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1. Introduction

A Poisson algebra has simultaneously a Lie algebra structure and a commutative asso-
ciative algebra structure, satisfying the Leibniz identity. These algebras firstly appeared
in the work of Siméon-Denis Poisson two centuries ago when he was studying the three-
body problem in celestial mechanics. Since then, Poisson algebras have shown to be
connected to many areas of mathematics and physics. In mathematics, Poisson algebras
play a fundamental role in Poisson geometry [23], quantum groups [7, 9] and deforma-
tion of commutative associative algebras [11]. In physics, Poisson algebras represent a
major part of deformation quantization [16], Hamiltonian mechanics [4] and topological
field theories [21]. Poisson-like structures are also used in the study of vertex operator
algebras [10].

The first motivation to study nonassociative Hom-algebras comes from quasi-deforma-
tions of Lie algebras of vector fields, in particular g-deformations of Witt and Virasoro
algebras [2, 6, 8, 14, 15]. Hom-Lie algebras were first introduced by Hartwig, Larsson
and Silvestrov in order to describe g-deformations of Witt and Virasoro algebras using
o-derivations [13]. The corresponding associative type objects and non-commutative
version, called Hom-associative algebras and Hom-Leibniz algebras respectively, were
introduced by Makhlouf and Silvestrov in [17]. The notion of Hom-Poisson algebras
appeared for the first time in [18] where it is shown that Hom-Poisson algebras play
the same role in the deformation of commutative Hom-associative algebras as Poisson
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algebras do in the deformation of commutative associative algebras. They are further
studied in [26] where the author proved that the polarisation of a given Hom-algebra
is a Hom-Poisson algebra if and only if this Hom-algebra is an admissible Hom-Poisson
algebra. The purpose of this paper is to study color Hom-Poisson algebras which are first
introduced in [5]. For more informations on other color Hom-type algebras, the reader
can refer to [1, 3, 5, 20, 27].

A description of the rest of this paper is as it follows.

In Section 2, we recall basic notions concerning color Hom-algebras. Color Hom-
Poisson algebras [5] are defined without the e-commutativity condition. Here we give
the definition of these color Hom-algebras by adding this condition (Definition 2.5) and
then Hom-Poissons algebras could be seen as color Hom-Poisson algebras with G = {0}.
We then extend the notion of flexible algebras to the one of color Hom-flexible algebras
(Definition 2.11). Theorem 2.8 as well as Theorem 2.12, produce a sequence of color
Hom-Poisson and color Hom-flexible algebras respectively.

In Section 3, we define admissible color Hom-Poisson algebras (Definition 3.1) and
then prove the main result of this paper (Theorem 3.10).

Throughout this paper, all graded vector spaces are assumed to be over a field K of
characteristic 0.

2. Preliminaries and some results

Let G be an abelian group. A vector space V is said to be a G-graded if, there exists
a family (V,)aece of vector subspaces of V' such that V = @aecaVa. An element z € V
is said to be homogeneous of degree a € G if x € V,. We denote H (V') the set of all
homogeneous elements in V. Let V = @aeccVa and V' = @ucaV, be two G-graded vector
spaces. A linear mapping f : V — V' is said to be homogeneous of degree b € G if
f(Va) C V., , VYa € G.If, fis homogeneous of degree zero i.e. f(V,) C V, holds for any
a € G, then f is said to be even. An algebra (A, p) is said to be G-graded if its underlying
vector space is G-graded i.e. A = ®cgAa, and if furthermore p(Aq, Ap) C Agys, for all
a,b € G. Let A’ be another G-graded algebra. A morphism f : A — A’ of G-graded
algebras is by definition an algebra morphism from A to A’ which is, in addition an even
mapping.

2.1. Definition. Let G be an abelian group. A mapping € : G x G — K" is called a
bicharacter on G if the following identities hold for all a,b, c € G:

(i) e(a,b)e(b,a) =1,

(i1) e(a + b, ¢) = e(a, c)e(b, ¢),

(iii) e(a, b+ ¢) = e(a, b)e(a, ¢).

