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Existence results for nonlinear boundary value problems
with m-point integral boundary condition
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Abstract

In this paper, we investigate the existence of positive solutions for the
nonlinear m-point boundary value problems with integral boundary
condition. By using �xed-point index theorem and Leggett- Williams
�xed point theorem, the existence and multiplicity of positive solutions
are obtained. As an application, two examples are given to demonstrate
our results.
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1. Introduction

Nonlinear boundary value problems for ordinary di�erential equations (ODEs) with
nonlocal boundary conditions (BCs) have been well studied over the past decades. The
study of nonlocal BCs for ODEs goes back, as far as we know, to Picone [12] and has
been widely developed during the years. We refer the reader to the reviews by Whyburn
[16], Conti [4] and Ntouyas [11]. Some important contributions were given by Bitsadze
and Samarskii [2].

At the same time, boundary value problems (BVPs) with Riemann-Stieltjes integral
boundary conditions include two point, three-point, multi-point and the Riemann integral
BVPs as special cases. Such BVPs have attracted the attention of researchers such as
[14, 15, 1, 5, 6, 7, 9, 10, 13, 17, 18, 3].

In [6], Feng et al. considered the second order di�erential equation
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u′′(t) + f(t, u(t)) = θ, t ∈ (0, 1),

u(0) =

∫ 1

0

g(t)u(t)dt, u(1) = θ,

or u(0) = θ, u(1) =

∫ 1

0

g(t)u(t)dt.

They investigated the existence and nonexistence of positive solutions for a class of non-
linear boundary value problem of the second-order di�erential equations with integral
boundary conditions in ordered Banach spaces. The arguments were based upon a spe-
cially constructed cone and the �xed point theory in a cone for strict set contraction
operators.

In [13], Tariboon and Sudsutad considered second-order m-point integral boundary
value problem 

u′′(t) + a(t)f(t) = 0, t ∈ (0, 1),

u(0) = 0, u(1) =

m−1∑
i=1

αi

∫ ηi

ηi−1

u(s)ds.

By using the Guo-Krasnoselskii's �xed point theorem, they obtained the existence criteria
of at least one positive solution if f is either superlinear or sublinear.

In [14, 15], Webb and Infante used �xed point index theory and gave a general method
for solving problems with integral BCs of Riemann-Stieltjes type. In [15], they studied
the existence of multiple positive solutions of nonlinear di�erential equations of the form

−u′′(t) = g(t)f(t, u(t)), t ∈ (0, 1),
u(0) = α[u], u(1) = β[u],
or u(0) = α[u], u′(1) = β[u],
or u(0) = α[u], u′(1) + β[u] = 0,
or u′(0) = α[u], u(1) = β[u],
or u′(0) + α[u] = 0, u(1) = β[u].

Here α[u], β[u] are bounded linear functionals on C[0, 1] given by

α[u] =

∫ 1

0

g(t)u(s)dA(s), β[u] =

∫ 1

0

g(t)u(s)dB(s)

with A,B functions of bounded variation.
Motivated by the results above, in this paper, we consider the following second order

m-point integral boundary value problem (BVP)
u′′(t) + f(t, u(t)) = 0, t ∈ (0, 1),

βu(0)− γu
′
(0) = 0, u(1) =

m−1∑
i=1

αi

∫ ηi

ηi−1

u(s)ds.
(1.1)

Here the boundary conditions of (1.1) are a special case of Riemann-Stieltjes integral.
We get the existence and multiplicity of positive solutions for the BVP (1.1) by using
the �xed point index theorem and the Leggett-Williams �xed point theorem.

We will assume that the following assumptions are satis�ed:

(C1) f ∈ C([0, 1]× R+,R+), R+ = [0,+∞), 0 = η0 < η1 < ... < ηm−2 < ηm−1 = 1 ;

(C2) β, γ ≥ 0, β + γ > 0, αi ≥ 0 for i = 1, 2, ...,m− 1,
m−1∑
i=1

αi ∈ (0, 1) and d > 0
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where

d = β

(
2−

m−1∑
i=1

αi(η
2
i − η2

i−1)

)
+ 2γ

(
1−

m−1∑
i=1

αi(ηi − ηi−1)

)
.

We note that the m-point boundary condition is related to m− 1 intervals of the area
under the curve of solution u(t) from t = ηi−1 to t = ηi for i = 1, ...,m− 1.

The organisation of the paper is as follows. In Section 2, we present some necessary
lemmas that will be used to prove our main results. In Section 3, we apply �xed point
theorems to obtain the existence of solutions for the BVP (1.1) and we give examples to
illustrate our results.

