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Poisson-odd generalized exponential family of
distributions: theory and applications
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Abstract

In this paper, we introduce a new family of distributions called
the Poisson-odd generalized exponential distribution (POGE). Vari-
ous properties of the new model are derived and studied. The new
distribution has the odd generalized exponential as its limiting distri-
bution. We present and study two special cases of the POGE family
of distributions, namely the Poisson odd generalized exponential-half
logistic and the Poisson odd generalized exponential-uniform distribu-
tions. Estimation and inference procedure for the parameters of the
new distribution are discussed by the method of maximum likelihood;
we also evaluate the proposed estimation method by simulation studies.
Applications to two real data sets are provided in order to demonstrate
the performance of the proposed family of distributions.
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1. Introduction

Exponential distribution is commonly used in solving many practical problems, espe-
cially in life time data analysis. In probability modeling, numerous families of distribu-
tions have been proposed and studied via different directions based on the exponential
distribution. For instance, some distributions generalized (or extended) the exponential
distribution, these includes the Weibull (W) distribution, linear failure rate distribution
(LFR), generalized exponential distribution (GE) by [14], generalized linear failure rate
(GLFR) by [35], generalized linear exponential (GLE) by [20], exponentiated generalized
linear exponential (EGLE) by [34], the Nadarajah and Haghighi’s (NHE) exponential-
type by [29], among other.
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In another approach, a new family of probability models with more flexibility is gener-
ated by combining the continuous and discrete probability distributions such as, the expo-
nential geometric (EG) distribution introduced by [3], [16] proposed the exponential Pois-
son (EP), exponentiated exponential Poisson (EEP) by [33], complementary exponenti-
ated exponential geometric (CEEG) by [19], exponentiated exponential binomial(GEB)
by [7], generalize exponential power series (GEPS) by [21], binomial exponential-2 (BE2)
by [6], Poisson exponential (PE) by [10], generalized Gompertz-power series (GGPS)
by [40], Lindley-Poisson (LP) by [13], bivariate Weibull-power series by [30] and Linear
failure rate-power series (LFRPS) by [22]. Others that follow the same approach in-
clude the Weibull power series(WPS), extended Weibull power series (EWPS), exponen-
tiated Weibull-logarithmic (EWL), exponentiated Weibull Poisson (EWP), exponentiated
Weibull geometric (EWG) and exponentiated Weibull power series (EWPS) distributions
proposed and studied by [27, 37, 24, 23, 25| and [26] respectively. Moreover, in recent
years, some new generators of distributions based on the exponential distribution such as
the odd-generalized exponential family of distributions (OGE) and odd- exponential-G
family of distributions (OEG) were proposed and analyzed by [39] and [9] respectively. In
this article, we propose a new family of distributions called the Poisson odd generalized
exponential distribution (POGE), by joining together the odd generalized exponential
family of distributions and the Poisson distribution. The rest of the paper is structured
as follows. In section 2 the new POGE family of distribution is obtained, several prop-
erties of this model are derived and studied such as the explicit algebraic expression of
its ordinary moments, order statistics, Shannon entropy, Renyi entropy and reliability.
In section 3 maximum likelihood estimation for the model parameters is discussed. Two
real applications are provided in section 4. Section 5 provides conclusions.

2. The POGE family of distributions

Let Y1,Ys, -+, Y, be arandom sample of size N from odd generalize exponential distri-
_ oG B
bution with cumulative distribution function (cdf) given by J(y, «, 5,¢) = (1 —e “GW ) ,

y > 0,a,8 > 0, where G(y) = G(y; () is the baseline cdf, ¢ a vector parameter and
G(y) = 1 — G(y). Let N be a zero-truncated Poisson random variable independent of
vector Y with probability mass function given by P(N = n) = \"((e* — 1)n))™*, X >
0, n € N. Let X = min{Y}L,, then, the conditional random variable (X|N = n) has

_aS@\ 7
the cdf F(X|IN =n)=1-— |:1 — (1 —e G(I>> . Hence the marginal cdf of X can

be obtained as

G\ P
7)\<1fe aG(I))
1—e

T—e)

(2.1)  F(z;¢) = x>0,

where «a, 3, A > 0, £ a vector parameter and £ = («, 3, A, (). A random variable X with
cdf given by ( 2.1), is denoted by X ~ POGE(£), and it’s probability density function
(pdf) is given by

_a@\”?
e aﬂ)\g(x) _O‘g(i) o g(z) B-1 *)\<176 (w))
(2.2) f(%f)*me () (1—@ ()) e )
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The followings are some new and existing members of POGE(E) family of distribu-
tions.