It is easy to see that £(0,a) = £(a,0) = 1 and ¢(a,a) = %1 for all a € G. In partic-
ular, for a fixed a € G, the induced map ¢, : G — K* defined by e,(b) = ¢(a,b) is a
homomorphism of groups.

If z and y are two homogeneous elements of degree a and b respectively and ¢ is a
bicharacter, then we shorten the notation by writing (z, y) instead of ¢(a, b).
Unless stated, in the sequel all the graded spaces are over the same abelian group G and
the bicharacter will be the same for all the structures. For the rest of this section, we
give basic facts about color Hom-algebras [5],[22], [27] and prove some results concerning
color Hom-Poisson and color Hom-flexible algebras.

2.2. Definition. (i) By a color Hom-algebra, we mean a quadruple (A, u, €, @) consisting
of a G-graded vector space A, an even bilinear map p: AX A — Aie p(Aaq, Ap) C Aot
for all a,b € G, a bicharacter € : G x G — K" and an even linear map o : A — A.
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A color Hom-algebra (A, u,e,,«) is said to be multiplicative if a0 p = po a®® and

e-commutative if p(x,y) = e(z, y)u(y, =) for all z,y € H(A).

(ii) A weak morphism f : (A4, u,e,a) — (A, ,e,a’) of two color Hom-algebras is
an even linear map f : A — A’ of the underlying G-graded vector spaces, satisfying
fopu=yp o f®. If furthermore f o = o o f, then f is said to be a morphism.

For the rest of this paper, we will often write u(z,y) as zy for homogeneous element
z,y.

2.3. Definition. (i) A color Hom-associative algebra is a color Hom-algebra
(A, p,e,a) such that asa(z,y,2) = 0 where asa is the Hom-associator defined for all
z,y,z € H(A) by

(2.1) asa(z,y, 2) = (zy)a(z)) — a(z)(yz)
ii) A color Hom-Lie algebra is a color Hom-algebra (A4, {, },¢, @) such that

(
(2.2) {z, v}
(2.3) f () {ole), [y, 2}}

for all z,y, z € H(A) where § means the cyclic summation over z,y, 2.

e(z,y){y, =} ( e-skew-symmetry )

0 ( e-Hom-Jacobi identity )

By the e-skew-symmetry (2.2) of the color Hom-Lie bracket {,}, the e-Hom-Jacobi
identity (2.3) is equivalent to Ja(z,y, z) = 0 where

(2.4 @) = Pelna)inyha)
for all z,y,z € H(A), is called the color Hom-Jacobian of A.

2.4. Remark. A graded associative (resp. color Lie) algebra is a color Hom-associative
(resp. color Hom-Lie) algebra with o = Id.

2.5. Definition. A color Hom-Poisson algebra consists of a G-graded vector space A,
two even bilinear maps u,{,} : A®? — A, an even linear map o : A — A and a
bicharacter € such that

(1) (A, p, e, ) is an e-commutative color Hom-associative algebra,

(2) (A,{,},e,a) is a color Hom-Lie algebra,

(3) the color Hom-Leibniz identity

(2.5) {a(z), u(y, 2)} = n({z,y}, (2)) + e(, y)ule(y), {z, 2})
is satisfied for all z,y, z € H(A).

By the e-skew-symmetry of {, }, the color Hom-Leibniz identity is equivalent to

(2.6) {n(z,y), a(2)} = pla(z), {y, 2}) + ey, 2)n({z, 2}, aly))

In a color Hom-Poisson algebra (A, u, {, },¢, @), the operations p and {, } are called the
color Hom-associative product and the color Hom-Poisson bracket, respectively.

2.6. Remark. In [5], color Hom-Poisson algebras are defined without the e-commutativity
condition in Definition 2.5. In this case, if G = Zs we get the notion of Hom-Poisson
superalgebras defined in [24]. According to our definition, we could see Hom-Poisson
algebras [18] (resp. Hom-Poisson superalgebra [28]) as color Hom-Poisson algebras with
G = {0} (resp. G = Z3 and e(z,y) = (—1)*¥ for all homogeneous elements z, y).

