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New approaches for choosing the ridge parameters

J. Al-Jararha∗

Abstract

Consider the standard multiple linear regression model y = xβ + ε. If
the correlation matrix xtx is ill-conditioned, the ordinary least squared

estimate (ols) β̂ of β is not the best choice. In this paper, multiple
regularization parameters for di�erent coe�cients in ridge regression
are proposed. The Mean Squared Error (MSE) of a ridge estimate
based on the multiple regularization parameters is less than or equal
to the MSE of the ridge estimate based on Hoerl and Kennard, 1970.
The proposed approach, depending on the condition numbers, leave's
zero for the largest eigenvalue of xtx and gives the largest value for
the smallest eigenvalue of xtx. Furthermore, if xtx is nearly a unit
matrix, xtx is not an ill-conditioned one. The proposed approach gives
approximately the same results as the ols estimates. The proposed
approach can also be modi�ed to give other new ridge parameters. The
modi�ed approach depends on the eigenvalues of xtx and di�er from
the ridge parameter proposed by Khalaf and Shukur by a factor. The
body fat data set has severe multicollinearity and is used to compare
di�erent approaches.
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1. Introduction

Consider the standard multiple linear regression model

y = xβ + ε(1.1)

where yn×1 is a vector of responses, xn×p is the design matrix of rank p, βp×1 is a vector
of unknown parameters, ε ∼ Nn

(
0, σ2In

)
, and In is the identity matrix of rank n. The

ols estimator of β is

β̂ = r−1
xx rxy,(1.2)

where rxx = xtx is the correlation matrix of x variables and rxy = xty is the correlation

vector between y and each x variables. It is known that β̂ is an unbiased estimator for β

and has minimum variance. The variance of β̂ is given by

var
(
β̂
)

= σ2r−1
xx .(1.3)

If rxx is not nearly a unit matrix, multicollinearity may exists in the design matrix
which in this case, rxx matrix is an ill-conditioned one. From equation (1.2) and (1.3), the

ols estimator β̂ will give an inaccurate estimate for β and in�ate its variance. Therefore,

the ols estimator β̂ of β is not the best choice. One of the solutions of the multicollinearity
problem is the ridge regression method, which was proposed by [5]. Based on the ridge
regression method, estimate β by

β̃ = (rxx + kIp)
−1 rxy.(1.4)

For some ridge parameter k ≥ 0, from equation (1.4) simply add positive constant k to
the main diagonal of the correlation matrix rxx. However, the approach will be adopted
by adding di�erent constants to the main diagonal of rxx. In this case, estimate β by

β̃ = (rxx + diag (k1, k2, . . . , kp))
−1 rxy,(1.5)

where diag is the diagonal matrix with k1, k2, . . . , kp on the main diagonal and ki ≥
0, i = 1, 2, . . . , p. It is clear that equation (1.2) and (1.4) are special cases from equation
(1.5) with the choices k1 = k2 = . . . = kp = 0 and k1 = k2 = . . . = kp = k, respectively.

The main problem in ridge regression is the method of choosing the ridge parame-
ter(s). [5] showed that such parameter exists and the MSE of the ridge parameter β̃

of β is less than the MSE of the ols β̂ of β. [5] proposed a method for choosing the
ridge parameter(s) which is described in detail in the next section. [8] proposed another
approach for choosing the ridge parameter k. [1] modi�ed the two di�erent approaches
proposed by [5] and [8]. [3] proposed methods for estimating the ridge parameter(s). [7]
proposed di�erent estimators of the ridge parameter k and compared, via simulation,
with estimators proposed by [3], [8] and [9].

In case of the multinomial logit model, [11] considered several estimators for estimat-
ing the ridge parameter k. Based on the simulations, when the correlation between the
independent variable increases the MSE increases. At the same time, increasing the sam-
ple size decreases the MSE even when the correlation between the independent variables
is large. The non-Gaussian error terms and the highly collinear predictors are considered
by [14] which compared the least squares ridge estimation and the Least Absolute Devia-
tions (LAD) ridge estimation of the Seemingly Unrelated Regression Equations (SURE)
models through the MSE. [6] considered linear regression having both heteroskedasticity
and collinearity problems. The main result states thats the heteroskedasticity-robust
variances can be improved and the resulting bias is minimized by using the matrix per-
turbation method. A strong consistency of the ridge estimates is established by [2]. The
only requirement for the error term to be iid with absolute moment of order r (0 < r ≤ 1).
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[10] proposed a quasi-stochastically constrained least squares estimator and provide the
expectation of this estimator, demonstrate its consistency and asymptotic normality.