(1) If 8 =1, we have Poisson-odd exponential family of distributions (POE)

(2) If G = {7, we have exponentiated exponential Poisson (EEP) by [33]

(3) If 8 =1 and G' = {7, we have exponential Poisson (EP) by [16]

(4) f @« =0° and G = % we have exponentiated Weibull Poisson (EWP) with
parameters ¢, 3,0 and A by [26]

(5) fa=06°p=1and G = we have Weibull Poisson (WP) with parameters
¢, 0 and A by [27]

(6) If G =1 — e ", we have Poisson-generalize Gompertz (PGG) distribution

(7) If B=1and G =1 — e %", we have Poisson-Gompertz (PG)

The limiting distribution of the POGE(¢) given by ( 2.1) when A — 0T is, lim, _,o+ F(x;¢) =

¢
1+4x¢

_aG@\ A
(1 —e GW)) , which is the cdf of OGE(a, 8, ¢).

2.1. Special cases of POGE distribution. In this subsection, we present two special
cases of the POGE family of distribution namely the Poisson odd generalized exponential-
Half logistic (POGE-HL) distribution and Poisson odd generalized exponential-Uniform
(POGE-U) distribution which can be very useful in solving various problems in practical
applications in the fields of sciences and applied sciences.

2.1.1. The POGE-Half Logistic (POGE-HL) distribution. The Poisson odd generalize
exponential-Half Logistic (POGE-HL) distribution is obtained by choosing the baseline
cdf and pdf in (2.1) and (2.2) to be Half Logistic distribution defined by G(z) = {7
and g(z) = 7:;2 respectively. For z > 0 and parameters «, 3, A > 0, the cdf and pdf
of the POGE-HL distribution are given by

2e
(1+e
e—1.\78
7>\<17e‘“( 2 >>
1—e

(2.3) F(z;a,B,)\) =

(I—e?) ’
(€L 1 —a(f=1)\?
ozﬁ)\ez al o) ) 70((6:_1) B 7)\<175 2 >
. — _ 2
(24) f(xvaaﬁ7)\) 2(1—6_’\) (1 e e ,

respectively, where its limiting distribution is the odd-generalized exponential half lo-
gistic distribution (OGE-HL) when A — 0. Also when the shape parameter 8 = 1 we
obtain a new family of Poisson odd exponential-Half Logistic (POE-HL) distribution.

2.1.2. The POGE-Uniform (POGE-U) distribution. The Poisson odd generalized expo-

nential - Uniform (POGE-U) distribution is obtained by taking the baseline cdf and pdf

in (2.1) and (2.2) to be a continuous Uniform(0,b) distribution defined by G(xz;¢) = ¢
1

and g(z;¢) = ¢ respectively, where ( = b and 0 < = < b. The cdf and pdf of the

(POGE-U) distribution are given by
7>\(17e7“((b3w>>>ﬁ

T—e?) !

1—e

(2.5) F(z;a, B, b) =

_x —al(—T Y\ B
aBrbe @) T (D)
. - _ (b—x)

(2.6)  f(z;0,B,A,b) =220 e (1 e ) e

respectively, where its limiting distribution is the odd-generalized exponential uniform
distribution (OGE-U) when A\ — 0. When the shape parameter 3 = 1 we obtain a new

)
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class of Poisson odd exponential-Uniform (POE-U) distribution.
Figure 1 display the plots of the density functions of the POGE-HL and POGE-U distri-
butions for some selected values of parameters.
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Figure 1. pdf plots: POGE-HL (i) & (ii) and POGE-U (iii) & (iv).
2.2. Expansion of distribution. We provide a series representation of the POGE

distribution based on certain conditions. First for |z| < 1 and for a > 0 real and non
integer, we have

a1l = (1)T(@) ; i a—1Y
@7 (-2 :Zﬁz :Z(—n( ; )z.

_aG@)
G(z)

B
—A|l 1—e
By expanding the exponential expression e ( ) in (2.2), then, for 8(i +
1) > 0 real and non integer we can apply (2.7), and after some algebraic manipulations,
we obtain

s ii 1)iti )\1+1F(5(i+ 1) ag(@) —eG+ng
' — = 1—e MI(B(i + 1) — 7)ils! G(z)? ’
oy G(x) ; )
Also by the exponential expansion of e *UtEE = heo (71)’“04;(]“) ggi: in

(2.8), then, applying generalized binomial expansion of G(z)~*+? = (1—G(x))~*+? =

£ () 6, e g
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Z Z( z+1 1)<7(kl+2))