Here, we give an example of a color Hom-Poisson algebra for G = Zo which could be
seen in [28].
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2.7. Example. There is a three-dimensional multiplicative color Hom-Poisson algebra
A=(A=A0® A1, {,}, @), where Ay = Ce; ®Ce2, A1 = Ces and an algebra morphism
« is defined by

aler) = ze1, ales) =e1 + e2, a(es) = yes,
with  and y fixed nonzero complex numbers. The defining non-zero relations are
2
e1-ex =mey, ez €3 =e1 + ez, e3-ex = yes, {e1,ea} =2 €y,

In fact these color Hom-Poisson algebras (Hom-Poisson superalgbras) are not Poisson
superalgebras for = #£ 1, or y # 1.

The following theorem produces a sequence of color Hom-Poisson algebras. It says
again that the category of color Hom-Poisson algebras is closed by weak morphisms.

2.8. Theorem. Let A = (A, p, {, },&, ) be a color Hom-Poisson algebra and §: A — A
a weak morphim. Then for eachn € N, Agn = (A, pugn = B"ou, {, }gn = B"o{, },&, B oa)
i a color Hom-Poisson algebra. Moreover, if A is multiplicative and [ is a morphism of
A, then Agn is also multiplicative.

Proof. First we note that the e-commutativity and the e-skew-symmetry of pg» and
{, } s~ follow from the one of 1 and {, } respectively. Next, it is straightforward to check
that

(2.7) aSAzn = B8°" o as, and Jagm = B oy

Since (A, p, e, a) is an e-commutative color Hom-associative algebra and (4, {, },¢,a) is
a color Hom-Lie algebra, we deduce by (2.7) that (A, pgn,e, " o) is an e-commutative

color Hom-associative algebra and (A, {, }gn,, 8" o a) is a color Hom-Lie algebra.

Now, writting for readability the composition law "o" as juxtaposition, (2.5) is proved

as it follows

{8 a(x), ppn (y, 2)}on = B"{B"a(x)),B"(y2)})
B2 {a(z),yz}
= B (u({z,y}, a(2)) + e(@, y)p(ay), {z, 2}))
(by (2.5)inA)
= B "u(B™{z,y}, " () +e(x,y)B" u(B"aly), 8" {z, 2})
= psr({z,y}en, B"a(2)) + e(z, y)psn (8" aly), {z, z}sn)

Finally, observing that the conditions foa = aoff and Sou = poB®? implie B oa = a0 ™
and 8" oy = po (B™)®? respectively, we have for all z,y € H(A) : B ausn(z,y) =
BraB" u(x, y) = B au(B" (), 8" (y)) = B"w(ap"™(x), aB"(y)) = B "u(B"a(z), B a(y)) =
pan (B a(x), B a(y)). Similarly, we prove that

Bra{x,y}tsn = {B"a(x), 8"a(y)}sn. Therefore if A is multiplicative and § is a morphism
of A, then Agn is also multiplicative. O

If we drop the e-commutativity condition in Definition 2.5 and set 8 = a, (resp. n =1
and o = Id) in Theorem 2.8, we get some results in [5].

2.9. Example. From the multiplicative color Hom-Poisson algebra A in Example 2.7,
we get the familly of multiplicative color Hom-Poisson algebras (Aan)nen where for each
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n €N,
Aan = (A, -an,{, }an,a™") with the following non-zero products :

n 2 n—1 n
e1-an e =2a"e1, e2:anea=(14+z+2"+---+2" )e1 +e2, e3-an e2 =y"es,

{e1,ea}tan = 2" 2e; and the morphism defined by: a"“(el) =" tle

a"“(eg) =(1+z+ 224t z™)er + e, a"“(eg) =y"Tes.