2. Preliminaries

In this section, we will employ several lemmas to prove the main results in this paper.

2.1. Lemma. Let αi ≥ 0 for i = 1, 2, ...,m − 1, and d 6= 0. If y ∈ C[0, 1], then the

problem

u′′(t) + y(t) = 0, t ∈ (0, 1),(2.1)

βu(0)− γu
′
(a) = 0, u(1) =

m−1∑
i=1

αi

∫ ηi

ηi−1

u(s)ds,(2.2)

has a unique solution

u(t) = −
∫ t

0

(t− s)y(s)ds+
2(γ + βt)

d

∫ 1

0

(1− s)y(s)ds

−γ + βt

d

m−1∑
i=1

αi

∫ ηi

0

(ηi − s)2y(s)ds

+
γ + βt

d

m−1∑
i=1

αi

∫ ηi−1

0

(ηi−1 − s)2y(s)ds.

Proof. We have from (2.1),

u′′(t) = −y(t).

It is easy to see by integration of both sides of (2.1) on [0, t],

u′(t) = u′(0)−
∫ t

0

y(s)ds.

Integrating again, we can get

u(t) = u(0) + u′(0)t−
∫ t

0

(t− s)y(s)ds.

From condition (2.2)

u(t) = −
∫ t

0

(t− s)y(s)ds+ u′(0)(
γ

β
+ t).(2.3)

So

u(1) = −
∫ 1

0

(1− s)y(s)ds+ u′(0)(
γ

β
+ 1).
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Integrating (2.3) from ηi−1 to ηi for 0 ≤ ηi−1 ≤ ηi ≤ 1, i = 1, ...,m− 1 and reversing the
order of double integrating, we get∫ ηi

ηi−1

u(s)ds = −
∫ ηi

ηi−1

(∫ r

0

(r − s)y(s)ds

)
dr

+u′(0)
γ

β
(ηi − ηi−1) + u′(0)

(η2
i − η2

i−1)

2

= −
∫ ηi

0

(ηi − s)2

2
y(s)ds+

∫ ηi−1

0

(ηi−1 − s)2

2
y(s)ds

+u′(0)
γ

β
(ηi − ηi−1) + u′(0)

(η2
i − η2

i−1)

2
.

From condition (2.2), we have

−
∫ 1

0

(1− s)y(s)ds+ u′(0)(
γ

β
+ 1) = −1

2

m−1∑
i=1

αi

∫ ηi

0

(ηi − s)2y(s)ds

+
1

2

m−1∑
i=1

αi

∫ ηi−1

0

(ηi−1 − s)2y(s)ds

+u′(0)

m−1∑
i=1

αi

(
γ

β
(ηi − ηi−1) +

η2
i − η2

i−1

2

)
.

We obtain,

u′(0) =
2β

d

∫ 1

0

(1− s)y(s)ds− β

d

m−1∑
i=1

αi

∫ ηi

0

(ηi − s)2y(s)ds

+
β

d

m−1∑
i=1

αi

∫ ηi−1

0

(ηi−1 − s)2y(s)ds

Hence, (2.1)-(2.2) has a unique solution

u(t) = −
∫ t

0

(t− s)y(s)ds+
2(γ + βt)

d

∫ 1

0

(1− s)y(s)ds

−γ + βt

d

m−1∑
i=1

αi

∫ ηi

0

(ηi − s)2y(s)ds

+
γ + βt

d

m−1∑
i=1

αi

∫ ηi−1

0

(ηi−1 − s)2y(s)ds.

�

2.2. Lemma. Let

m−1∑
i=1

αi < 1 and d > 0. If y ∈ C([0, 1], [0,+∞)), then unique solution

u of (2.1)-(2.2) satis�es u(t) ≥ 0 for t ∈ [0, 1].

