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The transmuted Weibull-G family of distributions
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Abstract

We introduce a new family of continuous distributions called the trans-
muted Weibull-G family of distributions which extends the transmuted
class pioneered by Shaw and Buckley (2007). We study the mathemat-
ical properties of the new family. Some useful characterizations based
on the ratio of two truncated moments as well as based on hazard func-
tion are presented. We estimate the model parameters by the maximum
likelihood method. We assess the performance of the maximum likeli-
hood estimators in terms of biases and mean squared errors by means
of a simulation study.
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1. Introduction

Several continuous univariate distributions have been extensively used for modeling
data in many areas such as economics, engineering, biological studies and environmental
sciences. However, applied areas such as �nance, lifetime analysis and insurance clearly
require extended forms of these distributions. So, several classes of distributions have
been constructed by extending common families of continuous distributions. These gener-
alized distributions give more �exibility by adding one "or more" parameters to the base-
line model. They were pioneered by Gupta et al. [29] who proposed the exponentiated-G
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class, which consists of raising the cumulative distribution function (cdf) to a positive
power parameter. Many other classes can be cited such as the Marshall-Olkin-G fam-
ily by Marshall and Olkin [31], beta generalized-G family by Eugene et al. [25], the
gamma-generated family by Zografos and Balakrishnan [45], Kumaraswamy G family
by Cordeiro and de Castro [19], exponentiated generalized-G family by Cordeiro et al.
[20,22], a new method for generating families of continuous distributions by Alzaatreh
et al. [13], exponentiated T-X family of distributionsby Alzaghal et al. [12], the Lomax
generator of distributions by Cordeiro et al. [23], beta Marshall-Olkin by Alizadeh et
al. [8], Kumaraswamy odd log-logistic by Alizadeh et al. [9], beta odd log-logistic by
Cordeiro et al. [17], Kumaraswamy Marshall-Olkin by Alizadeh et al. [6], transmuted
exponentiated generalized-G family by Yousof et al. [42], generalized transmuted-G by
Nofal et al. [36], generalized transmuted family by Alizadeh et al. [9], another general-
ized transmuted family by Merovci et al. [32], Kumaraswamy transmuted-G by A�fy et
al. [3], transmuted geometric-G by A�fy et al. [2], beta transmuted-H by A�fy et al. [4],
the Zografos-Balakrishnan odd log-logistic family by Cordeiro et al. [18] and the type I
half-logistic family by Cordeiro et al. [24], Burr X-G by Yousof et al. [43], exponentiated
transmuted-G family by Merovci et al. [33], odd-Burr generalized family by Alizadeh et
al. [7] the complementary generalized transmuted Poisson family by Alizadeh et al. [10],
among others.

For an arbitrary baseline cdf G (x), Shaw and Buckley [39] de�ned the transmuted-G
(TG) family with cdf and probability density function (pdf) given by

(1.1) F (x) = H (x;ψ) [1 + λ− λH (x;ψ)]

and

(1.2) f (x) = h (x;ψ) [1 + λ− 2λH (x;ψ)] ,

respectively, where |λ| ≤ 1 is a shape parameters and x ∈ R. The TG density is a
mixture of the baseline density and the exponentiated-G (exp-G) density with power
parameter two. For λ = 0, Equation (1.1) gives the baseline distribution. Let h(x;ψ)
and H(x;ψ) denote the density and cumulative functions of the baseline model with

parameter vector ψ and consider the Weibull cdf F (x) = 1 − e−x
α

(for x > 0) with
positive parameter α. Based on this density, Bourguignon et al. (2014) replaced the

argument x by H(x;ψ)/H(x;ψ), where H(x;ψ) = 1 − H(x;ψ) and de�ned the cdf of
their Weibull-G class by

(1.3) H(x;α) =

∫ {
G(x;ψ)

G(x;ψ)

}
0

αtα−1 exp (−tα) dt = 1− exp

{
−
[
G (x;ψ)

G(x;ψ)

]α}
,

where ψ = (ψk) = (ψ1, ψ2, ...) is a parameter vector. Based on the TG family and
Weibull-G (WG) family, we construct a new generator by inserting (1.3) into (1.1). We
have

(1.4) F (x) =

{
1− e

−
[
G(x;ψ)

G(x;ψ)

]α}[
1 + λe

−
[
G(x;ψ)

G(x;ψ)

]α]
,

where G (x;ψ) is the baseline cdf, α > 0 and |λ| ≤ 1 are two additional shape parameters.
The TW −G(x;α, λ, ψ) is a wider class of continuous distributions. It includes the TG
family of distributions.
The rest of the paper is outlined as follows. In Section 2, we de�ne the univariate
extensions of the TW-G family. A useful mixture representation for the new pdf are
derived in the same section. In Section 3, we derive some of its mathematical properties
including asymptotics, probability weighted moments (PWMs), residual life and reversed
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residual life functions, stress-strength model, ordinary, incomplete moments and genera-
ting functions, Finally order statistics and their moments are introduced at the end of the
section. Some characterizations results are provided in Section 4. Maximum likelihood
estimation of the model parameters is addressed in Section 5. In Section 6, we de�ne
two special models and provide the plots of their pdf's and hazard rate functions (hrf's).
In Section 7, simulation results to assess the performance of the proposed maximum
likelihood estimation procedure are discussed. In Section 8, we provide the applications
to real data to illustrate the importance of the new family. Finally, some concluding
remarks are presented in Section 9.