1,j=0 k,l=0

-1 i+j+k+1 Oék )\i+1 ]+ 1 k
(2.9) x (=1 (1_64)%;( S g@)G@),
thus,

(2.10) (z;¢) = Z Z 06k 9 (@ k+1+1,0),

i,j=0 k,l=0

where,

_( Bli+1)—-1 C(k42) | (=1 R L 4 1)
(211) oG jkn) = ( j ) ( : ) e Tr R

and g* (z;k + 1+ 1, () is the density of the exponentiated G(z; () to the power of k+1+1

2.3. Quantile and moments. The P*" quantile of the POGE(¢) distribution can be
used for generating random data that follow the POGE family of distributions and is
given by

(2.12)  Q(p) =G '(¥(p)),

where
1
—log(1—p(1—e= )\ B
—log (1 _ (%) )

1
—log(1—p(1—e—*))\ B
o —log (1 - (%) )

and G7'(.) is the baseline quantile function, thus, the quantile functions of the POGE-
HL and POGE-U family of distributions are Qproce—nr(p) = —log (1_19(’?)) and

(213) 9(p) =

1+9(p)
Qroce-u(p) = bV¥(p), respectively, where ¥(p) is given by (2.13).

We now compute the 7" moment, moment generating function of the POGE(£) which
can be use to study some features and characteristics of the new distribution, such as the
mean, variance, skewness and kurtosis etc. For a random variable X ~ POGE(§) then,
the 7" moment of X is obtained by

B(X") = /OOO " f(z)da.

By applying (2.10), we have

X") = Z Z ,J,k,z)/ " f(z;k+1+1,¢) dx,
17 =0 k,1=0

(2.14) E(X’”):.ZZ ok B(YD),
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where E(Y.) is the r** moment of the exponentiated G(z;¢) distribution with power
parameter k + [ + 1. Therefore, we can use (2.14) to compute the r"-moment of the
POGE-HL using the r*"-moment of the generalized half logistic distribution.

2.1. Lemma. Let X be a random wvariable that follow generalized half logistic GHL(~)
distribution, then, for r € N, the " moment of X is given by

(2.15) E(X" GHL7272< 7+1 )(—1)TBOT(7,w—|—1).

For a random variable X that follows POGE-HL distribution, the r** moment of X
can be computed by putting (2.15) in (2.14) when vy =k + 1+ 1, as

e}

(2.16) E(X")pocm-mr = Y Y 0fijkiw Bor(k+1+1,w+1),

i,5,k=0 1,w=0
where

ity = ( B +j1)71 ) ( f(kl+ 2) ) ( —(k +wz+2) )

2 (_1)i+j+k+r ak AH—I (,] 4 l)k
(I—e)ilk!
2.2. Lemma. Let X be a random wvariable that follow generalized Uniform GU(0,b)

distribution, with power parameter k + 1+ 1, then, for r € N, the r** moment of X is
given by

X

(k+1+1)0"
E+l+r+1’

hence, the 7" moment of X ~ POGE-U is obtained by substituting (2.17) in (2.14)
as

(2.18)  E(X")pocs_uv = Z Z Qi) 7

i,j=0 k,l=0

Figure 2 and 3 provide the plots for the mean and variance of the POGE-HL and POGE-U
distributions.

(217) E(X")eu =
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Figure 2. Plots of Mean and Variance: (i) for @ > 0 and some values
of 8 and A, (ii) for 8 > 0 and some values of « and A & (iii) for A > 0
and some values of « and § for the POGE-HL distributions.
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Figure 3. Plots of Mean and Variance: (i) for @ > 0 and some values
of 8, A and b = 2 (ii) for 8 > 0 and some values of o, A and b = 2
& (iii) for A > 0 and some values of &,  and b = 2 for the POGE-U
distributions.

The moment generating function (mgf) of the POGE distribution can be computed
from

"
(2.19)  Mx(t er
r=0

Substituting (2.14) in (2.19) gives the mgf of the POGE distribution. Also the mgf of
the POGE-HL can be obtained by putting (2.16) in (2.19) as

Mx (t)pogE—HL = Z Z 0(i,j,kt,mw) Bor(k+14+1,w+ 1),

r,1,j=0 k,l,w=0

= (WD) () (o)

2 (71)i+j+k+r tr ak )\i+1 (] 4 l)k
(I—e)ilk!r!

where

X

For the POGE-U, we get the moment generating function by substituting (2.18) in
(2.19) as

(k+1+ 1))

(2.20) Mx(t)poce-v = Z Zg(mkn CE T

7,4,j=0 k,l=0

One of the alternative measures for the skewness and kurtosis of a distribution which

can be more appropriate for the POGE distribution are the Bowley skewness (B) and
Moores kurtosis (M). These measures are defined as follow

_ Qu/a +Qa/n —2Q¢/

B
Qez/a) — Q14
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M

_ Qus) — Quys) + Qurys) — Qs/s)
Qes/s) — Qezss) ’

respectively. We now demonstrate how the parameters « and f3 effect the behavior of the
skewness and kurtosis of the POGE-HL and POGE-U distributions for fixed values of
parameters A and b. Figure 4 illustrate the plot of Bowley skewness and Moores kurtosis
of the POGE-HL distribution while Figure 5 for the POGE-U distribution.
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Figure 4. Plots of skewness (i) & (ii) and kurtosis (iii) & (iv) of POGE-HL.
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Figure 5. Plots of skewness (i) & (ii) and kurtosis (iii) & (iv) of POGE-U.

