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Closure, interior and neighbourhood in a category

David Holgate∗† and Josef �lapal‡

Abstract

The natural correspondences in topology between closure, interior
and neighbourhood no longer hold in an abstract categorical setting
where subobject lattices are not necessarily Boolean algebras. We
analyse three canonical correspondences between closure, interior and
neighbourhood operators in a category endowed with a subobject
structure. While these correspondences coincide in general topology,
the analysis highlights subtle di�erences which distinguish di�erent
approaches taken in the literature.
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1. Introduction

The articles [9] and [10] spawned a programme of research into closure operators in
categories. Using the notion of closure operator � and later simply axiomatically treated
families of �closed� morphisms [7] � topological properties were studied in general cat-
egories. Purely categorical proofs were given for topological theorems with, perhaps
surprisingly, little recourse to the idempotence and/or additivity of the closure in ques-
tion. The books [11] and [2] provide surveys of this programme while [7] and references
therein give immediate access to the central articles.

Until more recently little had been done to consider the �dual� notion to closure,
namely interior, as primitive. For some time, the only article to explicitly consider
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interior operators for a number of years was [20]. This has since been followed by [3, 4, 16],
amongst others. While closure and interior may be �dual� at an intuitive level they only
characterise each other when the subobject lattices on which they operate are Boolean
algebras. (Or at least have an appropriate involution as noted in [20].)

Openness with respect to a closure operator is considered in [14]. There it is also
observed that a smooth transition between open and closed is only possible if the sub-
object lattices have appropriate complements. What is clearly evident in that article is
that morphisms which are continuous with respect to a closure operator are by no means
�continuous� with respect to the associated open subobjects. The fact that closure and in-
terior operators are required to act functorially, and not simply in the subobject lattices,
is what precludes an easy �duality� between the two.

More recently, in [12], [13] and [18], neighbourhoods with respect to a categorical clo-
sure operator were introduced and used to study topological properties. The principal
motivation being that neighbourhoods, as against closure operators, provide the appropri-
ate tool for introducing convergence in a category (a categorical approach to convergence
was discussed in [17]). Again their transition from closure to neighbourhood is made via
(pseudo)complements and many results rely on the existence of (pseudo)complements for
their validity.

In [15] and [19] neighbourhood operators are introduced as primitive and used to
then study compactness in particular. It is this introduction of a general neighbourhood
operator that motivated the current note to analyse more systematically how closure,
interior and neighbourhood operators interact, and to provide a framework within which
a number of existing investigations can be understood.

We observe that there is a one-one correspondence between neighbourhood and interior
operators and present three correspondences between interior (equivalently neighbour-
hood) and closure operators.

2. Preliminaries

Categorical terminology follows [1], while for closure operators we refer to [11] or [2].
We consider a category C and a �xed class M of C-monomorphisms. C is M-complete,
i.e. pullbacks of M-morphisms along arbitrary C-morphisms and arbitrary intersections
of M-morphisms exist and are again in M.

As a consequence, there is an (E,M) factorisation system for sinks (or co-cones) in C.
(Cf. [1] Chapter 15 for the dual results.) When (E,M) is restricted to morphisms in C,
we denote the resulting factorisation system by (E,M). This a�ords each f : X → Y a
unique factorisation f = m · e with e ∈ E and m ∈M.

X
f //

e
  @

@@
@@

@@
@ Y

•
m

??~~~~~~~~

For a given X ∈ C, subX := {m ∈M | codomain of m is X}. These �subobjects� are
ordered by n ≤ m ⇔ m · j = n for some j (necessarily in M). If n ≤ m and m ≤ n
then they are isomorphic. We do not distinguish between isomorphic subobjects, treating
subX as a lattice and writing m = n for isomorphic subobjects.

Our assumptions on M render subX to be a complete lattice for each X ∈ C. The
least element of subX is denoted by 0X and the greatest by 1X (which is the identity
arrow on X).