Proof. From the fact that u′′(t) = −y(t) ≤ 0, we know that the graph of u is concave
down on [0, 1]. It su�ces to prove that u(0) ≥ 0 and u(1) ≥ 0.
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u(0) =
2γ

d

∫ 1

0

(1− s)y(s)ds− γ

d

m−1∑
i=1

αi

∫ ηi

0

(ηi − s)2y(s)ds

+
γ

d

m−1∑
i=1

αi

∫ ηi−1

0

(ηi−1 − s)2y(s)ds

≥ 2γ

d

∫ 1

0

(1− s)y(s)ds− 2γ

d

m−1∑
i=1

αi

∫ 1

0

(1− s)2y(s)ds

≥ 2γ

d

∫ 1

0

(1− s)y(s)ds− 2γ

d

m−1∑
i=1

αi

∫ 1

0

(1− s)y(s)ds

=
2γ

d

(
1−

m−1∑
i=1

αi

)∫ 1

0

(1− s)y(s)ds

≥ 0.

u(1) = −
∫ 1

0

(1− s)y(s)ds+
2γ + 2β

d

∫ 1

0

(1− s)y(s)ds

−γ + β

d

m−1∑
i=1

αi

∫ ηi

0

(ηi − s)2y(s)ds

+
γ + β

d

m−1∑
i=1

αi

∫ ηi−1

0

(ηi−1 − s)2y(s)ds

=

β

m−1∑
i=1

αi(η
2
i − η2

i−1) + 2γ

m−1∑
i=1

αi(ηi − ηi−1)

d

∫ 1

0

(1− s)y(s)ds

−γ + β

d

m−1∑
i=1

αi

∫ ηi

0

(ηi − s)2y(s)ds

+
γ + β

d

m−1∑
i=1

αi

∫ ηi−1

0

(ηi−1 − s)2y(s)ds

≥ γ + β

d

m−1∑
i=1

αi

∫ ηi−1

0

[
(η2
i − η2

i−1)(1− s)− (ηi − s)2 + (ηi−1 − s)2] y(s)ds

+
γ + β

d

m−1∑
i=1

αi

∫ ηi

ηi−1

[
(η2
i − η2

i−1)(1− s)− (ηi − s)2] y(s)ds

+
γ + β

d

m−1∑
i=1

αi

∫ 1

ηi

(η2
i − η2

i−1)(1− s)y(s)ds

≥ γ + β

d

m−1∑
i=1

αi

∫ ηi

ηi−1

(ηi − ηi−1)(ηi−1(1− s) + s(1− ηi))y(s)ds

+
γ + β

d

m−1∑
i=1

αi

∫ 1

ηi

(η2
i − η2

i−1)(1− s)y(s)ds



1526

≥ γ + β

d

m−1∑
i=1

αi

∫ 1

ηm−2

(η2
i − η2

i−1)(1− s)y(s)ds

≥ 0.

The proof is complete. �

2.3. Lemma. Assume that 0 <

m−1∑
i=1

αi < 1 and d > 0. If y ∈ C([0, 1], [0,+∞)), then

unique solution u of (2.1)-(2.2) satis�es

inf
t∈[η1,1]

u(t) ≥ Γ||u||,

where,

(2.4)

Γ = min
2≤s≤m−2

{
η1,

1

2

m−2∑
i=1

αi(η
2
i − η2

i−1) ,

s−1∑
i=1

αi(η
2
i − η2

i−1) +

m−2∑
i=s

αi
ηi

(η2
i − η2

i−1)(1− ηi)

2−
m−2∑
i=s

αi(η
2
i − η2

i−1)

,

m−2∑
i=1

αi
ηi

(η2
i − η2

i−1)(1− ηi)

2−
m−2∑
i=1

αi(η
2
i − η2

i−1)

 ,

and ||u|| = max
t∈[0,1]

|u(t)|.

Proof. If u(t) is maximum at t = t, then ||u|| = u(t). The proof is divided into four steps.

Step 1. If inf
t∈[η1,1]

u(t) = u(η1), then the concavity of u implies that u(η1) ≥ η1u(t). Thus,

inf
t∈[η1,1]

u(t) ≥ Γ||u||.

Step 2. If t ≤ η1 and inf
t∈[η1,1]

u(t) = u(1), then the concavity of u implies

u(ηi)− u(1)

1− ηi
≥ u(t)− u(1)

1− t
≥ u(t)− u(1), 1 ≤ i ≤ m− 2.

So,

u(ηi)− ηiu(1) ≥ (1− ηi)u(t), 1 ≤ i ≤ m− 2.

Therefore,

(2.5)

1

2

m−2∑
i=1

αi
ηi

(η2
i − η2

i−1) (u(ηi)− ηiu(1))

≥ 1

2

m−2∑
i=1

αi
ηi

(η2
i − η2

i−1)(1− ηi)u(t), 1 ≤ i ≤ m− 2.

We know that u(t) from t = ηi−1 to t = ηi for i = 1, 2, ...,m− 1 satis�es
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∫ ηi

ηi−1

u(s)ds ≥ 1

2
(ηi − ηi−1)(u(ηi) + u(ηi−1)).(2.6)

where
1

2
(ηi − ηi−1)(u(ηi) + u(ηi−1)) is the area of the trapezoid under the curve u(t).