2.4. Order statistics. Order statistics are very important tool in many areas of statis-

tical theory and applications such as in quality control and reliability. Let X1, Xo, -+ , X,
be a random sample of size n obtained from POGE distribution, then, the density fj.»(x)
of the 7' order statistic Xjm,3=1,2,3,--- ,n, can be express as

n! =101 _ p(ay)n—i
i @ E@Y T = F@)

{ nl (—1)i

=2 G @FE@T

fiﬂjin(‘r;a767)‘79) =

3~

Substituting F'(z) and f(x) given by (2.1) and (2.2) respectively, and using the binomial
expansion and some algebraic manipulations we have

n—jitj—1
(2.21)  fin(z;€) = U, f (x50, 8, Ak + 1), ),

3

|
<.

I
o
£
Il
<)

where

_(iti-1 nt (-1 — e MD)
Uik = ( L ) (E+1)(1 —e2)+i(j — D)(n—j—i)i

and f(x;a, 8, \(k+1),() is the pdf of POGE with parameters «, 3, \(k + 1) and ¢. The
r*" moment of the j** order statistics X;.,, is give by
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n—jitj—1 -
(2.22) E(Xj,) = \Illk/ " f(z;a, B, Ak + 1), )dz,
, 0

=0 k=0

or
n—jit+j—1

(2.23) E(X;m) = U, wE(Ys),
=0 k=0

where Y5 ~ POGE(a, 8, A(k 4 1),¢) and E(Yy) is the " moment of the POGE distri-
bution with parameters a, 8, A(k + 1) and (.

2.5. Entropy. Entropy is a measure of uncertainty of a random variable. In this section,
we consider the two important entropies known as the Shannon and Renyi entropies. The
Shannon entropy measure is defined by E[—log f(z)]. For a random variable X having
POGE distribution, the Shannon entropy of X can be computed by considering lemma
2.3 and proposition 2.4 as follows.

2.3. Lemma. For p1,p2,p3, € R, let

(%) [1 _ 67a<1fm>]”2‘1 B

(1—=x)rs

1zPle @
(2.24)  (p1, p2,p3,&) :/
0

then,

oo oo  — 1 — —k
(2.25)  @(p1,p2,p5,8) = D > ikl X p) ( p2 +§>’Z > ( P3l ) ;
i3 =0 k,l=0

(—1yititkl gk i
where Ci,j,k,l(av A pl) = il (prtk+I+1) -

8
Y
Proof. By Taylor expansion of e [ } , and for ps+Bi > 0 real and non integer
we apply (2.7) then, exponential expansion and generalized binomial expansions. O

2.4. Proposition. Let X be a random variable with pdf given by ( 2.2), then,

E (log G(X)) = %330(07632 - t7€)|t:O7
GX)\ _  afx
b (G(‘X)) = T—en P LA 38,
E (log (1 —e agﬁ;; ) = %%w(o,tﬂ-ﬂ,z,f)h:o,

ax)\ P
E ((1—€_OLG§X;> ) = %@(07257275)

Proof. Considering the transformation Y = G(z,(¢), y € (0,1), and Lemma 2.3. O
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Thus, the Shannon entropy of POGE distribution is obtained as

E[—log f(X)] = — log (1 fﬁe{)) — E(logg(X)) — 2E (log G(X))

IR )
(2.26) am ((1_6 Gﬁis)ﬂ),

and hence,

B[ log /(X)) = — log ( ‘_“”,A) ~ B (log g(X)

1
2aBN 0 a?BA
TlU—eNa ©(0,8,2 —t,8)]i=0 +‘Zi‘:fg:;5¢(175,37§)
af(B—1A 0 af\?
_ = t 2 — _ 26,2,£).
(1_6_,\) 8t90(07 +ﬁ7 a£)|t70+ (1—€_A)Lp(0’ 57 af)
For a random variable X with pdf (2.2), the Renyi entropy is defined by
Iry = (1 —p)~Hog [ [, f(z)?dz], where p > 0 and p # 1. We first simplify
W G@)\ A
0y S@ G\ PB=D) —Ap (1—5 G<‘)>
fp(x;f) [ (045/\) ( ) e P E() (1 _e G(z)) e ,
G(x) (1—e e
_a 8@ B
—Ap (1 e G<*>> p(B=1)—p
expanding e , and then, expanding (1 —e “a@ using