2. The new family

The corresponding pdf is

(2.1) f (x) = αg(x;ψ)
G(x;ψ)α−1

G(x;ψ)α+1
e
−
[
G(x;ψ)

G(x;ψ)

]α {
1− λ+ 2λe

−
[
G(x;ψ)

G(x;ψ)

]α}
, x > 0.

The hazard rate function for the new family can be expressed as

(2.2) τ (x) =

αg(x;ψ)G(x;ψ)α−1

G(x;ψ)α+1 e
−
[
G(x;ψ)

G(x;ψ)

]α {
1− λ+ 2λe

−
[
G(x;ψ)

G(x;ψ)

]α}

1−

{
1− e

−
[
G(x;ψ)

G(x;ψ)

]α}[
1 + λe

−
[
G(x;ψ)

G(x;ψ)

]α] .

For simulation of this family, if U ∼ u(0, 1), when λ = 0, then

XU = G−1

{
[− log(1− U)]1/α

1 + [− log(1− U)]1/α

}
and for λ 6= 0, we have

XU = G−1


{
− log

[
λ−1+

√
(1+λ)2−4λU

2λ

]}1/α

1 +

{
− log

[
λ−1+

√
(1+λ)2−4λU

2λ

]}1/α


has cdf (1.4). Below is a simple motivation for the development of TW-G family of
distributions. Suppose "T1and T2" are two independent random variables from cdf in
(1.3). De�ne

X =

{
T1:2 with probability 1

2
(λ+ 1) ;

T2:2 with probability 1
2

(1− λ) ,

where T1:2 = min {T1, T2} and T2:2 = max {T1, T2}. Then the cdf of X is given by
(1.4). The TW-G family of distributions appears to be more felxible and could be used
for modeling various types of data. For illustration propose we provide pdf and hrf of
some special models of this family in �gures 1,2. It can be seen that the hazard rate can
take increasing, decreasing, upside down and bathtub shapes. Therefore, this family of
distributions could be used to model diverse nature of data sets. Furthermore, the basic
motivations for using the TW-G family in practice are the following:

i. to make the kurtosis more �exible compared to the baseline model;
ii. to produce a skewness for symmetrical distributions;
iii. to construct heavy-tailed distributions for modeling real data;
iv. to generate distributions with symmetric, left-skewed, right-skewed or reversed-J

shape;
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v. to de�ne special models with all types of the hrf;
vi. to provide consistently better �ts than other generated models under the same

underlying distribution.

The cdf of the TW-G family in (1.4) can be expressed as

(2.3) F (x) = 1 + (λ− 1) e
−
[
G(x;ψ)

G(x;ψ)

]α
− λe

−2

[
G(x;ψ)

G(x;ψ)

]α

and after some algebra, we get

F (x) = 1 + (λ− 1)

∞∑
i=0

(−1)i
[
G(x;ψ)

G(x;ψ)

]αi
i!

− λ
∞∑
i=0

2i (−1)i
[
G(x;ψ)

G(x;ψ)

]αi
i!

= 1 + (λ− 1)

∞∑
i=0

(−1)i

i!

G(x;ψ)αi

G(x;ψ)αi
− λ

∞∑
i=0

2i (−1)i

i!

G(x;ψ)αi

G(x;ψ)αi

= 1 + (λ− 1)
∞∑

i,j=0

(−1)i+j

i!

(
−αi
j

)
G(x;ψ)αi+j − λ

∞∑
i,j=0

2i (−1)i+j

i!

(
−αi
j

)
G(x;ψ)αi+j

= 1 +

∞∑
i,j=0

(−1)i+j

i!

(
−αi
j

)(
λ− 1− λ× 2i

)
G(x;ψ)αi+j

then

(2.4) F (x) = 1 +

∞∑
i,j=0

wi,jG(x;ψ)αi+j = 1 +

∞∑
i,j=0

wi,j Παi+j(x),

where

wi,j =
(−1)i+j

i!

(
−αi
j

)(
λ− 1− λ× 2i

)
and Πδ(x) = G (x;ψ)δ is the cdf of the exp-G distribution with power parameter δ. The
corresponding TW-G density function is obtained by di�erentiating (2.4)

(2.5) f(x) =

∞∑
i,j=0

wi,j παi+j(x),

where πδ(x) = δg (x;ψ)G (x;ψ)δ−1 is the pdf of the exp-G distribution with power
parameter δ.

3. Mathematical properties

Here, we investigate mathematical properties of the TW-G family of distributions in-
cluding Asymptotes, ordinary and incomplete moments, generating function, probability
weighted moments and entropies. Established algebraic expansions to determine some
structural properties of the TW-G family of distributions can be more e�cient than
computing those directly by numerical integration of its density function.