From the concavity of u and Lemma 2.2, we get

u(η1)

η1
≥ u(η2)

η2
≥ ... ≥ u(ηi−1)

ηi−1
≥ u(ηi)

ηi
≥ ... ≥ u(1)

1
.(2.7)

Then, using conditions (2.6) and (2.7), we have

u(1) =

m−1∑
i=1

αi

∫ ηi

ηi−1

u(s)ds

≥ 1

2

m−1∑
i=1

αi(ηi − ηi−1)(u(ηi) + u(ηi−1))

≥ 1

2

m−2∑
i=1

αi(ηi − ηi−1)(u(ηi) + u(ηi−1))

≥ 1

2

m−2∑
i=1

αi(ηi − ηi−1)(u(ηi) +
ηi−1

ηi
u(ηi))

=
1

2

m−2∑
i=1

αi
ηi

(η2
i − η2

i−1)u(ηi).

i.e.,

u(1) ≥ 1

2

m−2∑
i=1

αi
ηi

(η2
i − η2

i−1)u(ηi).(2.8)

Combining conditions (2.5), (2.8), we get

u(1) ≥

m−2∑
i=1

αi
ηi

(η2
i − η2

i−1)(1− ηi)

2−
m−2∑
i=1

αi(η
2
i − η2

i−1)

u(t).

Thus, inf
t∈[η1,1]

u(t) ≥ Γ||u||.

Step 3. If there exists 2 ≤ s ≤ m − 2 such that ηs−1 < t ≤ ηs, and inf
t∈[η1,1]

u(t) = u(1),

for s ≤ i ≤ m− 2,

u(ηi)− u(1)

1− ηi
≥ u(t)− u(1)

1− t
,

So,

u(ηi)− ηiu(1) ≥ (1− ηi)u(t) for s ≤ i ≤ m− 2.

In addition, in view of (2.7), we get

u(ηi) ≥ ηiu(t) for 1 ≤ i ≤ s− 1.
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From (2.2) and (2.8), we have

u(1) ≥

s−1∑
i=1

αi(η
2
i − η2

i−1) +

m−2∑
i=s

αi
ηi

(η2
i − η2

i−1)(1− ηi)

2−
m−2∑
i=s

αi(η
2
i − η2

i−1)

u(t).

Thus, inf
t∈[η1,1]

u(t) ≥ Γ||u||.

Step 4. If t > ηm−2 and inf
t∈[η1,1]

u(t) = u(1), for 1 ≤ i ≤ m− 2,

u(ηi) ≥ ηiu(t).

Then, we obtain

1

2

m−2∑
i=1

αi
ηi

(η2
i − η2

i−1)u(ηi) ≥
1

2

m−2∑
i=1

αi(η
2
i − η2

i−1)u(t)

From (2.8),

u(1) ≥ 1

2

m−2∑
i=1

αi(η
2
i − η2

i−1)u(t)

Thus, inf
t∈[η1,1]

u(t) ≥ Γ||u||. �

2.4. Lemma. Assume that (C1) and (C2) hold, then for all t ∈ [0, 1], the following

result is true.

u(t) ≥ δ

d

∫ 1

ηm−2

(1− s)y(s)ds, t ∈ [0, 1],

where

δ = min

{
2γ

(
1−

m−1∑
i=1

αi

)
, γ + β

m−1∑
i=1

αi(η
2
i − η2

i−1)

}
.(2.9)

Proof. From the fact that u′′(t) = −y(t) ≤ 0, we know that the graph of u is concave
down on [0, 1]. Then, By Lemma 2.2, one can easily prove that,

u(t) ≥ δ

d

∫ 1

ηm−2

(1− s)y(s)ds t ∈ [0, 1].

�

Let B = C[0, 1] is a Banach space with the norm ‖u‖ = max
t∈[0,1]

|u(t)|. De�ne the cone

K ⊂ B by

K =

{
u ∈ B : u(t) ≥ 0 for t ∈ [0, 1] and min

t∈[η1,1]
u(t) ≥ Γ||u||

}
,

where the number Γ be given as in equation (2.4). We can de�ne an operator T : K → B
by
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(2.10)

Tu(t) =−
∫ t

0

(t− s)f(s, u(s))ds+
2(γ + βt)

d

∫ 1

0

(1− s)f(s, u(s))ds

− γ + βt

d

m−1∑
i=1

αi

∫ ηi

0

(ηi − s)2f(s, u(s))ds

+
γ + βt

d

m−1∑
i=1

αi

∫ ηi−1

0

(ηi−1 − s)2f(s, u(s))ds,

for u ∈ K. Obviously, u is the solution of the BVP (1.1) if and only if u is a �xed point
of T .