(2.7) and finally expanding the exponential function obtained, arrive at

oo _1)it+d i 1) —
@0 = mny 3 M ( ﬂ(p+j) p )

i,j=0

Xi “p+4)* 9" (2)G" ()
k=0

kl (1 )k+2p

In addition, expanding (1 — G(x))~ %2 using generalized binomial expansion yields

(2.27)  fP(z:6) = ZJ” k(a, B, X, p)g” ()G (),

where
© (1) (A p)E L) —
Tigi (0 BN D) = Jasging 3 %( Blp+i)—p )
i,j=0 : J
o k+l( -\ k o
p+3) (k +2p)
I G
k=0
P
and Ja,gx,p = (1f§jk) .
Thus,

e}

1 oo
(2.28) Ig(y) = ﬁlog [Z Ji,]‘,k(a,ﬁ,)\,p)/ gp(a:)GkH(a:)d:n} .
1=0

—o0
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2.6. The stress-strength parameter. Suppose that, the random variables X; and
X are independent with POGE(«, 51, A1,¢) and POGE(«, 82, A2, () distributions, re-
spectively. In reliability studies, the stress-strength model describes the life of a com-
ponent which has a random strength X; that is subjected to a random stress X». If
X1 > X5 the component will function satisfactorily and when X5 > X; the component
will fail because the stress applied exceed the strength. The reliability of a component
R=P(Xs < X1) = [;° f1(x; &) Fa(x; §)dz, has many applications in different fields of en-
gineering such as maintenance in electric power, electronics and in study of fatigue failure
of aircraft structures. The reliability function can be computed as follows.

h(@E)

ICHITSICHIES 1—e )

_a G\ A1 _aG@)\ P2
—A1 (176 G(m>> —A2 <lfe GW))
(2.29) e e

G(x)
TG

B2
— A2 <176 )
By the expansion of e and some algebraic substitutions we have

(2.30) /O°° Ji(@; &) Fa(a; §)dw = ﬁ

abih = Ag
- <(1e—)‘1 —eN2) Z

/1 6(_1(111:5)12) (1 - e*a(lfm))ﬁwaw,l

(2.31) e_M(l_e_a(ﬁ))Bl da

Considering (2.24), we obtain

A= e
(2.32) ~ i e_iﬁl)l‘li = f:o AP ©"(0, 1 + f2w, 2, §),
where
©"(0, B + Paw, 2, §) = i icm,kzah
3,5=0 k,l=o0

(Fne ) (54,

i k+l Kk
Sijka(a, A1) = % and ¢*(.) follow similar to ¢(.) given in Lemma 2.3.
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3. Estimation and inference

In this section, we estimate the unknown parameters of the POGFE distribution by the
method of maximum likelihood. Let X; (i = 1,2,---,n) be a random sample of size n
obtained from the POGE distribution with observed values z1, z2, ..., z,. The MLEs of
© = (o, 8, 1,¢)T are obtained by maximization of the log-likelihood function (log£(©))
given by

log £(©) = nlog a+ nlog B+ nlog A + Zlogg(mi; ¢) — QZlogG(mi; Q)
im1

i=1

—nlog(l—e™) - aiH(mi; O+ (8- 1)znj10g (1 — e oH @)
i=1 i=1

_ )\Z(l _ e_O‘H(mM())B.
i=1

The MLEs of © = (o, 3,\,¢)7 say 6 = (d,ﬁ,:\, §A)T are obtained simultaneously by
oL _ o

solving the 2£ = 9¢ — = %- = 0 numerically.

da — 9B _Oox D

In the case of PdaGE—U distribution where ¢ = b the upper boundary of the distribution
support is restricted by the choice of the parameter b, therefore, for an ordered random
sample of size n, say T1i:n, T2:n, T3:n, - * , Tn:n Which follow POGE-U distribution, we can
obtain the estimates of «, 3 and A by the numerical solutions of g—ﬁ = g—é = % =0
for a fixed b > X,.,. Due to the different choices of b > X,.n, the procedure may
produces a large bias for the MLEs of «, § and A. [4] proved using simulation study in
the estimation of the parameters of Weibull-pareto (WP) distribution, that, the modified
maximum likelihood method (MMLE) may be a better choice for reducing the bias. For

the interval estimate and hypothesis tests of the parameters we required J(©) the 4 x 4

2
Fisher information matrix which is given by J(©) = — (%). The elements of

J(©) can be obtained from the author under request.