1,

The next result shows that, color Hom-Novikov Poisson algebras can be gotten from
e-commutative color Hom-associative algebras.

2.10. Proposition. Let (A, u, e, a) be an e-commutative color Hom-associative algebra.
Then

AT = (Av 12 {7 }7 g, Oé)

is a color Hom-Poisson algebra where {z,y} = u(x,y) — e(x, y)u(y, x)
for all z,y € H(A).

Proof. 1t is proved in [27] (Proposition 3. 13) that (A, {,},s,a) is a color Hom-Lie
algebra. To check the color Hom-Leibniz identity (2.5) for A™, we write u as juxtaposition
and compute as follows:

n({z, v}, a(2)) +e(z, y)u(ay), {z, 2}) — {a(z), u(y, 2)}

= (zy)a(z) —e(z, y)(yr)o(z) + e(z, y)a(y)(2z) — e(z, y)e(x, 2)a(y)(22)

—a(z)(yz) + e(z,y)e(w, 2)(yz) o)

=asa(z,y,2) —e(z,y)asa(z,z, z) + e(x,y)e(x, 2)asa(y, z, x)

Since asa = 0, we conclude that A~ satisfies the color Hom-Leibniz identity. O

The following definition will be useful in Section 3.

2.11. Definition. A color Hom-flexible algebra is a color Hom-algebra (A, u, ¢, o) that
satisfies the e-Hom-flexible (color Hom-flexible) identity i.e for all z,y,z € H(A)

(2.8) asa(z,y, z) = —e(z,y)e(x, 2)e(y, 2)asa(z,y, x)

It follows that when G = Z; and e(z,y) = (—1)*Y (resp. G = {0} ) in Definition 2.11,
we recover the notion of Hom-flexible superalgebra [1] (resp. Hom-flexible algebra [25]).

As for color Hom-Poisson algebras, we get the following:

2.12. Theorem. Let A = (A, u,e,a) be a color Hom-flexible algebra and B : A — A
a weak morphim. Then for each n € N, Agn = (A, ugn = " o u,e,8" o ) is a color
Hom-flexible algebra. Moreover, if A is multiplicative and B is a morphism of A, then
Agn is also multiplicative.

Proof. The proof follows from (2.7) and the proof of Theorem 2.8. O

3. Characterizations

In [12] and [19], it is shown that Poisson algebras can be described using only one
operation of its two binary operations via the polarization-depolarization process. This
enables to explore Poisson algebras in the realm of non-associative algebras. The similar
is done for Hom-Poisson algebras [26]. The purpose of this section is to extend this
alternative description of Poisson algebras or Hom-Poisson algebras to color Hom-Poisson
algebras. Let’s first define the notion of an admissible color Hom-Poisson algebras.
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3.1. Definition. Let (A, u, e, ) be a color Hom-algebra. Then A is called an admissible
color Hom-Poisson algebra if it satisfies

asa(e,.2) = el 2 w)aly) - (o, 2)e(,2) (z)ay)
(3.1) +e(z,y)e(z, 2)(yz)alr) — e(z, y)(yr)a(z)}
for all z,y,z € H(A), where asy is the Hom-associator (2.1) of A.

An admissible color Hom-Poisson algebra with G = {0} is exactly an admissible
Hom-Poisson algebra as defined in [26]. If furthermore o = Id, we get the notion of an
admissible Poisson algebra [12]. To compare color Hom-Poisson algebras and admissible
color Hom-Poisson algebras, we need the following function, which generalizes a similar
function in [19, 26].

3.2. Definition. Let (A, p,¢€,a) be a color Hom-algebra. Define the quintuple

(3.2) P(A) = (A x,{,},¢e,a)

called the polarization of A, where zxy = % (zy+e(z,y)yz) and {z,y} = L (zy—c(z, y)yz)
for all =,y € H(A). We call P the polarization function.

The main result is to prove that admissible color Hom-Poisson algebras, and only
these color Hom-algebras, give rise to color Hom-Poisson algebras via polarization. It is
the color Hom-version of [19, Example 2]. To do that, we need some useful ingredients.

