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Distinguishability of a source function in a time
fractional inhomogeneous parabolic equation with

Robin boundary condition

Ebru Ozbilge∗† and Ali Demir‡

Abstract

This article deals with the mathematical analysis of the inverse problem
of identifying the distinguishability of input-output mappings in the
linear time fractional inhomogeneous parabolic equation Dαt u(x, t) =
(k(x)ux)x + F (x, t) 0 < α ≤ 1, with Robin boundary conditions
u(0, t) = ψ0(t), ux(1, t) = γ(u(1, t) − ψ1(t)). By de�ning the input-
output mappings Φ[·] : K→ C1[0, T ] and Ψ[·] : K→ C[0, T ] the inverse
problem is reduced to the problem of their invertibility. Hence, the main
purpose of this study is to investigate the distinguishability of the input-
output mappings Φ[·] and Ψ[·]. Moreover, the measured output data
f(t) and h(t) can be determined analytically by a series representation,
which implies that the input-output mappings Φ[·] : K→ C1[0, T ] and
Ψ[·] : K→ C[0, T ] can be described explicitly.
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1. Introduction

The inverse problem of unknown source function in a linear inhomogeneous parabolic
equation by using overmeasured data has generated an increasing amount of interest from
engineers and scientist during the last few decades. This kind of problems play a crucial
role in engineering, physics and applied mathematics. The problem of recovering un-
known source function in the mathematical model of a physical phenomena is frequently
encountered.
Intensive study has been carried out on this kind of problem, and various inverse problems
and many numerical methods developed [1]-[3], [8]-[14] and [18]-[21].
In papers [29]-[31] a coupled method for inverse source problem of spatial fractional
anomalous di�usion equations, a boundary-type collocation method for inverse Cauchy
inhomogeneous potential problems were considered. Moreover, inverse problems for a
time fractional parabolic equations with various boundary conditions has been studied
by Ozbilge and Demir [15],[24]-[26].
The existence and uniqueness of solutions for fractional di�erential equations with non-
local and integral boundary conditions have been studied by Ashyralyev and Sharifov
[7]. Initial-boundary value problems for the one dimensional time fractional di�usion
equation was studied by Amanov and Ashyralyev in [1], �nite di�erence method for frac-
tional parabolic equations with Neumann boundary conditions was studied by Ashyralyev
and Cakir in [4], numerical solution of fractional Schrodinger di�erential equation with
Dirichlet boundary condition was studied by Ashyralyev and Hicdurmaz in [6]. Moreover,
Ashyralyev and Dal studied �nite di�erence methods and iteration methods for fractional
hyperbolic partial equations with Neumann condition in [5]. Second order implicit �nite
di�erence schemes have been applied to the right-hand side of the identi�cation problem
by Erdogan and Ashyralyev [17].
Fractional di�erential equations are generalizations of ordinary and partial di�erential
equations to an arbitrary fractional order. By linear time-fractional parabolic equation,
we mean certain parabolic-like partial di�erential equation governed by master equations
containing fractional derivatives in time. The research areas of fractional di�erential
equations range from the theoretical to the applied aspects.
The main goal of this study is to investigate the distinguishability of the unknown source
function via input-output mappings in a one dimensional time fractional inhomogeneous
parabolic equation. We �rst obtain the unique solution of this problem using Fourier
method of separation of variables with respect to the eigenfunctions of a corresponding
Sturm-Liouville eigenvalue problem under certain conditions [15]. As the next step, the
noisy free measured output data f(t) and h(t) are used to introduce the input-output
mappings Φ[·] : K → C1[0, T ] and Ψ[·] : K → C[0, T ] where K represents the set of
admissible source functions. Finally we investigate the distinguishability of the unknown
source function F (x, t) via the above input-output mappings Φ[·] and Ψ[·].
Consider now the following initial boundary value problem:

(1.1)


Dα
t u(x, t) = (k(x)ux)x + F (x, t) , 0 < α ≤ 1 , (x, t) ∈ ΩT ,

u(x, 0) = g(x), 0 < x < 1,
u(0, t) = ψ0(t), ux(1, t) = γ(u(1, t)− ψ1(t)), 0 < t < T,

where ΩT = {(x, t) ∈ R2 : 0 < x < 1, 0 < t ≤ T} and the fractional derivative Dα
t u(x, t)

is de�ned in the Caputo-Dzherbashyan sense Dα
t u(x, t) = (I1−αu′)(t), 0 < α ≤ 1, Iα

being the Riemann-Liouville fractional integral

(Iαf)(t) =

{ 1
Γ(α)