3.1. Simulation. Simulations have been carried out in order to investigate the estima-
tors of the parameters of the POGE-HL distribution. We generated 10,000 samples of size
n = 100, 200, 300 and 400 from the POGE-HL distribution for some values of o, 8 and .
The MLEs are determined through solving the nonlinear equations % = g—é = % =0,
where H(z;;¢) = H(z;) = (FMT_l) The MLEs and their standard deviations (sd) are
presented in Table 1 below. The results show that each MLE converges to its true value
in all cases when the sample size increases and the standard errors of the MLEs decrease

as the sample size increases.



Table 1. MLEs and standard deviations for some selected values of
parameters.
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Sample size

Selected values

Estimated values

Standard deviations

n o« B A & B A sd(&)  sd(B)  sd()N)
100 05 0.5 0.5 0.498 0.5193 0.7250 0.1243 0.0758 0.9787
1.0 1.0 1.0 1.0075 1.0059 1.2157 0.2910 0.1380 1.3936

1.0 0.5 1.0 1.0351 0.5049 1.1099 0.3131 0.0727 1.1891

2.0 1.0 2.0 21947 0.9863 1.9984 0.7992 0.1249 1.6034

1.3 2.5 1.0 1.2759 2.4866 1.1932 0.3118 0.3787 1.3459
0.03 0.3 0.5 0.0309 0.3102 0.6401 0.0091 0.0478 0.7005

1.2 15 2.0 1.3322 1.4828 1.8496 0.4345 0.1969 1.5159

0.2 05 0.2 1.9424 0.5307 0.5295 0.0437 0.0770 0.8741

0.7 06 0.5 0.6932 0.6214 0.7430 0.1711 0.0911 1.0488

4.0 5.0 2.0 4.4856 5.2579 1.5705 1.0749 1.0748 1.4329

0.3 04 3.0 04100 0.3937 2.7477 0.2351 0.0447 1.5294

200 0.5 0.5 0.5 0.4976 0.5096 0.6143 0.0903 0.0573 0.7108
1.0 1.0 1.0 0.9935 0.9978 1.1659 0.2302 0.1032 1.2135

1.0 0.5 1.0 1.0150 0.5015 1.0543 0.2290 0.0559 0.8789

20 1.0 2.0 2.0804 0.9862 2.1215 0.6723 0.0884 1.4900

1.3 25 1.0 1.2795 2.4664 1.1990 0.2754 0.2689 1.2607
0.03 0.3 0.5 0.0306 0.3038 0.5591 0.0072 0.0367 0.5207

1.2 15 2.0 1.2589 1.4780 2.0325 0.3755 0.1381 1.4370

0.2 05 0.2 0.1960 0.5189 0.3957 0.0306 0.0568 0.5527

0.7 06 0.5 0.6931 0.6111 0.6321 0.1252 0.0685 0.7534

4.0 5.0 2.0 4.1441 5.0277 2.0423 1.0281 0.8107 1.6150

0.3 04 3.0 03542 0.3964 2.9379 0.1583 0.0316 1.2982

300 0.5 0.5 0.5 0.5003 0.5064 0.5602 0.0736 0.0488 0.5052
1.0 1.0 1.0 1.0002 0.9955 1.0867 0.1939 0.0867 0.9918

1.0 0.5 1.0 1.0155 0.5006 1.0164 0.1874 0.0462 0.6735

2.0 1.0 2.0 20403 0.9879 2.1430 0.5873 0.0723 1.3808

1.3 25 1.0 1.2783 2.4691 1.1893 0.2524 0.2239 1.1753
0.03 0.3 0.5 0.0302 0.3009 0.5252 0.0054 0.0341 0.4474

1.2 15 2.0 1.2272 1.4783 2.0887 0.3313 0.1114 1.3169

0.2 05 0.2 0.1966 0.5140 0.3448 0.0254 0.0463 0.4528

0.7 06 0.5 0.6958 0.6058 0.5734 0.1020 0.0572 0.5837

40 50 2.0 4.0995 49897 2.0346 0.9173 0.6676 1.4149

0.3 04 3.0 03352 0.3978 3.0026 0.1306 0.0260 1.2458

400 0.5 0.5 0.5 0.4994 0.5043 0.5467 0.0647 0.0426 0.4420
1.0 1.0 1.0 1.0009 0.9965 1.0607 0.1692 0.0773 0.8407