A subobject m∗ ∈ subX is the pseudocomplement of m ∈ subX if it holds that
n ≤ m∗ ⇔ n ∧m = 0X . If m

∗ exists, m is said to be pseudocomplemented.
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A complement of m ∈ subX is an m ∈ subX such that m∧m = 0X and m∨m = 1X .
If such an m exists then m is said to be complemented in subX.

Any morphism f : X → Y in C induces an image/pre-image adjunction

(2.1) subX
f(−)

⊥
//
subY .

f−1(−)

oo

For m ∈ subX, f(m) is the M-component of the (E,M) factorisation of f ·m, while for
n ∈ subY , f−1(n) is the pullback of n along f .

2.1. De�nition. A morphism f : X → Y re�ects 0 if f−1(0Y ) = 0X (equivalently
f(m) = 0Y ⇔ m = 0X).

We will on occasion �nd it useful to impose that E is stable under pullback along
M-morphisms. This is well known to be equivalent to the so-called Frobenius reciprocity
law holding, namely that given any f : X → Y and m ∈ subX, y ∈ subY ,

f(m ∧ f−1(n)) = f(m) ∧ n.

2.2. Proposition. Let E be stable under pullback along M-morphisms. A morphism
f : X → Y re�ects 0 if and only if f−1(−) preserves pseudocomplements.

Proof. Let f re�ect 0 and let n ∈ subY have pseudocomplement n∗. Observe that m ≤
f−1(n∗) ⇔ f(m) ≤ n∗ ⇔ f(m) ∧ n = 0Y ⇔ f(m ∧ f−1(n)) = 0Y ⇔ m ∧ f−1(n) = 0X ,
so f−1(n∗) = f−1(n)∗.

On the other hand if f−1(−) preserves pseudocomplements then f−1(0Y ) = f−1(1∗Y ) =
f−1(1Y )

∗ = 1∗X = 0X . �

Note that in particular if the subobject lattices are Boolean algebras then under the
conditions of the above proposition f−1(−) preserves complements.

We are interested in the interplay of three types of operators acting on the subobject
lattices.

2.3. De�nition. A closure operator c on C with respect to M is a family

{cX : subX → subX | X ∈ C}

of functions such that

(C1) m ≤ cX(m) for every m ∈ subX and X ∈ C,
(C2) m ≤ n⇒ cX(m) ≤ cX(n) for every m,n ∈ subX and X ∈ C,
(C3) every morphism f : X → Y in C is c-continuous, f(cX(m)) ≤ cY (f(m)) for every

m ∈ subX.

We extend the subobject ordering pointwise to closure operators, writing c ≤ c′ if
c(m) ≤ c′(m) for all m ∈M. (We will sometimes drop the subscript of cX if clarity does
not demand it.) The resulting ordered conglomerate of all closure operators on C with
respect to M will be denoted Cl(C,M).

2.4. De�nition. An interior operator i on C with respect to M is a family

{iX : subX → subX | X ∈ C}

of functions such that

(I1) iX(m) ≤ m for every m ∈ subX and X ∈ C,
(I2) m ≤ n⇒ iX(m) ≤ iX(n) for every m,n ∈ subX and X ∈ C,
(I3) every morphism f : X → Y in C is i-continuous, f−1(iY (m)) ≤ iX(f−1(m)) for

every m ∈ subY .
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As for closure, the subobject ordering is extended pointwise to interior operators, the
ordered conglomerate of all interior operators on C with respect to M being denoted
Int(C,M).

2.5. De�nition. A neighbourhood operator ν on C with respect to M is a family

{νX : subX → P(subX) | X ∈ C}

of functions such that νX(m) is a stack for each m and

(N1) n ∈ νX(m)⇒ m ≤ n for every m ∈ subX and X ∈ C,
(N2) m ≤ n⇒ νX(m) ⊇ νX(n) for every m,n ∈ subX and X ∈ C,
(N3) If G ⊆ subX and n ∈ νX(m) for all m ∈ G then n ∈ νX(

∨
G),

(N4) every morphism f : X → Y in C is ν-continuous, f−1(ν(m)) ⊆ ν(f−1(m)) for
every m ∈ subY .