∫
(t− τ)α−1f(τ)dτ , 0 < α ≤ 1

f(t), α = 0.
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The left and right boundary value functions ψ0(t) and ψ1(t) belong to C[0, T ]. The func-
tions 0 < c0 ≤ k(x) < c1 and g(x) satisfy the following conditions:
(C1) k(x) ∈ C1[0, 1]
(C2) g(x) ∈ C2[0, 1], g(0) = ψ0(0), g′(1) = γ(g(1)− ψ1(0)).
Under these conditions, the initial boundary value problem (1.1) has the unique solution

u(x, t) de�ned in the domain ΩT = {(x, t) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ t ≤ T} which

belongs to the space C(ΩT ) ∩W 1
t (0, T ] ∩ C2

x(0, 1) where C(ΩT ) = {f(·, ·) : ΩT → R :
f is continuous}, W 1

t (0, T ] = {f(x, ·) : (0, T ] → R : f(x, ·), ft(x, ·) ∈ L2[0, T ]} and
C2
x(0, 1) = {f(·, t) : (0, 1)→ R : f(·, t), fx(·, t), fxx(·, t) are continuous}. Moreover, it

satis�es the equation, initial and boundary conditions. The space W 1
t (0, T ] contains the

functions f ∈ C1(0, T ] such that f ′(x) ∈ L(0, T ).
This kind of problems play a crucial role in engineering, physics and applied mathematics
since it is used successfully to model complex phenomenian various �elds such as �uid
mechanics, viscoelasticity, physics, chemistry and engineering.

Consider the inverse problem of determining the distinguishability of the unknown source
function F (x, t) from the mixed type of measured output data at the boundaries x = 0
and x = 1:

Φ[F ] = k(x)ux(x, t;F )|x=0, F ∈ K ⊆ C1(ΩT )

Ψ[F ] = u(x, t;F )|x=1, F ∈ K ⊆ C(ΩT ).

Then, the inverse problem with the measured output data f(t) and h(t) can be formulated
as follows:

Φ[F ] = f, f ∈ C1(0, T ]

Ψ[F ] = h, h ∈ C(0, T ].

These formulations reduce the inverse problem of determining unknown source function
F (x, t) to the problem of invertibility of the input-output mappings Φ[·] and Ψ[·]. Hence
this leads us to study the distinguishability of the source function via the above input-
output mappings. We say that the mappings Φ[·] : K→ C1[0, T ] and Ψ[·] : K→ C[0, T ]
have the distinguishability property if Φ[F1] 6= Φ[F2] implies F1(x, t) 6= F2(x, t) and
Ψ[F1] 6= Ψ[F2] implies F1(x, t) 6= F2(x, t). This, in particular, means injectivity of the
inverse mappings Φ−1 and Ψ−1. In this paper, measured output data of Neumann type
at the boundary x = 0 and measured output data of Dirichlet type at the boundary
x = 1 are used in the investigation of the distinguishability of the unknown source func-
tion F (x, t) via the above input-output mappings. As well as this, analytical results are
obtained for the measured output data.

The paper is organized as follows. In section 2, an analysis of the inverse problem
with the single measured output data f(t) at the boundary x = 0 is given. An analysis
of the inverse problem with the single measured output data h(t) at the boundary x = 1
is considered in section 3. Finally, some concluding remarks are given in the last section.

2. An analysis of the inverse problem with given measured data

f(t)

Consider now the inverse problem with one measured output data f(t) at x = 0. In
order to formulate the solution of the parabolic problem (1.1) by using Fourier method of
the separation of variables, let us �rst introduce an auxiliary function v(x, t) as follows:

v(x, t) = u(x, t)− ψ0(t)− γ(u(1, t)− ψ1(t))x, x ∈ [0, 1],
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by which we transform the problem (1.1) into a problem with homogeneous boundary
conditions. Hence the initial boundary value problem (1.1) can be rewritten in terms of
v(x, t) in the following form:

(2.1)


Dα
t v(x, t)− vxx(x, t) = ((k(x)− 1)vx(x, t))x + k′(x)γ(u(1, t)− ψ1(t))
−Dα

t ψ0(t)−Dα
t γ(u(1, t)− ψ1(t))x+ F (x, t),

v(x, 0) = g(x)− ψ0(0)− γ(u(1, 0)− ψ1(0))x, 0 < x < 1,
v(0, t) = 0, vx(1, t) = 0, 0 < t < T.