1.0 0.5 1.0 1.0116 0.4994 1.0036 0.1603 0.0408 0.5315

2.0 1.0 2.0 2.0109 0.9909 2.1480 0.5247 0.0628 1.2195

1.3 25 1.0 1.2850 24671 1.1314 0.2278 0.1934 1.0662
0.03 0.3 0.5 0.0301 0.3029 0.5378 0.0042 0.0248 0.3733

1.2 15 2.0 1.2144 1.4810 2.1164 0.3074 0.0974 1.2441

0.2 05 0.2 0.1965 0.5114 0.3183 0.0221 0.0415 0.3813

0.7 06 05 06989 0.6041 0.5441 0.0886 0.0507 0.4702

40 50 2.0 4.0629 49759 2.0647 0.8604 0.6116 1.3101

0.3 04 3.0 03260 0.3979 3.0115 0.1127 0.0223 1.0614
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4. Application

In this section, we provide applications of the POGE distribution to two real data set
in order to illustrate the importance of the POGE family of distributions. For compari-
son, we fitted the first data set with the following distributions, the POGE-HL, POE-HL,
odd generalized exponential half logistic (OGE-HL), Poisson half logistic (PHL) by [2],
exponentiated half logistic (EHL) by [15], Olapade-generalized half logistic (OLGHL)
by [32], generalized exponential (GE) by [14], generalized exponential Poisson (GEP) by
[8], BurrXII-Poisson (BXIIP) by [38] and generalized BurrXII-Poisson (GBXIIP) by [28].
For the second data we fitted the POGE-U distribution and compare the fit with the
POE-U, odd generalized exponential uniform (OGE-U), gamma-uniform (GU) by [41],
generalized modified weibull (GMW) by [11], beta modified weibull (BMW) by [36], beta
weibull (BW) by [18], modified weibull distribution (MW) by [17], generalized linear
failure rate (GLFR) by [35], generalized linear exponential (GLE) by [20], exponenti-
ated generalized linear exponential (EGLE) by [34] and some family of the generalized
modified weibull-power series (GMWPS) such as generalized modified weibull-Poisson
(GMWP), generalized modified weibull-Geometric (GMWG) and generalized modified
weibull-Logarithmic (GMWL) distributions proposed by [5]. The MLEs of the param-
eters for each model are computed and the three criteria for model selection are used
for comparison namely the Akaike information criterion (AIC), consistent Akaike in-
formation criterion (CAIC) and Bayesian information criterion, also the goodness-of-fit
statistics known as the Kolmogorov Smirnov (KS) is used to compare the fit of the new
POGE family and other competing models. The model with the least values of AIC,
CAIC, BIC and KS fit the data better than the other models. The MLEs of each model
parameters (é) and numerical values of these measures for the first data set are given in
Table 2 while for the second data set in Table 3 below. The first data set is given by
[31] the data set are the 100 observations on breaking stress of carbon fibers (in Gba):
0.39, 0.81, 0.85, 0.98, 1.08, 1.12, 1.17, 1.18, 1.22, 1.25, 1.36, 1.41, 1.47, 1.57, 1.57, 1.59,
1.59, 1.61, 1.61, 1.69, 1.69, 1.71, 1.73, 1.80, 1.84, 1.84, 1.87, 1.89, 1.92, 2.00, 2.03, 2.03,
2.05, 2.12, 2.17, 2.17, 2.17, 2.35, 2.38, 2.41, 2.43, 2.48, 2.48, 2.50, 2.53, 2.55, 2.55, 2.56,
2.59, 2.67, 2.73, 2.74, 2.76, 2.77, 2.79, 2.81, 2.81, 2.82, 2.83, 2.85, 2.87, 2.88, 2.93, 2.95,
2.96, 2.97, 2.97, 3.09, 3.11, 3.11, 3.15, 3.15, 3.19, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31,
3.33, 3.39, 3.39, 3.51, 3.56, 3.60, 3.65, 3.68, 3.68, 3.68, 3.70, 3.75, 4.20, 4.38, 4.42, 4.70,
4.90, 4.91, 5.08, 5.56.

The second data set is the lifetimes of fifty devices provided by [1], the data set are:
1,.2,1,1,1,1,1,2, 3, 6,7, 11, 12, 18, 18, 18, 18, 18, 21, 32, 36, 40, 45, 46, 47, 50, 55,
60, 63, 63, 67, 67, 67, 67, 72, 75, 79, 82, 82, 83, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86.

As you can see form Table 2 that, the POGE-HL distribution represent the first data
sets better than the other models, while Table 3 shows that, the POGE-U distribution
provide better fit than the other distributions. Figure 6 illustrate the histogram and
cdfs for the first data set and the fitted POGE-HL distribution, while Figure 7 give
the quantile-quantile plot and profile-log likelihood functions of the fitted POGE-HL
distribution for the first data set. Figure 8 shows the histogram and cdfs for the second
data set and the fitted POGE-U distribution, and Figure 9 provides the quantile-quantile
plot and profile-log likelihood functions of the fitted POGE-U distribution for the second
data set.