2.5. Lemma. Let (C1) and (C2) hold. Then T : K → K is completely continuous and

T (K) ⊂ K.

Proof. De�ne the operator T : K → K by

Tu(t) = −
∫ t

0

(t− s)f(s, u(s))ds+
2(γ + βt)

d

∫ 1

0

(1− s)f(s, u(s))ds

−γ + βt

d

m−1∑
i=1

αi

∫ ηi

0

(ηi − s)2f(s, u(s))ds

+
γ + βt

d

m−1∑
i=1

αi

∫ ηi−1

0

(ηi−1 − s)2f(s, u(s))ds,

for u ∈ K. By Lemma 2.2, for all u ∈ K we have Tu ≥ 0, and Lemma 2.3, T (K) ⊂ K.
Next, by standard methods and Arzela-Ascoli theorem, one can easily prove that operator
T is completely continuous. �

Now for convenience, we introduce the following notations. Let

L =

[(
2 +

m−1∑
i=1

αi

)
γ + β

d

∫ 1

0

(1− s)ds

]−1

M =

[
1

d

∫ 1

ηm−2

(1− s)ds

]−1

, ψ =
δ

M
.

We assume 0 < ψ ≤ Γ < 1. The numbers Γ and δ are given by (2.4), (2.9).
In order to follow the main results of this paper easily, now we state the �xed point

theorems which we applied to prove Theorems 3.1 and 3.3.

2.6. Theorem. ([8]) Let K be a cone in a real Banach space B. Let D be an open bounded

subset of B with DK = D∩K 6= ∅ and DK 6= K. Assume that T : DK → K is completely

continuous such that u 6= Tu for u ∈ ∂DK . Then the following results hold:

(i) If ‖Tu‖ ≤ ||u||, u ∈ ∂DK , then iK(T,DK) = 1;
(ii) If there exists e ∈ K \ {0} such that u 6= Tu+λe for all u ∈ ∂DK and all λ > 0,

then iK(T,DK) = 0;

(iii) Let U be open in K such that U ⊂ DK . If iK(T,DK) = 1 and iK(T,UK) = 0,

then T has a �xed point in DK \ UK . The same result holds if iK(T,DK) = 0
and iK(T,UK) = 1.
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We de�ne

Kρ = {u ∈ K : ‖u‖ < ρ},
Ωρ = {u ∈ K : min

t∈[η1,1]
u(t) < Γρ} = {u ∈ K : Γ‖u‖ ≤ min

t∈[η1,1]
u(t) < Γρ}.

2.7. Lemma. Ωρ has the following properties:

(a) Ωρ is open relative to K.
(b) KΓρ ⊂ Ωρ ⊂ Kρ.
(c) u ∈ ∂Ωρ if and only if min

t∈[η1,1]
u(t) = Γρ.

(d) If u ∈ ∂Ωρ, then Γρ ≤ u(t) ≤ ρ for t ∈ [η1, 1].

2.8. Theorem. ([8]) Let B be a Banach space, K ⊆ B a cone of B. Set

Kr = {u ∈ K : ‖u‖ < r},
P (ϕ, a, b) = {u ∈ K : a ≤ ϕ(u), ||u|| ≤ b}.

Suppose T : Kr → Kr be a completely continuous operator and ϕ be a nonnegative,

continuous, concave functional on K with ϕ(u) ≤ ||u|| for all u ∈ Kr. If there exists

0 < p < q < d ≤ r such that the following conditions hold:

(i) {u ∈ K(ϕ, q, d) : ϕ(u) > q} 6= ∅ and ϕ(Tu) > q for all u ∈ K(ϕ, q, d);
(ii) ||Tu|| < p for all ||u|| ≤ p;

(iii) ϕ(Tu) > q for u ∈ K(ϕ, q, r) with ||Tu|| > d.

Then T has at least three positive solutions u1, u2 and u3 in Kr satisfying

||u1|| < p, ϕ(u2) > q, p < ||u3|| with ϕ(u3) < q.

3. Main results

In this section, we will prove the existence of at least two and three positive solutions
of the BVP (1.1). The following theorems we will make use of the �xed-point index
theorem and the Leggett-Williams �xed point theorem, respectively.