2. Ridge parameter

This section summarizes the approach proposed by [5]. Let

λmax = λ1 ≥ λ2 ≥ . . . ≥ λp = λmin > 0,

be the eigenvalues of the matrix rxx with corresponding eigenvectors ν1, ν2, . . . , νp, re-

spectively, and P = (ν1, ν2, . . . , νp) . [5] showed that the MSE of β̃ is given by

MSEβ̃ (k) = E
(
β̃ − β

)t (
β̃ − β

)
= γ1 (k) + γ2 (k)(2.1)

where γ1 (k) and γ2 (k) are the variance and squared bias of β̃, respectively, when the
ridge parameter k is used. Further, γ1 (k) and γ2 (k) are de�ned by

γ1 (k) = σ2
p∑
i=1

λi

(λi + ki)
2 ,(2.2)

and

γ2 (k) =

p∑
i=1

α2
i k

2
i

(λi + ki)
2(2.3)

where αi is the i
th element of α = Pβ.

It is known that the ols β̂ is an unbiased estimator (with the choice k1 = k2 = . . . =
kp = 0 in equation (1.5)) for β. Therefore, γ2 (0) = 0, and

MSEβ̃ (0) = γ1 (0)

= σ2
p∑
i=1

1

λi
.(2.4)

However, the ridge estimator β̃ of β is a biased estimator, and [5] showed that there
always exists a k > 0 such that

MSEβ̃ (k) < MSEβ̃ (0) ,(2.5)

if

k <
σ2

α2
max

.(2.6)

Therefore, [5] adopted

khki =
σ2

α2
i

, i = 1, 2, . . . , p(2.7)

as ridge parameters. [8] proposed the following ridge parameter

kgg =
σ2

α2
max + n−p

λmax
σ2
.(2.8)

Other approaches are dealing with di�erent methods of estimation the ridge parameter
k. A new ridge parameter based on modi�cation of MSEβ̃ (k) is proposed in the next
section.



1628

3. Proposed approaches

In this section, two approaches are proposed for choosing the ridge parameter k =
(k1, k2, . . . , kp)

t by re�ning the MSEβ̃ (k) , given by equation (2.1).

From equation (1.5), recall the de�nition of β̃,

β̃ = (rxx + diag (k1, k2, . . . , kp))
−1 rxy

= Wrxy(3.1)

= Zβ̂(3.2)

where
W = (rxx + diag (k1, k2, . . . , kp))

−1 and Z =
(
Ip + r−1

xx diag (k1, k2, . . . , kp)
)−1

. Further,

Z = Ip −W diag (k1, k2, . . . , kp) .(3.3)

For i = 1, 2, . . . , p. Let

ξi (W ) =
1

λi + ki
(3.4)

ξi (Z) =
λi

λi + ki
(3.5)

be the eigenvalues of W and Z respectively.
Now, the bias of β̃ is given by

bias
(
β̃
)

= E
(
β̃ − β

)
= − (Ip − Z)β

= −W diag (k1, k2, . . . , kp)β.(3.6)

The eigenvalues of W diag (k1, k2, . . . , kp) are

ki
λi + ki

, for i = 1, . . . , p.(3.7)

Therefore, the matrix W diag (k1, k2, . . . , kp) is a positive de�nite for ki > 0 for i =
1, . . . , p.

De�ne γ3 (k) as the sum of the eigenvalues of W diag (k1, k2, . . . , kp) i.e.

γ3 (k) =

p∑
i=1

ki
λi + ki

(3.8)

3.1. Remark. γ3 (k) is the trace of a positive de�nite matrix W diag (k1, k2, . . . , kp) and

can be used to control the bias of β̃ as we can see from equation (3.6). The key point is
to balance between the bias and the variance of the ridge estimate of β, by keeping γ3 (k)
falls between γ3 (0) = 0 and γ3 (khki) = σ2∑p

i=1 1/
(
σ2 + α2

iλi
)
.