The unique solution of the initial-boundary value problem can be represented in the
following form [15]:

v(x, t) =

∞∑
n=1

< ζ(θ), φn(θ) > Eα,1(−λntα)φn(x)

+

∞∑
n=1

(∫ t

0

sα−1Eα,α(−λnsα)(< ξ(θ, t− s), φn(θ) > + < F (θ, t− s), φn(θ) >)ds

)
φn(x)

where

ζ(x) = g(x)− ψ0(0)− γ(u(1, 0)− ψ1(0))x,

ξ(x, t) = ((k(x)−1)vx(x, t))x+k′(x)γ(u(1, t)−ψ1(t))−Dα
t ψ0(t)−Dα

t γ(u(1, t)−ψ1(t))x,

Moreover < ζ(θ), φn(θ) >=
∫ 1

0
φn(θ)ζ(θ)dθ , Eα,β being the generalized Mittag-Le�er

function de�ned by

Eα,β(z) =

∞∑
n=0

zn

Γ(βn+ α)
.

Assume that φn(x) is the solution of the following Sturm-Liouville problem:{
−φxx(x) = λφ(x), 0 < x < 1,
φ(0) = 0, φx(1) = 0, 0 < t < T,

The Neumann type of measured output data at the boundary x = 0 in terms of v(x, t)
can be written in the following form:

k(0)(vx(0, t) + γ(u(1, t)− ψ1(t)) = f(t), t ∈ (0, T ](2.2)

In order to arrange the above solution, let us de�ne the followings:

zn(t) =< ζ(θ), φn(θ) > Eα,1(−λntα),

(2.3) wn(t) =

∫ t

0

sα−1Eα,α(−λnsα) < ξ(θ, t− s), φn(θ) > ds,

yn(t) =

∫ t

0

sα−1Eα,α(−λnsα) < F (θ, t− s), φn(θ) > ds.

The solution in terms of zn(t), wn(t) and yn(t) can then be rewritten in the following
form:

v(x, t) =

∞∑
n=1

zn(t)φn(x) +

∞∑
n=1

wn(t)φn(x) +

∞∑
n=1

yn(t)φn(x).

Di�erentiating both sides of the above identity with respect to x and substituting x = 0
yields:

vx(0, t) =

∞∑
n=1

zn(t)φ′n(0) +
∞∑
n=1

wn(t)φ′n(0) +
∞∑
n=1

yn(t)φ′n(0).
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Taking into account the over-measured data k(0)(vx(0, t) + γ(u(1, t)− ψ1(t)) = f(t)

f(t) = k(0)(γ(u(1, t)− ψ1(t)) +

∞∑
n=1

zn(t)φ′n(0) +

∞∑
n=1

wn(t)φ′n(0)

(2.4) +

∞∑
n=1

yn(t)φ′n(0)),

is obtained, which implies that f(t) can be determined analytically. The right-hand side
of identity (2.4) de�nes the input-output mapping Φ[F ] on the set of admissible source
function K:

Φ[F ](t) := k(0)(γ(u(1, t)− ψ1(t)) +

∞∑
n=1

zn(t)φ′n(0) +

∞∑
n=1

wn(t)φ′n(0)

(2.5) +

∞∑
n=1

yn(t)φ′n(0)), ∀t ∈ [0, T ].

The following lemma implies the relation between the source functions F1(x, t), F2(x, t) ∈
K at x = 0 and the corresponding outputs fj(t) := k(0)ux(0, t;Fj), j = 1, 2.