Note that we introduce the convention f−1(ν(m)) = {f−1(n) | n ∈ ν(m)}. The fact
that we work with neighbourhoods of subspaces allows (N4) to be given in clear analogy
to (C3) and (I3). In point set topology when neighbourhoods of points are considered,
such an axiom remains hidden.

Neighbourhood operators are again ordered pointwise, ν ≤ ν′ if ν(m) ⊆ ν′(m) for all
m ∈ M. The ordered conglomerate of all neighbourhood operators on C with respect to
M is denoted Nbh(C,M).

For the rest of this section we will use the symbols c, i and ν to denote closure, interior
and neighbourhood operators respectively, without explicitly stating so.

Note that the image/preimage adjunction (2.1) allows continuity of f : X → Y (in the
presence of the other axioms) to be equivalently described for the respective operators
as follows:

(C3′) cX(f−1(n)) ≤ f−1(cY (n)) for every n ∈ subY ,
(I3′) f(m) ≤ iY (n)⇒ m ≤ iX(f−1(n)) for every n ∈ subY ,
(N3′) n ∈ νY (f(m))⇒ f−1(n) ∈ νX(m) for every m ∈ subX,
(N3′′) n ∈ νY (f(m))⇒ ∃p ∈ νX(m) with f(p) ≤ n for every m ∈ subX.

2.6. De�nition. A closure/interior/neighbourhood operator is grounded if

(C0) cX(0X) = 0X for all X ∈ C,
(I0) iX(1X) = 1X for all X ∈ C,
(N0) 1X ∈ νX(m) for all X ∈ C and m ∈ subX.

2.7. De�nition. These operators have naturally associated notions of closed or open
subobjects. A subobject m ∈ subX is termed

• c-closed if m = cX(m),
• i-open if m = iX(m),
• ν-open ifm ∈ νX(m), (i.e. if νX(m) =↑ m, the principal �lter in subX generated
by m).

The operator is idempotent if for every m ∈M,

• c(m) is c-closed,
• i(m) is i-open,
•

∨
{n | m ∈ ν(n)} is ν-open.

2.8. De�nition. Finally we term the operator additive if for any X ∈ C and m,n ∈
subX:

• cX(m ∨ n) = cX(m) ∨ cX(n),
• iX(m ∧ n) = iX(m) ∧ iX(n),
• νX(m) is a �lter.
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3. Interior and neighbourhood

3.1. De�nition. Let M
m→ X ∈M. For an interior operator i, put

νiX(m) := {n ∈ subX | m ≤ iX(n)}

and for a neighbourhood operator ν, put

iνX(m) :=
∨
{n ∈ subX | m ∈ νX(n)}.

3.2. Proposition. For an interior operator i and neighbourhood operator ν on C with
respect to M, the assignments

i 7→ νi and ν 7→ iν

de�ne an order preserving isomorphism between Int(C,M) and Nbh(C,M).

Proof. First we note that for anyM
m→ X ∈M, νiX(m) is clearly a stack, and furthermore:

(N1) m ≤ iX(n) ≤ n for all n ∈ νiX(m).
(N2) If m ≤ n, then n ≤ iX(p)⇒ m ≤ iX(p) and νiX(n) ⊆ νiX(m).
(N3) G ⊆ subX,m ≤ iX(n) for all m ∈ G⇒

∨
G ≤ iX(n)⇒ n ∈ νiX(

∨
G).

(N4) Let f : X → Y and n ∈ νiY (m). Then m ≤ iY (n) ⇒ f−1(m) ≤ f−1(iY (n)) ≤
iX(f−1(n)), so f−1(n) ∈ νiX(f−1(m)).