MSEβ̃ (k) is minimized by [5]. Therefore, the proposed method chooses

k1, k2, . . . , kp such that the right hand side of equation (3.8) to be as small as possible.
For ε > 0 de�ne the following function

G (k) = MSEβ̃ (k) + εγ3 (k)

= γ1 (k) + γ2 (k) + εγ3 (k) ,(3.9)

G (k) is a direct modi�cation of [5] by subtracting a controlled amount εγ3 (k) from
MSEβ̃ (k) , note the negative sign before the right hand side of equation (3.6), where

γ1 (k) , γ2 (k) , and γ3 (k) are de�ned by equation (2.2), (2.3), and (3.8) respectively.
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3.2. Remark. Minimizing G (k) is expected to give better results than minimizingMSEβ̃ (k)

since a small positive amount εγ3 (k) is subtracted from MSEβ̃ (k) by keeping G (k) > 0.

In the same time, minimizing G (k) is to choose k only and the comparisons will be
based on the MSE.

Di�erentiate the right hand side of equation (3.9) with respect to ki, equate to zero
and solve for ki we have

ki =
2σ2 − ελi
2α2

i + ε
, i = 1, . . . , p(3.10)

To grantee ki ≥ 0 for i = 1, . . . , p, equation (3.10) implies ε ≤ 2σ2/λi. Therefore, take
ε = 2σ2/λmax. Substitute this value of ε in equation (3.10), we have

ki =

[(
λmax
λi

)
− 1
]
σ2(

λmax
λi

)
α2
i + 1

λi
σ2
, i = 1, . . . , p(3.11)

3.3. Remark. From equation (3.11), rewrite ki as

ki =


0, i = 1

σ2(
λmax
λi

)
[(
λmax
λi

)
−1

]α2
i+

1
λi[(

λmax
λi

)
−1

]σ2

, i = 2, 3, . . . , p

<
σ2

α2
max

.(3.12)

Therefore, the condition de�ned by equation (2.6) holds for this choice of ki.

3.4. Remark. The ridge parameters given by equation (3.11) are functions of the Condi-

tion Numbers = λmax
λi

. Condition numbers can be used as indication of multicollinearity,

100 ≤ λmax
λi
≤ 1000 indicates a mild multicollinearity, and λmax

λi
> 1000 indicates severe

multicollinearity problem [12]. It is clear from equation (3.11), ki is approximately zero
if rxx is approximately a unit matrix, then the multicollinearity problem disappears. In

this case, the ols β̂ and the ridge estimator β̃ are approximately the same.

3.5. Remark. From equation (3.11) it is clear that we are touching the exact problem
by giving zero for the largest eigenvalue of xtx and the largest value is given for the
smallest eigenvalue of xtx. This will be considered one of the main advantages of using
the proposed multiple regularization parameters.

From equation (3.11), rewrite ki as

ki =
λmaxσ

2

λmaxα2
i + σ2

− σ2(
λmax
λi

)
α2
i + 1

λi
σ2

=
λmaxσ

2

λmaxα2
i + σ2

− σ2λi
λmaxα2

i + σ2
, i = 1, . . . , p(3.13)

In case of severe multicollinearity, λmin is positive and very close to zero. Therefore, we
can ignore the term σ2λi/

(
λmaxα

2
i + σ2

)
. In this case, equation (3.13), reduces to

k0i =
σ2

α2
i + 1

λmax
σ2
, i = 1, . . . , p(3.14)
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3.6. Remark. The ridge parameters given by equation (3.14) are similar to the ridge
parameter proposed by [8],

kgg =
σ2

α2
max + n−p

λmax
σ2
.(3.15)

For the purpose of comparisons, rewrite kgg as

kggi =
σ2

α2
i + n−p

λmax
σ2
.(3.16)

The di�erence between kggi and k0i is n − p, the coe�cient of σ2/λmax appears in the
denominator.

Further, from equation (3.14), it is clear that for

k0i <
σ2

α2
max

the condition de�ned by equation(2.6) is satis�ed for k0i .