3.1. Asymptotics. Let c = inf {x|G(x;ψ) > 0}, Then the asymptotics of cdf, pdf and
hrf as x→ c are given by

F (x) ∼ (1 + λ)G(x;ψ)α as x→ c,

f (x) ∼ α (1 + λ) g(x;ψ)G(x;ψ)α−1 as x→ c,

h (x) ∼ α (1 + λ) g(x;ψ)G(x;ψ)α−1 as x→ c.
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The asymptotics of cdf, pdf and hrf when x→∞ are given by

1− F (x) ∼ e−G(x;ψ)−α as x→∞,

f (x) ∼ αg(x;ψ)G (x;ψ)−α−1 e−G(x;ψ)−α as x→∞,

h (x) ∼ αg(x;ψ)G (x;ψ)−α−1 as x→∞.

3.2. Probability weighted moments. The PWMs are expectations of certain func-
tions of a random variable and they can be de�ned for any random variable whose
ordinary moments exist. The PWMs method can generally be used for estimating pa-
rameters of a distribution whose inverse form cannot be expressed explicitly. The (s, r)th
PWMs of X following the TW-G family, say ρs,r, is formally de�ned by

ρs,r = E {Xs F (X)r} =

∫ ∞
−∞

xs F (x)r f (x) dx.

Using equations (2.1) and (2.2), we can write

f (x)F (x)r =

∞∑
i,j=0

mi,j πα(i+1)+j(x),

where mi,j =
∑∞
k,h=0

(−1)k+h+i+j(h+1)i[(1+λ) (r+kh )−2λ(r+k+1
h )]

i!α−1λ−k(1+λ)k−r [α(i+1)+j]

(
r
k

)(−[α(i+1)+1]
j

)
.

Then, the (s, r)th PWMs of X can be expressed as

ρs,r =

∞∑
i,j=0

mi,jE
(
Y sα(i+1)+j

)
.

3.3. Residual life and reversed residual life functions. The nth moment of the
residual life, say mn(t) = E[(X − t)n | X > t], n = 1, 2,. . . , uniquely determined
F (x). The nth moment of the residual life of X is given by mn(t) = 1

R(t)

∫∞
t

(x −
t)ndF (x).Therefore,

mn(t) =
1

R(t)

∞∑
i,j=0

wF
i,j

∫ ∞
t

xrπαi+j(x)dx,

where wF
i,j = wi,j

n∑
r=0

(
n
r

)
(−t)n−r . Another interesting function is the mean residual life

(MRL) function or the life expectation at age t de�ned by m1(t) = E [(X − t) | X > t],
which represents the expected additional life length for a unit which is alive at age t.
The MRL of X can be obtained by setting n = 1 in the last equation. The nth moment
of the reversed residual life, say Mn(t) = E [(t−X)n | X ≤ t] for t > 0 and n = 1, 2,. . .

uniquely determines F (x). We obtain Mn(t) = 1
F (t)

∫ t
0

(t − x)ndF (x).Then, the nth

moment of the reversed residual life of X becomes

Mn(t) =
1

F (t)

∞∑
i,j=0

wFF
i,j

∫ t

0

xrπk(x)dx,

where wFF
i,j = wi,j

n∑
r=0

(−1)r
(
n
r

)
tn−r. The mean inactivity time (MIT) or mean waiting

time (MWT), also called the mean reversed residual life function, is given by M1(t) =
E[(t−X) | X ≤ t], and it represents the waiting time elapsed since the failure of an item
on condition that this failure had occurred in (0, t). The MIT of the TW-G family of
distributions can be obtained easily by setting n = 1 in the above equation.
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3.4. Stress-strength model. Stress-strength model is the most widely approach used
for reliability estimation. This model is used in many applications in physics and en-
gineering such as strength failure and system collapse. In stress-strength modeling,
R = Pr(X2 < X1) is a measure of reliability of the system when it is subjected to random
stress X2 and has strength X1. The system fails if and only if the applied stress is greater
than its strength and the component will function satisfactorily whenever X1 > X2. R
can be considered as a measure of system performance and naturally arise in electrical
and electronic systems. Other interpretation can be that, the reliability of the system
is the probability that the system is strong enough to overcome the stress imposed on
it. Let X1 and X2 be two independent random variables with TW-G(λ1, α1, ψ) and
TW-G(λ1, α1, ψ) distributions. The reliability is de�ned by

R =

∫ ∞
0

f1 (x;λ1, α1, ψ)F2 (x;λ1, α1, ψ) dx.

Then, we can write

R =

∞∑
i,j=0

ai,j

∫ ∞
0

πα1i+j (x) dx+

∞∑
i,j,h,k=0

bi,j,k,h

∫ ∞
0

πα1i+j+α2h+k (x) dx

where

ai,j =
(−1)i+j

i!

(
−α1i

j

)(
λ1 − 1− λ1 × 2i

)
,

and

bi,j,k,h =
(−1)i+j+h+k (λ1 − 1− λ1 × 2i

) (−α1i
j

)(−α2h
k

)
i! (α1i+ j) [α1i+ j + α2h+ k] (λ2 − 1− λ2 × 2h)−1 .