On the other hand given M
m→ X ∈M, we see that:

(I1) m ∈ νX(n)⇒ n ≤ m⇒ iνX(m) ≤ m.
(I2) If m ≤ n then m ∈ νX(p) ⇒ n ∈ νX(p) (since νX(p) is a stack) and hence

iνX(m) ≤ iνX(n).
(I3) Take f : X → Y and n ∈ subY . By (N3), n ∈ νY (i

ν
Y (n)). Then from (N4)

we have, f−1(n) ∈ νX(f−1(iνY (n))). So by the de�nition of iν , f−1(iνY (n)) ≤
iνX(f−1(n)).

It is clear that the assignments i 7→ νi and ν 7→ iν preserve order. To see that they

are mutually inverse we note that for M
m→ X ∈M:

(1) iν
i

X (m) =
∨
{n ∈ subX | m ∈ νiX(n)} =

∨
{n ∈ subX | n ≤ iX(m)} = iX(m).

(2) n ∈ νi
ν

X (m) ⇔ m ≤ iνX(n) ⇒ νX(iνX(n)) ⊆ νX(m). Thus since (as observed
above) n ∈ νX(iνX(n)), n ∈ νX(m). On the other hand, n ∈ νX(m) ⇒ m ≤
iνX(n)⇒ n ∈ νi

ν

X (m).

�

3.3. Remarks. A few immediate observations about the above equivalence.

(1) Evidently grounded operators coincide since a νX(m) is non-empty if and only
if 1X ∈ νX(m). It is also easy to see that i is additive precisely when νi is too.

(2) It is clear from the de�nition of iν that m = iν(m) ⇔ m ∈ ν(m). Restating
the de�nition of idempotence for neighbourhood operators, we have that ν is
idempotent if and only if iν(m) ∈ ν(iν(m)), that is if iν(m) = iν(iν(m)) for
every m ∈M.

(3) Because of (N2) and (N3) we have that for any m ∈ subX,
νX(iνX(m)) = νX(

∨
{n ∈ subX | m ∈ νX(n)})

=
⋂
{νX(n) | m ∈ νX(n)}.

(4) Note that if ν is idempotent then
⋂
{νX(n) | m ∈ νX(n)} is a principal �lter for

every m ∈M. This property does not characterise idempotence, however.
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4. From interior to closure

There are a number of candidates for de�ning closed subobjects relative to a given
interior or neighbourhood operator. All base their intuition on the associated notions in
topology and thus coincide when the subobject lattices are Boolean algebras. We begin
by considering three possibilities.

4.1. De�nition. Let i ∈ Int(C,M), X ∈ C and m ∈ subX. We say that m is:

(1) Ai-closed if iX(m ∨ n) ≤ m ∨ iX(n) for all n ∈ subX.
(2) Bi-closed if m ∨ n = 1X ⇒ m ∨ iX(n) = 1X for all n ∈ subX.
(3) Ci-closed if m is pseudocomplemented and m∗ = iX(m∗).

4.2. Proposition. Let i ∈ Int(C,M) and M
m→ X ∈M.

(1) If i is grounded, then m is Ai-closed ⇒ m is Bi-closed.
(2) If subX is a Boolean algebra, m is Bi-closed ⇔ m is Ci-closed.
(3) If i is additive and subX is a Boolean algebra, then m is Ci-closed ⇒ m is

Ai-closed.

Proof. (1) If i is grounded then 1X = m∨n = iX(m∨n) ≤ m∨iX(n)⇒ m∨iX(n) = 1X .
(2) If subX is a Boolean algebra, m∗ = m. If m is Bi-closed then m ∨m = 1X ⇒

m ∨ iX(m) = 1X ⇒ iX(m) ≥ m ⇒ m = iX(m). Conversely if m = iX(m) then
m ∨ n = 1X ⇒ m ≤ n⇒ m = iX(m) ≤ iX(n)⇒ m ∨ iX(n) = 1X .