4. Empirical study

In ridge regression, the body fat data set is considered by [13], [?] and others. To
standardize the model the following terms are de�ned.

The standardized jth observation of the ith predictor variable is

xij =
Xij − X̄i√
n− 1SXi

,(4.1)

and the standardized jth observation of the response variable is

yj =
Yj − Ȳ√
n− 1SY

,(4.2)

where

SXi =

√√√√ n∑
j=1

(
Xij − X̄i

)2
/ (n− 1),

SY =

√√√√ n∑
j=1

(
Yj − Ȳ

)2
/ (n− 1),

for i = 1, . . . , p and j = 1, . . . , n. The standardized model in matrix form is given by

y = xβ + ε(4.3)

with the usual assumptions. Where

x =

 x11 . . . xp1
... . . .

...
x1n . . . xpn

 , y =

 y1
...
yn

 , and β =

 β1
...
βp

 .

Recall from equation (1.5), the ridge estimate of β is

β̃ = (rxx + diag (k1, k2, . . . , kp))
−1 rxy(4.4)

and the ridge estimate of y is

ỹ = xβ̃.(4.5)
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The error sum of squares for ridge regression is

SSEridge =

n∑
i=1

(yi − ỹi)2 ;(4.6)

The body fat data set consists of (n = 20) observations and (p = 3) predictor variables.
The predictor variables are X1 : triceps skinfold thickness, X2 : thigh circumference, and
X3 : midarm circumference. The response variable Y : the body fat. The correlation
between the variables X1 and X2 is 0.92384 and the pvalue for testing H0 : ρx1x2 = 0
is less than 0.0001. Further, λ1 = 2.0664727, λ2 = 0.9328007, λ3 = 0.0007266, λ1/λ2 =
2.21534, and λ1/λ3 = 2844.030691. Therefore, this data set has severe multicollinearity.

For the body fat data set, compute γ1 (k) , γ2 (k) , andMSEβ̃ (k) for k = 0, khki , kggi , ki
and k0i . Where γ1 (k) , γ2 (k) , and MSEβ̃ (k) , are variance, squared bias , and the MSE

of β̃ and de�ned by equation (2.2), (2.3), and (2.1) respectively.
Under simple random sampling without replacement design, simulate m random sam-

ples of sizes n = 5, 6, . . . , 10, 12, . . . , 18. For i = 1, . . . ,m, compute γ
(i)
1 (k) , γ

(i)
2 (k) ,

MSE
(i)

β̃
(k) , for the same choices of k.

Simulate m = 5000 random samples for n = 5, 6, . . . , 10, 12, 14; m = 4845 for n = 16;
and m = 190 for n = 18.

Based on the ridge parameter k estimate σ2 by

σ̃2
ridge (k) = SSEridge/ (n− p) ,(4.7)

be the ridge estimator of σ2. Let γ1 (k) , γ2 (k) , andMSEβ̃ (k) be the averages of γ
(i)
1 (k) ,

γ
(i)
2 (k) , MSE

(i)

β̃
(k) , computed from m simulated random samples. The results are

summarized in Table (1).

4.1. Results and Conclusions. From Table (1) we have the following results:

(1) The results from the body fat data set are summarized by:
(a) MSEβ̃ (ki) < MSEβ̃ (khki) < MSEβ̃ (k0i) < MSEβ̃ (kggi) < MSEβ̃ (0) .

(b) γ1 (ki) < γ1 (khki) < γ1 (k0i) < γ1 (kggi) < γ1 (0) .
(c) γ2 (0) < γ2 (kggi) < γ2 (ki) < γ2 (k0i) < γ2 (khki) .

(2) The simulation results from the body fat data set are summarized by:
(a) For n = 5, . . . , 10 :

MSEβ̃ (ki) < MSEβ̃ (kggi) < MSEβ̃ (k0i) < MSEβ̃ (khki) < MSEβ̃ (0) .

For n = 12, 14 :

MSEβ̃ (ki) < MSEβ̃ (k0i) < MSEβ̃ (khki) < MSEβ̃ (kggi) < MSEβ̃ (0) ,

and MSEβ̃ (k) follows the same pattern as the data set for n = 16, 18.