Thus, the reliability, R, can be expressed as

R =

∞∑
i,j=0

ai,j +

∞∑
i,j,h,k=0

bi,j,h,k

3.5. Moments, incomplete moments and generating function. The rth ordinary
moment of X is given by µ′r = E(Xr) =

∫∞
−∞ xr f (x) dx. Then we obtain

(3.1) µ′r =

∞∑
i,j=0

wi,jE(Y rαi+j).

Henceforth, Yδ denotes the exp-G distribution with power parameter (δ). Setting r = 1 in
(3.1), we have the mean of X. The last integration can be computed numerically for most
parent distributions. The skewness and kurtosis measures can be calculated from the
ordinary moments using well-known relationships. The nth central moment ofX, sayMn,

follows as Mn = E(X − µ)n =
n∑
h=0

(−1)h
(
n
h

)
(µ′1)n µ′n−h.The cumulants (κn) of X follow

recursively from κn = µ′n −
∑n−1
r=0

(
n−1
r−1

)
κr µ

′
n−r, where κ1 = µ′1, κ2 = µ′2 − µ′21 , κ3 =

µ′3 − 3µ′2µ
′
1 + µ′31 , etc. The skewness and kurtosis measures also can be calculated from

the ordinary moments using well-known relationships. The main applications of the
�rst incomplete moment refer to the mean deviations and the Bonferroni and Lorenz
curves. These curves are very useful in economics, reliability, demography, insurance and
medicine. The rth incomplete moment, say ϕr (t), of X can be expressed from (3.1) as

(3.2) ϕr (t) =

∫ t

−∞
xrf (x) dx =

∞∑
i,j=0

wi,j

∫ t

−∞
xr παi+j(x)dx.



1677

The mean deviations about the mean [δ1 = E(|X − µ′1|)] and about the median

[δ2 = E (|X −M |)] of X are given by δ1 = 2µ
′
1F (µ′1)− 2ϕ1(µ′1) and δ2 = µ′1 − 2ϕ1 (M),

respectively, where µ′1 = E (X),M = Median(X) = Q(0.5) is the median, F (µ′1) is easily
calculated from (1.4) and ϕ1 (t) is the �rst incomplete moment given by (11) with r = 1.
A general equation for ϕ1 (t) can be derived from (3.2) as ϕ1 (t) =

∑∞
i,j=0 wi,j Iαi+j (x) ,

where Iδ (x) =
∫ t
−∞ xπδ (x) dx is the �rst incomplete moment of the exp-G distribution.

The moment generating function (mgf) MX (t) = E
(
etX

)
of X can be derived from

equation (2.5) as

MX (t) =

∞∑
i,j=0

wi,jMαi+j (t) ,

where Mδ (t) is the mgf of Yδ. Hence, MX (t) can be determined from the exp-G gener-
ating function.

3.6. Order statistics. Let X1, . . . , Xn be a random sample from the TW-G family of
distributions and let X1:n, . . . , Xn:n be the corresponding order statistics. The pdf of the
ith order statistic, Xi:n, can be written as

(3.3) fi:n (x) =
f (x)

B (i, n− i+ 1)

n−i∑
j=0

(−1)j
(
n− i
j

)
F j+i−1 (x) ,

where B(·, ·) is the beta function. Substituting (1.4) and (2.1) in equation (3.3) and using
a power series expansion,we arrive at

f (x)F (x)j+i−1 =

∞∑
m,w=0

tm,w πα(m+1)+w(x),

where tm,w =
∑∞
k,h=0

(−1)k+h+m+w(h+1)m[(1+λ) (j+i+k−1
h )−2λ(j+i+kh )]

i!α−1λ−k(1+λ)k−(j+i−1)[α(m+1)+w]

(
j+i−1
k

)(−[α(m+1)+1]
w

)
.

The pdf of Xi:n can be expressed as

fi:n (x) =

n−i∑
j=0

(−1)j
(
n−i
j

)
B (i, n− i+ 1)

∞∑
m,w=0

tm,w πα(m+1)+w(x).

Then, the density function of the TW-G order statistics is a mixture of exp-G densi-
ties. Based on the last equation, we note that the properties of Xi:n follow from those
properties of Yk+1. For example, the moments of Xi:n can be expressed as

(3.4) E (Xq
i:n) =

∞∑
m,w=0

n−i∑
j=0

(−1)j
(
n−i
j

)
tm,w

B (i, n− i+ 1)
E
(
Y qα(m+1)+w

)
.

4. Characterizations

This section deals with various characterizations of TW-G family of distributions.
These characterizations are based on: (i) the ratio of two truncated moments and (ii)
the hazard function. We present our characterizations (i) and (ii) in two subsections.

4.1. Characterizations based on ratio of two truncated moments. In this sub-
section we present characterizations of TW-G distribution in terms of a simple relation-
ship between two truncated moments. This characterization result employs a theorem
due to Glänzel (1987), see Theorem 1 in Appendix A. Note that the result holds also
when the interval H is not closed. Moreover, it could be also applied when the cdf F
does not have a closed form. As shown in Glänzel (1990), this characterization is stable
in the sense of weak convergence.
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4.1.1. Proposition. Let X : Ω → R be a continuous random variable and let

q1 (x) =

{
(1− λ) + 2λe

−
[
G(x;ψ)

G(x;ψ)

]α}−1

and q2 (x) = q1 (x) e
−
[
G(x;ψ)

G(x;ψ)

]α
for x ∈ R. The

random variable X has pdf (2.1) if and only if the function ξ de�ned in Theorem 1 has
the form

ξ (x) =
1

2
e
−
[
G(x;ψ)

G(x;ψ)

]α
, x ∈ R.