2.1. Lemma. Let υ1(x, t) = υ(x, t;F1) and υ2(x, t) = υ(x, t;F2) be the solutions of the
direct problem (2.1), corresponding to the admissible source functions F1(x, t), F2(x, t) ∈
K. If fj(t) = k(0)(vx(0, t;Fj) + γ(u(1, t;Fj) − ψ1(t)), j = 1, 2, are the corresponding
outputs. The outputs fj(t), j = 1, 2, satisfy the following integral identity:

∆f(t) = k(0)

(
∞∑
n=1

∆zn(t)φ′n(0) +

∞∑
n=1

∆wn(t)φ′n(0) +

∞∑
n=1

∆yn(t)φ′n(0) + γ∆un(1, t)

)
,

for each t ∈ (0, T ] where ∆f(t) = f1(t)−f2(t), ∆wn(t) = w1
n(t)−w2

n(t), ∆zn(t) = z1
n(t)−

z2
n(t), ∆F (x, t) = F1(x, t)−F2(x, t) and ∆yn(t) = y1

n(t)−y2
n(t) =

∫ t
0
sα−1Eα,α(−λnsα) <

∆F (θ, t− s), φn(θ) > ds.

Proof. By using identity (2.4), the measured output data fj(t) := k(0)(vjx(0, t)+γ(u(1, t)−
ψ1(t)), j = 1, 2 can be written as follows:

f1(t) = k(0)

(
γ(u1

n(1, t;F1)− ψ1(t)) +

∞∑
n=1

z1
n(t)φ′n(0) +

∞∑
n=1

w1
n(t)φ′n(0) +

∞∑
n=1

y1
n(t)φ′n(0)

)
,

f2(t) = k(0)

(
γ(u2

n(1, t;F2)− ψ1(t)) +

∞∑
n=1

z2
n(t)φ′n(0) +

∞∑
n=1

w2
n(t)φ′n(0) +

∞∑
n=1

y2
n(t)φ′n(0)

)
respectively. Hence the di�erence of these formulas implies the desired result. �

The lemma and the de�nitions enable us to reach the following conclusion:

2.2. Corollary. Let the conditions of Lemma 2.1 hold. If in addition

< F1(x, t)− F2(x, t), φn(x) >= 0,

and

∆u(1, t) = u1
n(x, t;F1)− u2

n(x, t;F2) = 0,

∀t ∈ (0, T ], ∀n = 0, 1, ... hold, then f1(t) = f2(t), ∀t ∈ (0, T ].
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Note that F1(x, t) 6= F2(x, t) implies < F1(x, t) − F2(x, t), φn(x) >6= 0 and ∆yn(t) 6= 0,
∀n = 0, 1, 2, .... Moreover ∆u(1, t) 6= 0 implies that ∆zn(t) 6= 0 and ∆wn(t) 6= 0,
∀n = 0, 1, 2, .... Hence by Lemma 2.1 we conclude that f1(t) 6= f2(t) ∀t ∈ (0, T ]. More-
over, it leads us to the following important consequence that the input-output mapping
Φ[F ] is distinguishable, i.e., F1(x, t) 6= F2(x, t) implies Φ[F1] 6= Φ[F2].

2.3. Theorem. Let conditions (C1),(C2) hold. Assume that Φ[·] : K → C1[0, T ] is
the input-output mapping de�ned by (2.5) and corresponding to the measured output
f(t) := k(0)ux(0, t). In this case the mapping Φ[F ] has the distinguishability property
in the class of admissible parameters K, i.e.,

Φ[F1] 6= Φ[F2] ∀F1, F2 ∈ K, F1(x, t) 6= F2(x, t).

3. An analysis of the inverse problem with given measured data

h(t)

Consider now the inverse problem with one measured output data h(t) at x = 1.
Taking into account the over-measured data h(t) = (v(1, t) + ψ0(t) + γ(u(1, t)− ψ1(t))

h(t) = (ψ0(t) + γ(u(1, t)− ψ1(t)) +

∞∑
n=1

zn(t)φn(1)

(3.1) +

∞∑
n=1

wn(t)φn(1) +

∞∑
n=1

yn(t)φn(1)),

is obtained which implies that h(t) can be determined analytically. The right-hand side
of identity (3.1) de�nes the input-output mapping Ψ[F ] on the set of admissible source
functions K:

Ψ[F ](t) := (ψ0(t) + γ(u(1, t)− ψ1(t)) +

∞∑
n=1

zn(t)φn(1)

(3.2) +

∞∑
n=1

wn(t)φn(1) +

∞∑
n=1

yn(t)φn(1)).

The following lemma implies the relation between the parameters F1(x, t), F2(x, t) ∈ K

at x = 1 and the corresponding outputs hj(t) := u(1, t;Fj), j = 1, 2.