Table 2. MLEs, ¢(©), AIC, CAIC, BIC, KS and P-value for the first data.
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Model a B A a [AG)) AIC CAIC BIC KS P-value
First data set
POGE-HL 0.0385 1.1977 4.0520 - —143.75 293.49 287.56 301.31 0.0513 0.955
POE-HL 0.0272 — 4.3643 — —145.12 294.23 290.27 299.44 0.0695  0.720
OGE-HL 0.0809 0.9181 - - —152.57 311.13 305.20 31895 0.1238 0.093
PHL 0.0451 — —16.9271 — —196.60 397.20 393.24 402.41 0.3195 2.7e-9
EHL 1.0796 4.9029 - - —144.75 293.50 289.54 298.71 0.0981 0.291
OLGHL 0.9713  0.5000 - — 18117 366.34 36238 37155 0.2721 T7.de-T
GE 1.0132 7.7882 — — —146.18 296.37 292.41 301.58 0.1077  0.196
GEP 1.0131 7.7901  0.0008 —  —146.18 29837 292.43 306.18 0.1074 0.199
BXIIP 5.9395 0.1874 3.4e—6 — —189.48 384.97 379.03 392.78 0.2714  8.0e-7
GBXIIP 1.3502 2.1236 1l.le—4 13.7368 —158.77 325.54 317.62 335.96 0.1380 0.044

Table 3. MLEs, ¢(0©), AIC, CAIC, BIC, KS and P-value for the second data.
Model a B8 A a b ¥ 4 £(©) AIC CAIC BIC KS P-value
Second data set
POGE-U 0.022 0.371  1.769 - 87.010 - - —206.68 419.34 413.47 425.08 0.0923  0.754
POE-U 0.293 - 1.638 - 97.100 - - —229.55 463.10 459.18 466.92 0.2346  0.007
OGE-U 0.034 0.282 - - 87.001 - - —207.97 421.93 416.06 427.67 0.1471  0.208
GU 0.267  51.942 - 0.09 86.713 - - —207.33 418.65 414.83 426.30 0.1520 0.198
EGLE - - —  33¢—3 17e-4 4564 0.112 —224.34 456.67 448.85 464.32 0.1475  0.206
GLE - - - 9.6e —3 4.5e-4 0.730 - —235.93 477.85 471.98 483.59 0.1598  0.139
GLFR - - - 3.8 —3 3.le4 - 0.533 —233.15 472.29 466.42 478.03 0.1620 0.129
GMWP 54¢—-8 0.134 0084  — - 2137 0638 —220.88 451.75 441.98 461.31 0.1400  0.281
GMWL 2130 2682 0013 - - 0278 1.000 —217.77 44553 43576 455.09 0.1311  0.357
GMWG 94e—8 0123 0075  — - 2228 0464 —220.78 45155 441.78 461.11 0.1346  0.326
GMW 1.0e—5 0065 — 0223 - L1371 - —22140 45281 44299 46046 0.1464  0.234
BMW 24e—4 0054 — 0197 0165 1380 —  —220.28 450.56 440.78 460.12 0.1303  0.364
BW 1L0e—5  — — 0129 0070 3320 — —223.11 45422 44640 461.87 0.1246 0.419
MW 0062 0023 — - - 0355 —  —22616 460.31 45244 466.05 0.1338  0.332
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Figure 6. Fitted pdf (i) and cdf (ii) of the POGE-HL for the first data set.
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Figure 9. Quantile-quantile Plot and Profile log-likelihood function
of the POGE-U for the second data set

5. Conclusions

We have introduced a new family of lifetime distributions called the Poisson odd gen-
eralized exponential distribution (POGE). We discussed two special cases of the POGE
family of distributions, namely the Poisson odd generalized exponential-half logistic
(POGE-HL) and the Poisson odd generalized exponential-uniform (POGE-U) family of



1669

distributions. Several mathematical and statistical properties of this model are derived
and studied, such as infinite series of the pdf, an explicit algebraic expression of its mo-
ments, order statistics, Shannon entropy, Renyi entropy and reliability. We discuss the
maximum likelihood estimations of the model parameters. Simulation studies are per-
formed for various sample sizes from the POGE-HL distribution in order to assess the
performance of proposed maximum likelihood method. Two real applications are used to
show the usefulness of the new POGE family of distributions. The result shows that the
POGE families (i.e POGE-HL and POGE-U) give a better fit to the two data sets than
the other competing models.
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