Proof. Let X be a random variable with pdf (2.1), then

(1− F (x))E [q1 (x) | X ≥ x] = e
−
[
G(x;ψ)

G(x;ψ)

]α
, x ∈ R,

and

(1− F (x))E [q2 (x) | X ≥ x] =
1

2
e
−
[
G(x;ψ)

G(x;ψ)

]α
, x ∈ R,

and �nally

ξ (x) q1 (x)− q2 (x) = −1

2
q1 (x) e

−
[
G(x;ψ)

G(x;ψ)

]α
< 0, x ∈ R.

Conversely, if ξ is given as above, then

s′ (x) =
ξ′ (x) q1 (x)

ξ (x) q1 (x)− q2 (x)
=
αg (x;ψ)G (x;ψ)α−1

G (x;ψ)
x ∈ R,

and hence

s (x) =

[
G (x;ψ)

G (x;ψ)

]α
, x ∈ R.

Now, in view of Theorem 1, X has density (2.1) .
4.1.1. Corollary. Let X : Ω→ R be a continuous random variable and let q1 (x) be as
in Proposition 4.1.1. Then X has pdf (2.2) if and only if there exist functions q2 and ξ
de�ned in Theorem 1 satisfying the di�erential equation

ξ′ (x) q1 (x)

ξ (x) q1 (x)− q2 (x)
=
αg (x;ψ)G (x;ψ)α−1

G (x;ψ)α+1 x ∈ R.

The general solution of the di�erential equation in Corollary 4.1.1 is

ξ (x) = e

[
G(x;ψ)

G(x;ψ)

]α [
−
∫
αg (x;ψ)G (x;ψ)α−1

G (x;ψ)α+1 e
−
[
G(x;ψ)

G(x;ψ)

]α
(q1 (x))−1 q2 (x) +D

]
,

where D is a constant. Note that a set of functions satisfying the above di�erential
equation is given in Proposition 4.1.1 with D = 0. However, it should be also noted that
there are other triplets (q1, q2, ξ) satisfying the conditions of Theorem 1.

4.2. Characterization based on hazard function. It is known that the hazard func-
tion, hF , of a twice di�erentiable distribution function, F , satis�es the �rst order di�er-
ential equation

f ′(x)

f (x)
=
h′F (x)

hF (x)
− hF (x).

For many univariate continuous distributions, this is the only characterization available
in terms of the hazard function. The following characterization establish a non-trivial
characterization of TW-G distribution in terms of the hazard function, which is not of
the above trivial form.
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4.2.1. Proposition. Let X : Ω→ R be a continuous random variable. The pdf of X
is (2.1) if and only if its hazard function hF (x) satis�es the di�erential equation

h′F (x)− g′ (x;ψ) (g (x;ψ))−1 hF (x)

= αg (x;ψ)
d

dx

G (x;ψ)α−1

G (x;ψ)α+1

1 +
λe
−
[
G(x;ψ)

G(x;ψ)

]α

(1− λ) + λe
−
[
G(x;ψ)

G(x;ψ)

]α

 ,

x ∈ R , with the initial condition hF (0) = 0 for α > 1.
Proof. If X has pdf (2.1), then clearly the above di�erential equation holds. Now, if the
di�erential equation holds, then

d

dx

{
(g (x;ψ))−1 hF (x)

}
= α

d

dx

G (x;ψ)α−1

G (x;ψ)α+1

1 +
λe
−
[
G(x;ψ)

G(x;ψ)

]α

(1− λ) + λe
−
[
G(x;ψ)

G(x;ψ)

]α

 ,

or

hF (x) = αg (x;ψ)

G (x;ψ)α−1

G (x;ψ)α+1

1 +
λe
−
[
G(x;ψ)

G(x;ψ)

]α

(1− λ) + λe
−
[
G(x;ψ)

G(x;ψ)

]α

 ,

which is the hazard function of the TW-G distribution.

5. Estimation

Several approaches for parameter estimation have been proposed in the literature,
however, the maximum likelihood method is the most commonly employed. The maxi-
mum likelihood estimators (MLEs) enjoy desirable properties and can be used for con-
structing con�dence intervals and regions and also in test statistics. The normal approx-
imation for these estimators in large samples can be easily handled either analytically or
numerically. So, we consider the estimation of the unknown parameters of this family
from complete samples only by maximum likelihood. Let x1, . . . , xn be a random sample
from the TW-G distribution with parameters λ, α and ψ. Let Θ =(λ, α, ψ)ᵀ be the p× 1
parameter vector. For determining the MLE of Θ, we have the log-likelihood function

` = `(Θ) = n logα+

n∑
i=1

log g (xi;ψ) + (α− 1)

n∑
i=1

logG(xi;ψ)