(b) For n = 5, 6, 7 :

γ1 (ki) < γ1 (kggi) < γ1 (k0i) < γ1 (khki) < γ1 (0) ,

for n = 8, 9, 10 :

γ1 (ki) < γ1 (k0i) < γ1 (kggi) < γ1 (khki) < γ1 (0) ,

and γ1 (k) follows the same pattern as the original data set for n = 12, 14, 16, 18.
(c) For n = 5, . . . , 10, 12, . . . , 18, γ2 (k) follows the same pattern as the original

data set.
Based on the computations and simulations from the body fat data set,
we can conclude that our choice for the ridge parameter k = ki has min-
imum variance and minimum MSE among all other choices for the ridge
parameters.
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Table 1. The computations are rounded into two digits after decimals.
γ1 (k) , γ2 (k) , andMSEβ̃ (k) are the means of m random samples, and

for di�erent sample sizes n = 5, . . . , 18. When n = 20 : γ1 (k) , γ2 (k) ,
and MSEβ̃ (k) are computed from the data set. σ2 is estimated by

σ̃2
ridge (k) .

n k = 0 k = khki k = kggi k = ki k = k0i
γ1 (k) 340.87 36.96 36.91 30.93 36.93

5 γ2 (k) 000.00 23.35 23.35 23.35 23.35
MSEβ̃ (k) 340.87 60.31 60.26 54.28 60.28

γ1 (k) 113.32 10.31 10.27 8.77 10.28
6 γ2 (k) 0.00 9.35 9.34 9.34 9.35

MSEβ̃ (k) 113.32 19.65 19.61 18.11 19.63

γ1 (k) 76.22 6.31 6.30 5.55 6.30
7 γ2 (k) 0.00 6.39 6.38 6.39 6.39

MSEβ̃ (k) 76.22 12.70 12.68 11.93 12.69

γ1 (k) 57.74 4.31 4.31 3.90 4.31
8 γ2 (k) 0.00 5.03 5.02 5.03 5.03

MSEβ̃ (k) 57.74 9.34 9.33 8.93 9.34

γ1 (k) 46.34 3.03 3.04 2.79 3.03
9 γ2 (k) 0.00 3.96 3.95 3.95 3.96

MSEβ̃ (k) 46.34 6.99 6.99 6.74 6.99

γ1 (k) 39.14 2.27 2.27 2.12 2.27
10 γ2 (k) 0.00 3.39 3.38 3.39 3.39

MSEβ̃ (k) 39.14 5.66 5.66 5.51 5.66

γ1 (k) 30.47 1.41 1.42 1.34 1.41
12 γ2 (k) 0.00 2.60 2.59 2.60 2.60

MSEβ̃ (k) 30.47 4.01 4.01 3.94 4.01

γ1 (k) 24.73 0.99 1.00 0.96 0.99
14 γ2 (k) 0.00 2.20 2.19 2.20 2.20

MSEβ̃ (k) 24.73 3.19 3.19 3.15 3.19

γ1 (k) 20.88 0.69 0.71 0.67 0.69
16 γ2 (k) 0.00 2.00 1.99 2.00 2.00

MSEβ̃ (k) 20.88 2.70 2.70 2.68 2.70

γ1 (k) 18.29 0.50 0.52 0.49 0.51
18 γ2 (k) 0.00 1.87 1.86 1.87 1.87

MSEβ̃ (k) 18.29 2.38 2.38 2.36 2.38

γ1 (k) 16.10 0.31 0.33 0.31 0.32
20 γ2 (k) 0.00 1.85 1.83 1.85 1.85

MSEβ̃ (k) 16.10 2.17 2.17 2.16 2.17

5. Final conclusions

In this paper a new approach for choosing the ridge parameter k has been proposed.
In case of severe multicollinearity the proposed approach is also modi�ed for choosing
the ridge parameter k.

In case where the correlation matrix xtx is ill-conditioned based on computations and
simulations from the real data set, the proposed approach for the ridge parameter k
has a minimum MSE and a minimum variance of β̃ among other approaches discussed
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in this paper. Furthermore the proposed approach can be adopted in the case where
no multicollinearity problem exist since the proposed approach and the ols method give
approximately the same results.
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