3.3. Definition. Let (A, x,{, },&,«) be a quintuple in which A is a graded vector space,
x,{,} : A — A are linear even maps, « : A — A an even linear map and ¢ a bicharacter.
Define the color Hom-algebra

(33) P (4) = (A p=++{ }hea)
called the depolarization of A. We call P~ the depolarization function.

The following observation says that admissible color Hom-Poisson algebras are color
Hom-flexible algebras. It is the color Hom-version of [12, Proposition 4].

3.4. Lemma. Every admissible color Hom-Poisson algebra (A, u,e,a) is a color Hom-
flexible algebra.

Proof. The color Hom-flexibility identity (2.8) is proved using (3.1) as it follows:
asa(z,y,x) = *{E(yw)(zx)a(y) —&(z,2)e(y, ) (z2)a(y)
+€(Z y)e(z, z)(yz)a(z) — e(z,y)(yz)a(r)}
= ( x)e(z, 2)e(z, y){e(y, 2)(z2)a(y) — e(z, 2)e(y, 2)(zx)a(y)

+E(ya x)e(z, x)(yz)a(r) —e(z,y)(yr)a(z)}
= —e(y,2)e(z,2)e(z,y)asa(z, y, 2)
ie. asa(z,y, z) = —e(z,y)e(x, 2)e(y, z)asa(z, y, x) for all z,y, z € H(A) and then we get
(2.8). O

For a given color Hom-algebra A, the color cyclic sum S of the Hom-associator is
defined by:
Sa(z,y,z) = asalz,y,z)+e(y,2)e(x,2)asa(z,x,y) +
(3.4) e(z,y)e(z, z)asaly, z, )
for all z,y,z € H(A).

Next we observe that in an admissible color Hom-Poisson algebra the color cyclic sum
of the Hom-associator is identically zero.
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3.5. Lemma. Let (A, p,e,a) be an admissible color Hom-Poisson algebra. Then
Sa(z,y,z) =0 for all z,y,z € H(A).

Proof. Using the defining identity (3.1), we have for all z,y, z € H(A):

asa(r,y,2) = %{E(y» 2)(zz)aly) — e(z, 2)e(y, 2)(zx)a(y)
+e(z,y)e(w, 2)(yz)a(z) — e(w, y)(yr)a(2)}
= —%{6(% 2)e(x, 2)e(w, y) (zy)a(z) — e(x, 2)e(z, y) (yz)a(x)
+(zy)a(z) — ey, 2)(zz)aly)} + %{(l‘y)a(z) —e(z,y)(yr)a(2)
+e(y, 2)e(x, 2)e(w, y) (zy)a(x) — e(y, 2)e(w, 2)(zx)a(y)}
= —%6(%2)8($:Z){€($7y)(zy)a($) —e(z,9)e(z, y)(y2)a(z)
+e(z,)e(2,y) (zy)a(z) — e(z, @) (z2)a(y) }
+%€(y7 2){e(z,y)(zy)alz) — e(z,y)e(z, y) (yr)a(z)
+e(z, 2)e(w, y)(zy)a(z) — e(x, 2)(zx)a(y)}
= —e(y,2)e(x, z)asa(z,z,y) + £(y, 2)asa(z, z,y)
= —e(y,2)e(x, 2)asalz, z,y) — e(x, y)e(z, 2)asa(y, 2, )
( by Lemma 3.4 )

Therefore, we conclude that S4 = 0. O

Next we show that the polarization of an admissible color Hom-Poisson algebra is
e-commutative Hom-associative.

3.6. Lemma. Let (A, p,e,a) be an admissible color Hom-Poisson algebra. Then
(3.5) (A, *,e,)

is an e-commutative Hom-associative color Hom-algebra.