− (α+ 1)

n∑
i=1

logG(xi;ψ)−
n∑
i=1

si +

n∑
i=1

log
{

1− λ+ 2λe−si
}
,

where si =
[
G(xi;ψ)

G(xi;ψ)

]α
. The components of the score vector, U (Θ) = ∂`

∂Θ
=
(
∂`
∂λ
, ∂`
∂α
, ∂`
∂ψ

)ᵀ
,

are

Uλ =

n∑
i=1

2e−si − 1

1− λ+ 2λe−si
,

Uα =
n

α
+

n∑
i=1

logG(xi;ψ)−
n∑
i=1

logG(xi;ψ)−
n∑
i=1

pi +

n∑
i=1

−2λpie
−si

1− λ+ 2λe−si
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and

Uψ =

n∑
i=1

g′ (xi;ψ)

g (xi;ψ)
+ (α− 1)

n∑
i=1

G′ (xi;ψ)

G(xi;ψ)
+ (α+ 1)

n∑
i=1

G′ (xi;ψ)

G(xi;ψ)
−

n∑
i=1

qi

+

n∑
i=1

−2λqie
−si

1− λ+ 2λe−si
,

where

g′ (xi;ψ) =
∂g (xi;ψ)

∂ψ
, pi =

[
G(xi;ψ)

G(xi;ψ)

]α
log

[
G(xi;ψ)

G(xi;ψ)

]
,

qi = α

[
G(xi;ψ)

G(xi;ψ)

]α−1
G′ (xi;ψ)[
G(xi;ψ)

]2 and G′ (xi;ψ) =
∂G (xi;ψ)

∂ψ
.

Setting the nonlinear system of equations Uλ = Uα = 0 and Uψ = 0 and solving them

simultaneously yields the MLE Θ̂ = (λ̂, α̂, ψ̂)ᵀ. To solve these equations, it is usually
more convenient to use nonlinear optimization methods such as the quasi-Newton algo-
rithm to numerically maximize `. For interval estimation of the parameters, we obtain

the p×p observed information matrix J(Θ) = { ∂2`
∂r ∂s
} (for r, s = λ, α, ψ), whose elements

can be computed numerically. Under standard regularity conditions when n → ∞ , the

distribution of Θ̂ can be approximated by a multivariate normal Np(0, J(Θ̂)−1) distri-

bution to construct approximate con�dence intervals for the parameters. Here, J(Θ̂) is

the total observed information matrix evaluated at Θ̂. The method of the re-sampling
bootstrap can be used for correcting the biases of the MLEs of the model parameters.
Good interval estimates may also be obtained using the bootstrap percentile method.

6. Special TW-G models

The pdf (2.1) will be most tractable when g (x) and G (x) have simple analytic forms.
In this section, we provide two special models of the TW-G family. These special models
generalize some well-known distributions reported in the literature. They correspond to
the baseline Weibull (W) and Lindley (L) distributions and illustrate the �exibility of
the new family.

6.1. The TW-W distribution. Consider the pdf g(x) = babxb−1e−(ax)b and cdf

G(x) = 1 − e−(ax)b of the W distribution with scale a > 0 and shape b > 0 parame-
ters. Inserting these functions in (2.1), the pdf of the TW-W model (for x > 0) is given
by

(6.1)

f(x) = αbabxb−1e−(ax)b

(
1−e−(ax)b

)α−1

e−(α+1)(ax)b
e
−
[

1−e−(ax)b

e−(ax)b

]α

×

1− λ+ 2λe
−
[

1−e−(ax)b

e−(ax)b

]α .

A random variable having pdf (6.1) is denoted by X ∼TW-W(α, λ, a, b). For b = 1, we
have the TW-exponential distribution. The TW-W density and hrf plots for selected
parameter values are displayed in Figure 1.
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Figure 1. Transmuted Weibull-Weibull distribution: pdf (left �gure),
hrf (right �gure).

6.2. The TW-L distribution. Consider the pdf g(x) = a2

1+a
(1+x)e−ax and cdf G(x) =

1 − 1+a+ax
1+a

e−ax (for x > 0) of the L distribution with positive shape parameter a. The
pdf of the TW-L model is given by

f(x) =
αa2 (1 + x) eαax [1− (1 + a x

1+a
) e−a x]α−1

(1 + a) (1 + a x
1+a

)α+1

×e−[
(1+a)ea x

1+a+a x
−1]α

{
1− λ+ 2λ e−[

(1+a)ea x

1+a+a x
−1]α

}
.

The TW-L density and hrf plots for some parameter values are displayed in Figure 2.
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Figure 2. Transmuted Weibull-Lindley distribution: pdf (left �gure),
hrf (right �gure).

7. Simulation study

In this section, we investigate the performance of the maximum likelihood estimators
presented in Section 5 for Transmuted Weibull-Weibull distribution with respect to sam-
ple size n. The evaluation is based on a simulation study:
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1. Generate 5000 samples of size n from TW −W distribution. The inversion method
was used to generate samples (See last paragraph of Page 1673).
2. Calculate the maximum likelihood estimates for the �ve thousand samples, say(
α̂i, λ̂i, âi, b̂i

)
for i = 1, 2, ..., 5000.