(3) Assume that i is additive, subX is a Boolean algebra and m∗ = iX(m∗). Since we
are in a Boolean algebra, m∗ = m. For any n ∈ subX:

iX(m ∨ n) ∧m = iX(m ∨ n) ∧ iX(m)
= iX((m ∨ n) ∧m)
= iX(n ∧m)
= iX(n) ∧ iX(m)
= iX(n) ∧m

Thus for any n ∈ subX we conclude:
iX(m ∨ n) = iX(m ∨ n) ∧ (m ∨m)

= (iX(m ∨ n) ∧m) ∨ (iX(m ∨ n) ∧m)
≤ m ∨ (iX(n) ∧m)
= (m ∨ iX(n)) ∧ (m ∨m)
= m ∨ iX(n)

�

4.3. A standard technique for generating a closure operator from a class F ⊆ M is as
follows. (Cf. [5] or [6] for a proof.)

(1) Form the �stabilisation� F∗ = {f−1(m) | m ∈ F, cod(m) = cod(f)} of F. Clearly
F ⊆ F∗ ⊆M.

(2) For M
m→ X ∈M the assignment

(4.1) cX(m) =
∧
{n ∈ F

∗ | m ≤ n}

de�nes an idempotent closure operator c ∈ Cl(X,M).
It is easy to verify that every m ∈ F is c-closed and that c is the largest

closure operator on C with respect to M for which this is the case.

4.4. De�nition. Let i ∈ Int(C,M). Denote by αi, βi and γi the closure operators
obtained by performing the construction in (4.1) for F the class of Ai-closed, Bi-closed
and Ci-closed M-morphisms, respectively.
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The assignments i 7→ βi and i 7→ γi de�ne order reversing maps from Int(C,M) to
Cl(C,M). The assignment i 7→ αi does not respect order in general. (Assuming C-
morphisms re�ect 0, the interior operators i1(m) = 0 and i2(m) = m for all m ∈M both
induce the closure operator αi(m) = m for all m ∈M.)

Of course, if the class F is already pullback stable, then the construction in (4.1)
simply amounts to cX(m) =

∧
{n | n is closed and m ≤ n} for an appropriate notion of

�closed� (i.e. being in F). The following proposition points out that this will be the case
in a number of instances.

4.5. Proposition. Let i ∈ Int(C,M). If (E,M) is stable and every f ∈ MorC re�ects 0,
then Ci-closed morphisms are closed under pullback.

Proof. Let f : X → Y and m ∈ subY be Ci-closed. Using Proposition 2.2 we have:
f−1(m)∗ = f−1(m∗) = f−1(iY (m

∗)) ≤ iX(f−1(m∗)) = iX(f−1(m)∗). �

5. From closure to interior

The construction of an interior (or neighbourhood) operator analogous to the closure
operator construction above is facilitated if the factorisation system for sinks, (E,M) is
what we shall termM-stable, namely that if {eλ : Aλ → Y }λ∈I ∈ E with each eλ ∈M and
f : X → Y , then {f−1(eλ)}λ∈I ∈ E. This is equivalent to requiring that joins commute
with pre-image, as is true for example of functions on sets,

f−1(
∨
m∈G

m) =
∨
m∈G

f−1(m) for any G ⊆ subX and X ∈ C.

A further equivalent way to state this condition is to say that for every f : X → Y
in C, the pre-image map f−1(−) : subY → subX is both left and right adjoint. It is
right adjoint to the image map f(−) and left adjoint to the assignment described by

f̃(m) =
∨
{p ∈ subY | f−1(p) ≤ m}.

Given a class F ⊆M, perform the following construction. First form the stabilisation

F∗, then for M
m→ X ∈M assign

(5.1) iX(m) =
∨
{p ∈ F

∗ | p ≤ m}

5.1. Proposition. Let (E,M) be M-stable and let F ⊆M. The construction of i(m) for
m ∈M given in (5.1) above de�nes an idempotent interior operator i ∈ Int(C,M).