3.1. Lemma. Let υ1(x, t) = υ(x, t;F1) and υ2(x, t) = υ(x, t;F2) be the solutions of the
direct problem (2.1), corresponding to the admissible source functions F1(x, t), F2(x, t) ∈
K. If hj(t) = v(1, t;Fj) + ψ0(t) + γ(u(1, t;Fj) − ψ1(t)), j = 1, 2, are the corresponding
outputs. The outputs hj(t), j = 1, 2, satisfy the following integral identity:

∆h(t) =

(
∞∑
n=1

∆zn(t)φn(1) +

∞∑
n=1

∆wn(t)φn(1) +

∞∑
n=1

∆yn(t)φn(1) + γ∆un(1, t)

)
,

for each t ∈ (0, T ] where ∆h(t) = h1(t)−h2(t), ∆wn(t) = w1
n(t)−w2

n(t), ∆zn(t) = z1
n(t)−

z2
n(t), ∆F (x, t) = F1(x, t)−F2(x, t) and ∆yn(t) = y1

n(t)−y2
n(t) =

∫ t
0
sα−1Eα,α(−λnsα) <

∆F (θ, t− s), φn(θ) > ds.

Proof. By using identity (3.1), the measured output data hj(t) := v(1, t;Fj) + ψ0(t) +
γ(u(1, t;Fj)− ψ1(t))x, j = 1, 2 can be written as follows:

h1(t) = ψ0(t)+γ(u1
n(1, t;F1)−ψ1(t))+

∞∑
n=1

z1
n(t)φn(1)+

∞∑
n=1

w1
n(t)φn(1)+

∞∑
n=1

y1
n(t)φn(1),
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h2(t) = ψ0(t)+γ(u2
n(1, t;F2)−ψ1(t))+

∞∑
n=1

z2
n(t)φn(1)+

∞∑
n=1

w2
n(t)φn(1)+

∞∑
n=1

y2
n(t)φn(1),

respectively. Hence the di�erence of these formulas implies the desired result. �

3.2. Corollary. Let the conditions of Lemma 3.1 hold. If in addition

< F1(x, t)− F2(x, t), φn(x) >= 0,

and

∆u(1, t) = u1
n(x, t;F1)− u2

n(x, t;F2) = 0,

∀t ∈ (0, T ], ∀n = 0, 1, ... hold, then h1(t) = h2(t), ∀t ∈ (0, T ].

Note that F1(x, t) 6= F2(x, t) implies < F1(x, t) − F2(x, t), φn(x) >6= 0 and ∆yn(t) 6= 0,
∀n = 0, 1, 2, .... Moreover ∆u(1, t) 6= 0 implies that ∆zn(t) 6= 0 and ∆wn(t) 6= 0,
∀n = 0, 1, 2, .... Hence by Lemma 3.1 we conclude that h1(t) 6= h2(t) ∀t ∈ (0, T ]. More-
over, it leads us to the following important consequence that the input-output mapping
Ψ[F ] is distinguishable, i.e., F1(x, t) 6= F2(x, t) implies Ψ[F1] 6= Ψ[F2].

3.3. Theorem. Let conditions (C1),(C2) hold. Assume that Ψ[·] : K → C[0, T ] is
the input-output mapping de�ned by (3.2) and corresponding to the measured output
h(t) := u(1, t;Fj), j1,2. In this case the mapping Ψ[F ] has the distinguishability property
in the class of admissible parameters K, i.e.,

Ψ[F1] 6= Ψ[F2] ∀F1, F2 ∈ K, implies F1(x, t) 6= F2(x, t).

4. Conclusion

The aim of this study was to investigate the distinguishability properties of the input-
output mappings Φ[·] : K → C1[0, T ] and Ψ[·] : K → C[0, T ], which are determined by
the measured output data at x = 0 and x = 1, respectively. In this study, we conclude
that the distinguishability of the input-output mappings hold which implies the injectiv-
ity of the inverse mappings Φ−1 and Ψ−1. The measured output data f(t) and h(t) are
obtained analytically by a series representation, which leads to the explicit form of the
input-output mappings Φ[·] and Ψ[·]. This work advances our understanding of the use
of the Fourier method of separation of variables and the input-output mapping in the
investigation of inverse problems for fractional parabolic equations. The author plans to
consider various fractional inverse problems in future studies, since the method discussed
has a wide range of applications.
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