Proof. 1t is obvious that * is e-commutative. To show that asp(ay = 0, pick z,y, z € H(A)
and write p using juxtatposition of homogeneous elements.
Expanding asp4) in terms of u, we have:

(@ xy) * a(2) — () * (y * 2)

asp(a)
= %{(rry + ez, y)yz) * a(z) — alz) * (yz + (v, 2)zy)}

= %{(wy)a(Z) +e(z,y)(yr)a(z) + e(, 2)e(y, 2)a(2) (zy)

)
te(@, 2)e(y, 2)e(z, y)a(z)(yr) — a(@)(yz) — (y, 2)a(z)(zy)
—&(z,y)e(w, 2)(yz)a(z) — e(x, y)e(z, 2)e(y, 2) (zy) (@)}
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= *{CLSA(ZE, Y, Z) - E(CE, y)s(x, Z)E(y7 Z)G’SA(Z’ Y, x) + E(CIJ, y)(yaz)a(z)
(z,2)e(y, z)asa(z, z,y)

(yv Z)CLSA({E, 2, y) - E(y7 Z)(xz)a(y)}

= i{aSA(xvyy z) —e(z,y)e(x, 2)e(y, 2)asa(z,y, x) — [e(y, z)(zz)a(y)

—e(z,2)e(y, 2)(zx)a(y) + e(z, y)e(x, 2) (yz)e(w) — ez, y) (yx)a(2)]
z,x,Y) + (Y, z)asa(z, z, y) }(rearranging terms)
)

€
+e

)
)

(
= i{asA(‘r,y,z —e(z,y)e(x, 2)e(y, z)asa(z, ¥y, x
(2,

—3asa(w,y, 2)
—e(z, 2)e(y, 2)asa(z,z,y) + e(y, z)asa(z, z,y) } (by (3.1))
= i{asfx(l’,y, +asa(z,y,2) — 3asa(z,y, 2)
—e(x, 2)e(y, 2)asa(z, z,y) — e(z,y)e(z, 2)asa(y, z, z)}

(by Lemma 3.4 )
= i{asA(ac,y, z) 4+ asa(z,y,z) —3asa(z,y, z) + asa(z,y, )}
( by Lemma 3.5 )
and thus asp(4) = 0. O

Now we observe that the polarization of an admissible color Hom-Poisson algebra is
a color Hom-Lie algebra.

3.7. Lemma. Let (A, p,e,a) be a color Hom-algebra. Then
(36) 4JP(A)(mz Y, Z) = €(Z7 J?)SA(‘Z‘, Y, Z) - 8(.T, y)e(z, x)SA(y, z, Z)

for all x,y,z € H(A) where Jp(a) is the Hom-Jacobian (2.4) of the polarisation of A see
(3.2). Moreover, if A is an admissible color Hom-Poisson algebra, then

(A4, hea)

is a color Hom-Lie algebra where {z,y} = p(z,y) — e(z, y)u(y, z) for all
z,y € H(A).

Proof. To show this relation, pick z,y,z € H(A) and write p using juxtatposition of
homogeneous elements. Expanding Jp(4) in terms of p, we have:

Wpony (e 2) = fe(m){{x,y},a(z)}

= ez a)(zy)a(z) —e(y, 2)a(z)(zy) — ez, 2)e(z, y)(yr)a(z)
te(@,y)e(y, 2)a(z)(yz) + e(y, 2)(2x)aly) — e(z, y)a(y)(zz)
—&(y; 2)e(z,2)(x2)a(y) + e(z, p)e(@, y)a(y) (22)
+e(@,y)(y2)a(z) — e(z, x)a(e)(yz) — e(z,y)e(y, 2) (zy)a(z)
+e(y, 2)e(z, 2)a(z)(2y)

= e(z,z)asa(z,y, z) +e(y,z)asa(z, z,y)
—e(z,x)e(w,y)asaly, z, z) — e(x,y)e(y, 2)asa(z,y, x)
+e(z,y)asaly, z,x) — e(y, 2)e(z, x)asa(z, z,y)
= e(z,2)Sa(z,y,2) —e(z,y)e(z,2)Sa(y, z,z) ( by (3.4))
and then the desired relation holds. O
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If A is an admissible color Hom-Poisson algebra, then by Lemma 3.5, it follows that
Jp(a) = 0 and therefore (4, {, },¢,a) is a color Hom-Lie algebra.