We de�ne,

fρΓρ = min

{
min

t∈[η1,1]

f(t, u)

ρ
: u ∈ [Γρ, ρ]

}
,

fρ0 = max

{
max
t∈[0,1]

f(t, u)

ρ
: u ∈ [0, ρ]

}
.

3.1. Theorem. Suppose (C1) and (C2) hold.

(C3) There exist ρ1, ρ2, ρ3 ∈ (0,∞) with ρ1 < Γρ2 and ρ2 < ρ3 such that

fρ10 ≤ L, f
ρ2
Γρ2
≥ ΓM

δ
, u 6= Tu for u ∈ ∂Ωρ2 and fρ30 ≤ L.

Then the BVP (1.1) has at least two positive solutions u1, u2 with u1 ∈ Ωρ2 \Kρ1 , u2 ∈
Kρ3 \ Ωρ2 .

(C4) There exist ρ1, ρ2, ρ3 ∈ (0,∞) with ρ1 < ρ2 < Γρ3 < ρ3 such that

fρ1Γρ1
≥ ΓM

δ
, fρ20 ≤ L, u 6= Tu for u ∈ ∂Kρ2 and fρ3Γρ3

≥ ΓM

δ
.

Then the BVP (1.1) has at least two positive solutions u1, u2 with u1 ∈ Kρ2 \Ωρ1 , u2 ∈
Ωρ3 \Kρ2 .
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Proof. We only consider the condition (C3). If (C4) holds, then the proof is similar to
that of the case when (C3) holds. By Lemma 2.5, we know that the operator T : K → K
is completely continuous.

Firstly, we show that iK(T,Kρ1) = 1. In fact, by (2.10) and fρ10 ≤ L, we have for
u ∈ ∂Kρ1 ,

||Tu(t)|| = max
t∈[0,1]

∣∣∣∣− ∫ t

0

(t− s)f(s, u(s))ds+
2(γ + βt)

d

∫ 1

0

(1− s)f(s, u(s))ds

−γ + βt

d

m−1∑
i=1

αi

∫ ηi

0

(ηi − s)2f(s, u(s))ds

+
γ + βt

d

m−1∑
i=1

αi

∫ ηi−1

0

(ηi−1 − s)2f(s, u(s))ds

∣∣∣∣∣
≤ 2(γ + βt)

d

∫ 1

0

(1− s)f(s, u(s))ds

+
γ + βt

d

m−1∑
i=1

αi

∫ 1

0

(1− s)f(s, u(s))ds

≤

(
2 +

m−1∑
i=1

αi

)
γ + β

d

∫ 1

0

(1− s)f(s, u(s))ds

≤ ρ1

i.e., ‖Tu‖ ≤ ‖u‖ for u ∈ ∂Kρ1 . By (i) of Theorem 2.6, we obtain that iK(T,Kρ1) = 1.
Secondly, we show that iK(T,Ωρ2) = 0. Let e(t) ≡ 1. Then e ∈ ∂K1. We claim that

u 6= Tu+ λe, u ∈ ∂Ωρ2 , λ > 0.

Suppose that there exists u0 ∈ ∂Ωρ2 and λ0 > 0 such that

u0 = Tu0 + λ0e.(3.1)

Then, Lemma 2.4, (2.10) and (3.1) imply that for t ∈ [η1, 1]

u0 = Tu0 + λ0e

= −
∫ t

0

(t− s)f(s, u(s))ds+
2(γ + βt)

d

∫ 1

0

(1− s)f(s, u(s))ds

−γ + βt

d

m−1∑
i=1

αi

∫ ηi

0

(ηi − s)2f(s, u(s))ds

+
γ + βt

d

m−1∑
i=1

αi

∫ ηi−1

0

(ηi−1 − s)2f(s, u(s))ds+ λ0e

≥ δ

d

∫ 1

ηm−2

(1− s)f(s, u(s))ds+ λ0

= Γρ2 + λ0,

i.e., Γρ2 ≥ Γρ2 + λ0, which is a contradiction. Hence by (ii) of Theorem 2.6, it follows
that iK(T,Ωρ2) = 0.

Finally, similar to the proof of iK(T,Kρ1) = 1, we can prove that iK(T,Kρ3) = 1.