Proof. (I1), (I2) and idempotence are trivial. M-stability of (E,M) and pullback stability
of F∗ ensure (I3). �

5.2. Remarks. (1) Clearly every m ∈ F is i-open and i is the smallest interior
operator for which this is the case.

(2) One can of course avoid the assumption of (E,M) being M-stable by iterating
the stabilisation of F under pullback and join tans�nitely.

Analogously to De�nition 4.1, Proposition 4.2 and De�nition 4.4 we have the following
development.

5.3. De�nition. Let c ∈ Cl(C,M), X ∈ C and m ∈ subX. We say that m is:

(1) Ac-open if m ∧ cX(n) ≤ cX(m ∧ n) for all n ∈ subX.
(2) Bc-open if m ∧ n = 0X ⇒ m ∧ cX(n) = 0X for all n ∈ subX.
(3) Cc-open if m is pseudocomplemented and m∗ = cX(m∗).

5.4. Proposition. Let c ∈ Cl(C,M) and M
m→ X ∈M.

(1) If c is grounded, then m is Ac-open ⇒ m is Bc-open.
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(2) If subX is a Boolean algebra then m is Bc-open ⇒ m is Cc-open.
(3) If c is additive and subX is a Boolean algebra, then m is Cc-open ⇒ m is Ac-

open.

Proof. Analogous to that of Proposition 4.2 except that in (2) we need that m∗ = m. �

5.5. De�nition. Let (E,M) be M-stable and let c ∈ Cl(C,M). Denote by ac, bc and cc

the interior operators de�ned as in (5.1) for F the class of Ac-open, Bc-open and Cc-open
M-morphisms respectively.

As in Proposition 4.5 we can prove:

5.6. Proposition. If (E,M) is stable and morphisms in C re�ect 0, then for any closure
operator c, the Cc-open morphisms are pullback stable.

5.7. We have established a number of correspondences. These are not in general Galois
connections (one assignment does not even preserve order in general) but they do have a
certain �duality� to them. When the subobject lattices in C are Boolean algebras then,
paired alphabetically and considering grounded operators, they render Galois connections
between Int(C,M) ∼= Nbh(C,M) and Cl(C,M).

Cl(C,M)
a,b,c //

Int(C,M)
α,β,γ

oo ∼
//
Nbh(C,M)oo

In this simpli�ed setting, the various notions of closed and open collapse and m is
open ⇔ m is closed. This is essentially the analysis conducted in [20].

When the category C is a topological construct, then taking M to be the embed-
dings (initial injective maps) not only are the subobject lattices Boolean algebras but
in addition (E,M) is M-stable, (E,M) is stable and all morphisms re�ect 0. In these
examples there will be small technical di�erences if the operators being considered are

not grounded or additive, otherwise the three correspondences Int(C,M)
α,β,γ→ Cl(C,M)

coincide as do Cl(C,M)
a,b,c→ Int(C,M). Their composition can be used to describe the

idempotent hull of a closure operator or (taken in the other direction) the idempotent
core of an interior/neighbourhood operator.

Of the other articles where interior and/or neighbourhood operators related to a clo-
sure operator are studied, [12], [13] and [20] use our third notion, Cc-open, in the tran-
sition from closure to neighbourhood/interior. This third notion of openness and its
counterpart for closedness, Ci-closed, is of little use however in typically algebraic set-
tings where the subobject lattices are not (pseudo)complemented.

Our �rst notion of closed/open (Ai-closed, Ac-open) is that considered in [14]. We are
not aware of our second notion appearing in the closure operator literature. We propose
this to be the most natural de�nition.

Regarding algebraic examples, the type of construction in (4.1) has recently received
rejuvenated interest in work of Guiterres and Clementino [8]. In [15] a di�erent construc-
tion of a closure operator from a neighbourhood operator is considered.
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