The following result says that the polarization of an admissible color Hom-Poisson algebra
satisfies the color Hom-Leibniz identity (2.5).

3.8. Lemma. Let (A, u,e,a) be a color Hom-algebra. Then the polarization P(A) sat-
isfies

A({a(@),y * 2} — {z,y} x a(z) — e(z, y)a(y) * {z,2})
= —asa(z,y,2) —e(z,y)e(z, 2)asaly, z,x) — ey, z)asa(x, z,y)
—e(z,y)e(z, 2)e(y, z)asa(z,y,z) + ez, y)asa(y, z, z)
+e(y, 2)e(z, z)asa(z, z,y)
)-

for all z,y,z € H(A). Moreover, if A is an admissible color Hom-Poisson algebra, then
the polarization P(A) satisfies the color Hom-Leibniz identity.

Proof. To prove this relation, pick z,y,z € H(A) and write p using juxtatposition of
homogeneous elements. Expanding the left-hand side in terms of p, we have:

A({a(z),y x 2} —{z,y} x a(z) — e(z,y)a(y) * {z, z})

= a(z)(yz) —e(z,y)e(z, 2)(yz)olz) + ey, 2)a(z)(2y)
—e(y, 2)e(z, 2)e(x, y) (zy)a(z) — (zy)o(z) + &(z, y) (yz)o(z)
—&(x, 2)e(y, 2)a(2)(wy) + e(x, y)e(w, 2)e(y, 2)a(z) (yz) — e(z, y)a(y)(zz)
te(z,y)e(z, 2)a(y)(2z) — e(y, z)(z2)a(y) + e(y, 2)e(z, 2) (zx)a(y)

= —asa(z,y,z) —e(z,y)e(x, 2)asa(y, z,x) — e(y, z)asa(z, z,y)
—e(z,y)e(x, 2)e(y, 2)asa(z,y,x) + e(z,y)asa(y, x, )
+e(y, 2)e(z, 2)asa(z, z,y)

For the second assertion, suppose that A is an admissible color Hom-Poisson algebra.

Then the color Hom-flexibility (Lemma 3.4) implies that the right-hand side of (3.7) is
0. We conclude that

{a(@),y* 2} = {z,y} * a(2) + e(@,y)a(y) * {z, 2}

which is the color Hom-Leibniz identity in the polarization P(A). O

Next we show that only admissible color Hom-Poisson algebras can give rise to color
Hom-Poisson algebras via polarization.

3.9. Lemma. Let (A, p,e,a) be a color Hom-algebra such that the polarization P(A) is
a color Hom-Poisson algebra. Then A is an admissible color Hom-Poisson algebra.

Proof. We need to prove the identity (3.1). Pick z,y,z € H(A). We will express the
Hom-associator as4 in several different forms and compare them.

On the one hand, the color Hom-Jacobi identity Jp(4y = 0 and (3.6) imply that

asa(z,y,z) = —e(y,z)e(z,z)asa(z,z,y) —e(z,y)e(x, 2)asaly, z,x)
+e(z,y)asaly, x, z) + e(x, y)e(z, 2)e(y, 2)asa(z,y, )
(3.7) +e(y, z)asa(z, z,y) ( by (3.4) )
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Moreover, the color Hom-Leibniz identity in P(A) and (3.7) imply that

(3.8) asa(z,y,z) = —e(z,y)e(x,2)asaly,z,x) — ey, z)asa(x, z,y)
—e(z,y)e(x, 2)e(y, 2)asalz,y,x) + e(z,y)asaly, x, z)
+e(y, 2)e(z, z)asa(z, z,y)

Adding (3.7) and (3.8) and dividing the result by 2, we obtain

(3.9) asa(z,y,z) = e(z,y)asaly,z,z) —e(z,y)e(z, z)asaly, z,x)

which we will use in a moment.