Since ρ1 < Γρ2 and Lemma 2.7 (b), we have Kρ1 ⊂ KΓρ2 ⊂ Ωρ2 . Similarly with ρ2 < ρ3

and Lemma 2.7 (b), we have Ωρ2 ⊂ Kρ2 ⊂ Kρ3 . Therefore (iii) of Theorem 2.6 implies

that BVP (1.1) has at least two positive solutions u1, u2 with u1 ∈ Ωρ2 \ Kρ1 , u2 ∈
Kρ3 \ Ωρ2 . �
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3.2. Example. We consider the following m-point integral boundary value problem


u′′(t) + f(t, u(t)) = 0, t ∈ (0, 1),

u
′
(0) = 0, u(1) =

1

3

∫ 1
6

0

u(s)ds+
1

4

∫ 3
6

2
6

u(s)ds+
1

6

∫ 5
6

4
6

u(s)ds,
(3.2)

where

f(t, u) =



sint

200
+ 0.02, u ≤ 0.0204,

sint

200
+

4400

7
u− 8962

700
, 0.0204 ≤ u ≤ 0.0904,

sint

200
+

5

6
u+

65917

1500
, u ≥ 0.0904.

Set β = 0, γ = 1, m = 7, ηi = i
6

for i = 0, ..., 6, αj = 0 for j = 2, 4, 6, and

α1 = 1
3
, α3 = 1

4
, α5 = 1

6
. By simple calculation, we get d = 7

4
, L = 14

11
, M = 126,

δ = 37
142

, Γ = 113
4135

. It is clear that conditions (C1) and (C2) are satis�ed. Taking
ρ1 = 0.0204, ρ2 = 3.308, ρ3 = 169.02, we can obtain that

ρ1 < Γρ2 and ρ2 < ρ3.

Now, we show that (C3) is satis�ed:

f0.0204
0 ≤ 0.025 < L,

f3.308
0.0904 ≥ 44.02 >

ΓM

δ
,

f169.02
0 ≤ 184.794 < L.

Then, (C3) condition of Theorem 3.1 holds. Hence, we get the BVP (3.2) has at least
two positive solutions.

We now give the su�cient conditions to have at least three non-negative solutions
for the BVP (1.1). Firstly, we de�ne the nonnegative, continuous, concave functional
ϕ : K → [0,+∞) by

ϕ(u) = min
t∈[η1,1]

|u(t)|, ∀u ∈ K.

It is obvious that ϕ(u) ≤ ||u|| for all u ∈ K.

3.3. Theorem. Suppose (C1) and (C2) hold. Moreover there exist nonnegative numbers

0 < p < q ≤ min {ψ,ψL} r such that

(i) f(t, u) ≤ Lr for t ∈ [0, 1] and u ∈ [0, r];

(ii) f(t, u) >
q

ψ
for t ∈ [η1, 1] and u ∈ [q,

q

ψ
];

(iii) f(t, u) < Lp for t ∈ [0, 1] and u ∈ [0, p].

Then the BVP (1.1) has at least three non-negative solutions u1, u2 and u3 satisfying

||u1|| < p, ϕ(u2) > q, p < ||u3|| with ϕ(u3) < q.
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Proof. The conditions of Theorem 2.8 will be shown to be satis�ed. If u ∈ Kr then
||u|| ≤ r and assumption (i) we have

||Tu(t)|| = max
t∈[0,1]

∣∣∣∣− ∫ t

0

(t− s)f(s, u(s))ds+
2(γ + βt)

d

∫ 1

0

(1− s)f(s, u(s))ds

−γ + βt

d

m−1∑
i=1

αi

∫ ηi

0

(ηi − s)2f(s, u(s))ds

+
γ + βt

d

m−1∑
i=1

αi

∫ ηi−1

0

(ηi−1 − s)2f(s, u(s))ds

∣∣∣∣∣
≤ 2(γ + βt)

d

∫ 1

0

(1− s)f(s, u(s))ds

+
γ + βt

d

m−1∑
i=1

αi

∫ 1

0

(1− s)f(s, u(s))ds

≤

(
2 +

m−1∑
i=1

αi

)
γ + β

d

∫ 1

0

(1− s)f(s, u(s))ds

≤ r.

Therefore, T : Kr → Kr. By (iii) and the argument above, we can get that T : Kp → Kp.

Now, we show that the condition (i) of Theorem 2.8 is satis�ed. Since
q

ψ
∈ K(ϕ, q,

q

ψ
)

and ϕ(
q

ψ
) =

q

ψ
> q, {u ∈ K(ϕ, q,

q

ψ
) : ϕ(u) > q} 6= ∅. If u ∈ K(ϕ, q,

q

ψ
), then

q ≤ u(t) ≤ q

ψ
for t ∈ [η1, 1]. From assumption (ii), we have f(t, u) >

q

ψ
for t ∈ [η1, 1],

and by the conditions of ϕ and the operator T , we have to distinguish two cases,

(i) ϕ(Tu) = (Tu)(η1), and
(ii) ϕ(Tu) = (Tu)(1).