3. Compute the biases and mean squared errors given by

Bias(n) =
1

5000

5000∑
i=1

(
ĥi − h

)
and

MSE(n) =
1

5000

5000∑
i=1

(
ĥi − h

)2

,

for h = α, λ, a, b.
We repeat these steps for n = 10, 15, 20, ...., 320 with α = 0.1, λ = −0.6,a = 1.9 and b =
0.4 (a special case of Figure 1), so computing Biasα(n), Biasλ(n), Biasa(n), Biasb(n)
and MSEα(n), MSEλ(n), MSEa(n), MSEb(n) for n = 10, 15, 20, ...., 320. Figures 3
and 4 show how the biases and mean squared errors change with respect to n.
The following observations can be made:
1. the biases for λ, a and b are generally positive,
2. the biases for α have both sign,
3. the biases for each parameter generally approach zero as n→∞,
4. the biases appear smallest for α,
5. the mean squared errors for each parameter generally decrease to zero as n→∞;
6. the mean squared errors appear smallest for all parameters for n large enough (n ≥
200).



1683

0 50 100 150 200 250 300

−
0
.0

1
5

−
0
.0

0
5

0
.0

0
5

0
.0

1
5

n

b
ia

s
e
d

0 50 100 150 200 250 300

0
.0

0
.1

0
.2

0
.3

n

b
ia

s
e
d

0 50 100 150 200 250 300

0
.0

0
.5

1
.0

1
.5

2
.0

n

b
ia

s
e
d

0 50 100 150 200 250 300

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0

n

b
ia

s
e
d

Figure 3. Biasα(n) (top left), Biasλ(n) (top right), Biasa(n) (bot-
tom left) and Biasb(n) (bottom right) versus n = 10, 15, 20, ...., 320.
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8. Applications

We present two applications based on two real data sets to demonstrate the �ex-
ibility of the TW-W and TW-L distributions. We compare TW-W with Kw-Weibull
(Kw-W) (Cordiero et al., 2010), Beta-Weibull (BW) (Lee et al., 2007), Beta- Exponenti-
ated Weibull (BEW)(Cordeiro et al., 2013), Kw-Exponential Weibull (Kw-EW)(Cordeiro
et al., 2016) and Beta-Modi�ed Weibull (BMW)(Silva et al., 2010) distributions. Also,
we compare TW-L with Exponentiated power Lindley (EPL)(Warahena-Liyanage and
Pararai, 2014), extended Lindley (EXL)(Bakouch et al., 2012), extended power Lindley
(EPL)(Alkarni, 2015) and generalized Lindley (GL)(Zakerzadeh and Dolati, 2009) dis-
tributions.
The �rst data set is given by Murthy et al. (2004) on failure times for a particular model
aircraft windshield. The data set consists of 84 observations and was also analyzed by
Ramos et al. (2013).
The second data set is the fracture toughness of Alumina (Al2O3) (in the units of MPa
m1/2), Nadarajah and Kotz (2008). These data are 5.5, 5, 4.9, 6.4, 5.1, 5.2, 5.2, 5, 4.7,
4, 4.5, 4.2, 4.1, 4.56, 5.01, 4.7, 3.13, 3.12, 2.68, 2.77, 2.7, 2.36, 4.38, 5.73, 4.35, 6.81, 1.91,
2.66, 2.61, 1.68, 2.04, 2.08, 2.13, 3.8, 3.73, 3.71, 3.28, 3.9, 4, 3.8, 4.1, 3.9, 4.05, 4, 3.95, 4,
4.5, 4.5, 4.2, 4.55, 4.65, 4.1, 4.25, 4.3, 4.5, 4.7, 5.15, 4.3, 4.5, 4.9, 5, 5.35, 5.15, 5.25, 5.8,
5.85 ,5.9, 5.75, 6.25, 6.05, 5.9, 3.6, 4.1, 4.5, 5.3, 4.85, 5.3, 5.45, 5.1, 5.3, 5.2, 5.3, 5.25,
4.75, 4.5, 4.2, 4, 4.15, 4.25, 4.3, 3.75, 3.95, 3.51, 4.13, 5.4, 5, 2.1, 4.6, 3.2, 2.5, 4.1, 3.5,
3.2, 3.3, 4.6, 4.3, 4.3, 4.5, 5.5, 4.6, 4.9, 4.3, 3, 3.4, 3.7, 4.4, 4.9, 4.9, 5.
The MLE of parameters, −maximized log-likelihood function, Akaike information crite-
rion (AIC), Bayesian information criterion (BIC), Hannan-Quinn information criterion
(HQIC), Consistent Akaike information criterion (CAIC) statistics are determined by
�tting mentioned distributions using the two data sets.
In general, the smaller values of these statistics show the better �t to the data sets. The
MLEs are computed using the "optim" function in R statistical program. The estimated
parameters based on MLE procedure reports in Tables 1 and 2, whereas the values of
goodness-of-�t statistics are given in Tables 3 and 4.
In the applications, the information about the hazard shape can help in selecting a par-
ticular model. For this aim, a device called the total time on test (TTT) plot (Aarset,
1987) is useful. The TTT plot is obtained by plotting

G(r/n) =

[(
r∑
i=1

y(i)

