÇFOS samples 
were correlated on an individual basis with the total 
organic carbon (TOC) contents of oil shales (Figure 
7a-k). Samples collected from different locations and 

Figure 7- Correlation diagrams of TOC (%) versus parameters of the depositionalpaleo-environment: (a) V/Cr, b) V/(V + Ni), c) δU, d) 
U/Th, e) Authigenic Uranium (AU), f) Sr/Ba ratios, g) Chemical Index of Alteration (CIA), h) Sr/Cu, i) Fe/Ti, j) (Fe + Mn)/Ti 
and, k) Zr/Rb of ÇFOS samples (Li et al., 2018).



 Bull. Min. Res. Exp. (2019)  158: 251-263

260

depths are differently correlated with TOC. Figure 7 
reveals that V/Cr (a), CIA (g), Sr/Ba (f), Fe/Ti (i) and 
(Fe+Mn)/Ti (j) ratios have positive correlation with 
TOC. The data shows that element characteristics of 
ÇFOS samples are consistent with the preservation of 
organic material and high reducing conditions.

5. Conclusions

In this study the conditions dominating during 
the formation of the oil shales hosted in the Çeltek 
formation (ÇFOS), are assessed. The samples have 
TOC values varying from 1.97 to 16.17 wt% (average 
6.30 wt%) revealing a very good source rock. The 
Tmax values indicate that in respect of the oil window 
the samples are at immature-early mature stage. 
Considering the average values of the world shales 
provided by Turekian and Wedepohl (1961), Si, Pb, 

U and As reveal enrichment at all sampling locations. 
Under oxic-suboxic conditions uranium exists as 
soluble U6+ which necessitates the restriction of 
uranium enrichment to oxic environments. However, 
as shown from Figure 6, high uranium enrichment is 
consistent with strong reducing conditions.

Geochemical data of the ÇFOS samples (e.g. V/Cr, 
V/(V+Ni), U/Th, δU and AU (authigenic uranium)) 
indicate that the oil shales were deposited under 
variable paleo-environmental conditions. The Sr/Ba 
ratios point to deposition in a freshwater environment. 
The paleo-climatic data of ÇFOS samples show 
that when the chemical change index (CIA) and Sr 
/ Cu ratios are evaluated, there are sedimentation 
environments ranging from dry-hot climate to hot-
humid climate. Chemical weathering typically 
increases as temperatures rise and rain falls, which 
means rocks in hot and wet climates experience faster 

Figure 7- continued.
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rates of chemical weathering than do rocks in cold, 
dry climates. The Fe/Ti and (Fe+Mn)/Ti ratios refl ect 
hydrothermal contribution during the sedimentation 
of oil shales. According to the Zr/Rb ratios, weak 
paleo-hydrodynamics prevailed during deposition. 
The relations between TOC and redox element ratios 
indicate that the paleo-environmental conditions 
exerted a great control on the deposition of organic 
matter. The studied oil shale samples point to variable 
redox conditions and therefore, water chemistry, 
environment-climate conditions and organic 
productivity on the lake surface must have also varied. 

The paleo-climatic data of ÇFOS samples show 
that when the chemical change index (CIA) and Sr 
/ Cu ratios are evaluated, there is precipitation from 
dry-hot environments to hot-humid environments.
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