In Case (i), we have

ϕ(Tu) = (Tu)(η1)

=
1

d

∫ η1

0

[2(γ + βs)[(1− η1)−
m−1∑
i=2

αi(η
2
i − η2

i−1) +

m−1∑
i=2

η1αi(ηi − ηi−1)]

+η1βα1s(η1 − s) + γα1(η2
1 − s2)]f(s, u(s))ds

+
(γ + βη1)

d

m−2∑
i=2

αi

∫ ηi

ηi−1

[2(1− s)−
m−2∑
j=i

αj(ηj − s)2

+

m−2∑
j=i+1

αj(ηj−1 − s)]f(s, u(s))ds

+
2(γ + βη1)

d

∫ 1

ηm−2

(1− s)f(s, u(s))ds
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≥ 2(γ + βη1)

d

∫ 1

ηm−2

(1− s)f(s, u(s))ds

≥
2γ(1−

m−1∑
i=1

αi)

d

∫ 1

ηm−2

(1− s)f(s, u(s))ds

≥ δ

d

∫ 1

ηm−2

(1− s)f(s, u(s))ds

> q.

In Case (ii), we get

ϕ(Tu) = (Tu)(1)

≥ γ + β

d

m−1∑
i=1

αi(η
2
i − η2

i−1)

∫ 1

ηm−2

(1− s)f(s, u(s))ds

≥ δ

d

∫ 1

ηm−2

(1− s)f(s, u(s))ds

> q.

i.e.,

ϕ(Tu) > q, for all u ∈ K(ϕ, q,
q

ψ
).

Hence, condition (i) of Theorem 2.8 is satis�ed.
Finally, we show that condition (iii) of Theorem 2.8 is also satis�ed. If u ∈ K(ϕ, q, r)

and ||Tu|| > q

ψ
then

ϕ(Tu) = min
t∈[η1,1]

|Tu(t)| ≥ Γ||Tu|| > Γ
q

ψ
≥ q.

Therefore, condition (iii) of Theorem 2.8 is also satis�ed. Since all conditions of Theorem
2.8 are veri�ed, the BVP (1.1) has at least three non-negative solutions such that

||u1|| < p, q ≤ ϕ(u2) and p < ||u3|| with ϕ(u3) < q.

�

3.4. Example. We consider the following second-order boundary value problem,


u′′(t) +

2005u4

u4 + 2006
= 0, t ∈ (0, 1),

u(0)− u
′
(0) = 0, u(1) =

1

2

∫ 1
4

0

u(s)ds+
1

3

∫ 1

1
2

u(s)ds.
(3.3)

When we take β = γ = 1, m = 4, η0 = 0, η1 = 1
4
, η2 = 1

2
, η3 = 1 and α1 = 1

2
, α2 = 0,

α3 = 1
3
, we obtain d = 301

96
, L = 301

272
, M = 301

12
, Γ = 1

64
, ψ = 4

301
.

f(t, u) = f(u) =
2005u4

u4 + 2006

is continuous and increasing on [0,+∞). Now, we check that the conditions of Theorem
3.3 are satis�ed. When we choose r = 2720, from limu→∞f(u) = 2005, we obtain
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f(u) ≤ 2005 < Lr = 3010, u ∈ [0, r].

Consequently, the condition (i) of Theorem 3.3 is satis�ed. As f(10) ≈ 1669.99, we get

f(u) >
q

ψ
= 752.5, u ∈ [q,

q

ψ
].

It means that condition (ii) of Theorem 3.3 is satis�ed. Finally , let p = 1, as f(1) ≈ 0.999,
we get

f(u) < Lp ≈ 1.106, u ∈ [0, p],

so that condition (iii) of Theorem 3.3 is satis�ed. Therefore, there exist numbers p =
1, q = 10, r = 2720 satisfying

0 < p < q ≤ min {ψ,ψL} r and 0 < ψ < Γ < 1

such that all the conditions of Theorem 3.3 hold. So the boundary value problem has at
least three positive solutions u1, u2 and u3 satisfying

||u1|| < 1, 10 ≤ min
t∈[η1,1]

u2(t) and 1 < ||u3|| with min
t∈[η1,1]

u3(t) < 10.
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