)
+ (n− r)y(r)

]
/

n∑
i=1

y(i),

where r = 1, ..., n and y(i) (i = 1, ..., n) are the order statistics of the sample, against
r/n. If the shape is a straight diagonal the hazard is constant. It is convex shape for
decreasing hazards and concave shape for increasing hazards.
The TTT plot for both data sets presented in Figure 6. These �gures indicates that �rst
and second data set has increasing hazard rate functions.
In both real data sets, the results show that the TW-W and TW-L distribution yields a
better �t than other generalizations of Weibull and Lindley distributions. Figure 5 shows
the �tted pdf on histogram of both data sets.
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Table 1. Parameters estimates and standard deviation in parenthesis
for �rst data set

Model Estimates −Log Likelihood

TW-W 0.10, 1.00, 21.85, 4.21 102.602
(α, λ, a, b) (9e−3), (0.12), (1.57), (0.04)
Kw-W 17.47, 594.78, 0.29, 0.60 107.756

(a, b, β, c) (0.33), (69.14), (0.01), (0.02)
BW 1.28, 39.78, 0.07, 2.34 107.705

(a, b, β, c) (0.10), (4.08), (3e−3), (0.07)
BEW 11.86, 3.86, 0.02, 1.22, 0.16 106.523

(a, b, α, c, λ) (0.77), (0.24), (1e−3), (0.66), (6e−3)
Kw-EW 0.24, 0.01, 2.44, 3.17, 4.89 107.752

(a, b, α, c, λ) (0.01), (2e−3), (0.18), (0.19), (0.56)
BMW 4.84, 0.11, 1.03, 0.51, 0.65 106.632

(a, b, α, λ, γ) (1.50), (0.01), (0.02), (0.01), (0.02)

Table 2. Parameters estimates and standard deviation in parenthesis
for second data set

Model Estimates −Log Likelihood

TW-L(α, λ, θ) 3.00(0.21), 0.78(0.11), 0.27(4e−3) 168.250
EPL(θ, α, β) 0.01(6e−4), 3.43(0.04), 0.88(0.08) 169.948
EXL(θ, α, β) 0.21(3e−3), -0.01(0.08), 4.99(0.34) 168.887
EXPL(θ, α, β) 0.01(6e−4)3.44(0.04), 0.07(0.05) 169.381
GL(θ, α, β) 3.64(0.08), 15.05(0.36), 8.03(12.30) 177.271
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Table 3. Formal goodness of �t statistics for �rst data set

Model Goodness of �t criteria
AIC BIC HQIC CAIC

TW-W 213.20 224.32 211.46 213.55
Kw-W 223.51 234.63 221.77 223.86
BW 223.41 234.52 221.66 223.76
BEW 223.04 236.94 220.86 223.57
Kw-EW 225.50 239.40 223.32 226.03
BMW 223.26 237.15 221.08 223.79

Table 4. Formal goodness of �t statistics for second data set

Model Goodness of �t criteria
AIC BIC HQIC CAIC

TW-L 342.50 350.83 342.70 341.19
EPL 345.89 354.23 346.10 344.59
EXL 343.77 352.11 343.98 342.46
EXPL 348.76 353.10 348.97 343.45
GL 364.54 368.88 364.75 359.23
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Figure 6. TTT-plot for the �rst data set (left �gure) and for the
second data set (right �gure).

9. Conclusions

Recently, there has been a great interest among the specialists, statisticians and prac-
titioners to generate new extended families from classic ones. In this paper, we present
a new class of distributions called the transmuted Weibull-G (TW-G) family of distribu-
tions, which extends the transmuted family by adding one extra shape parameter. The
mathematical properties of this new family including explicit expansions for the ordi-
nary and incomplete moments, generating function, mean deviations, order statistics,
probability weighted moments are provided. Characterizations based on the ratio of two
truncated moments as well as based on hazard function are presented. The model pa-
rameters are estimated by the maximum likelihood estimation method and the observed
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information matrix is determined. It is shown, by means of two real data sets, that
special cases of the TW-G class can give better �t than other models generated by the
well-known families.

Appendix A

Theorem. Let (Ω,F,P) be a given probability space and let H = [d, e] be an
interval for some d < e (d = −∞, e =∞ might as well be allowed) . Let X : Ω → H
be a continuous random variable with the distribution function F and let q1 and q2 be
two real functions de�ned on H such that

E [q2 (X) | X ≥ x] = E [q1 (X) | X ≥ x] ξ (x) , x ∈ H,

is de�ned with some real function ξ. Assume that q1, q2 ∈ C1 (H), ξ ∈ C2 (H) and F is
twice continuously di�erentiable and strictly monotone function on the set H. Finally,
assume that the equation ξq1 = q2 has no real solution in the interior of H. Then F is
uniquely determined by the functions q1, q2 and ξ , particularly

F (x) =

∫ x

a

C

∣∣∣∣ ξ′ (u)

ξ (u) q1 (u)− q2 (u)

∣∣∣∣ exp (−s (u)) du ,

where the function s is a solution of the di�erential equation s′ = ξ′ q1
ξ q1 − q2

and C is

the normalization constant, such that
∫
H
dF = 1.
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