On the other hand, since u = {, } +*, we can expand the Hom-associator asa in terms
of {,} and x as follows:

asa(@,y,2) = plp(z,y),(2)) - pla(z), wy, 2))
= {{zyh o} +{zry,a(2)} +{z,y} xalz) + (zxy) x a(z)
(3.10) —{a(@),{y, 2}} = {a(2), y * 2} — a(2) * {y, 2} — a(z) * (y * 2)
Since the polarization P(A) is assumed to be a color Hom-Poisson algebra, we have:
(3.11) 0 = aspy(z,y,2) = (z*xy)*a(z) —a(z) * (y * 2)
0 = A{z,z}*xaly) —e(z,y)e(z,y)a(y) * {z, z} ( by e-commutativity)
(312) = {z+ya()}-al@){y,2} - {a(@),y * 2} + {2,y} * a(2)

(by (2.5) and (2.6) )

(313)  {{=z,z},a(y)} =e(z,9){{z, ¥}, a(2)} — ez, y){a(2) {y, 2} }
by (2.3) and the e-skew-symmetry of {, }.

Using the identities (3.11) in (3.13), we obtain from (3.10):
dasa(z,y,2) = 4e(y, 2){{=z, 2}, a(y)}

= ey, 2)(zz)aly) —e(y, 2)e(x,
+e(z, y)e(z, 2)a(y)(zz)

= &y, 2)(z2)aly) —e(y, 2)e(w, 2)(zx)aly) + e(x, y)asaly, , z)
—e(z,y)(yr)a(z) —e(z,y)e(w, 2)asaly, z, )
+e(z,y)e(w, 2)(yz)a(z)

= ey, 2)(z2)aly) —e(y, 2)e(w, 2)(2x)aly) + &(x, y)e(, 2) (yz)a(z)
—e(z,y)(yzr)a(z) + asa(z,y, 2) (by (3.9))

Finally, subtracting asa(z,y, z) in the above calculation and dividing the result by 3, we
obtain the desired identity (3.1). O

z,z)(zx)aly) — e(z, y)a(y)(22)

Now the main result of this section is the following

3.10. Theorem. Let (A, p,e,a) be a color Hom-algebra. Then the polarization P(A) is
a color Hom-Poisson algebra if and only if A is an admissible color Hom-Poisson algebra.

Proof. If A is an admissible color Hom-Poisson algebra, then Lemmas 3.6, 3.7, and 3.8
imply that the polarization P(A) is a color Hom-Poisson algebra. The converse is Lemma
3.9. O

3.11. Corollary. The polarization and the depolarization functions
P : {admissible color Hom-Poisson algebras} = {color Hom-Poisson algebras} : P~

preserve multiplicativity and are the inverses of each other.
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Proof. If (A, u, e, ) is an admissible color Hom-Poisson algebra, then P(A) is a color
Hom-Poisson algebra by Theorem 3.10. Furthermore we have for all =,y € 3(A) :

1

{z,y}+x*xy = 5(#(1’7 y) — ez, y)uly, z)) + %(u(% y) + (@, y)uly, x))

p(z,y)

ie. P7(P(A)) =A.

Conversely, suppose that (A4, {, },*,¢,a) is a color Hom-Poisson algebra. To show that
P~ (A) is an admissible color Hom-Poisson algebra, note by the e-skew-symmetry of {, }
and the e-commutativity of * that for all z,y € H(A),

Sy} +oxy) —c@p)ya} +yra) = {oy)
Sw gl +oey) e y){ya) +ysa)] = ey

i.e. P(P~(A)) = A, which is a color Hom-Poisson algebra. It follows from Theorem 3.10
that P~ (A) is an admissible color Hom-Poisson algebra. Since P~ P and PP~ are both
identity functions, P and P~ are the inverses of each other.

The fact that P and P~ preserve multiplicativity is straightforward. O
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