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ABSTRACT
The aim of this study was to delineate copper mineralization controllers in Nohkouhi volcanogenic 
massive sulfide (VMS) deposit by using geostatistical and fractal simulation. In this study, 
concentration-volume (C-V) fractal model has been used to indicate various copper populations 
related to different host rocks and copper minerals. Accordingly, uncertainty-volume (U-V) fractal 
model was applied to probability values achieved through sequential indicator simulation (SIS). 
Copper ores of Nohkouhi deposit including chalcopyrite and malachite were simulated in 30 
realizations. The U-V fractal model obtained by using a probability map was divided into four 
probability zones (high, moderate, low, and very low) for copper minerals. Furthermore, copper 
grades were simulated for 10 times by sequential Gaussian simulation (SGS). Combination of 
C–V and U-V fractal modeling resulted in a hybrid method which could be properly employed 
to determinate various mineralization zones based on the relationship between quantitative (e.g. 
copper grade) and qualitative (e.g. copper minerals) variables. Moreover, integrating the results 
of C–V and U-V fractal modeling with the most frequent occurrence of rock type modeling helps 
identify copper mineralization controllers in a VMS deposit. 
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1. Introduction

Fractal models, presented by Mandelbrot (1983), 
has been used in many different cases to explain 
geological and mineralization processes. Considering 
spatial information of mineral deposit data, it can be 
noted that fractal models are useful tools which reveal 
the relationships among geological, geochemical, and 
mineralogical settings (Afzal et al., 2016; Carranza, 
2009; Daneshvar Saein et al., 2012; Goncalves et al., 
2001; Gumiel et al., 2010; Soltani et al., 2014). Famous 
fractal models include number–size (N-S: Mandelbrot, 
1983; Sadeghi et al., 2012), concentration-area (C-A: 
Cheng et al., 1994), spectrum-area (S-A: Cheng et al., 

1999), concentration- distance (C-D: Li et al., 2003), 
concentration–volume (C-V: Afzal et al., 2011), 
concentration-number (C-N: Hassanpour and Afzal, 
2013), and simulated size–number (SS–N: Sadeghi et 
al., 2015). 

Concentration-volume fractal models has been 
widely used in porphyry deposit (e.g. Afzal et al., 
2011; Yasrebi et al., 2013; Soltani et al., 2014; Sun 
and Liu, 2014) and lesser another type of deposit 
such as gold deposit (Afzal et al., 2013; Lin et al., 
2014), Zn-Pb MVT deposit (Delavar et al., 2012), 
iron deposit (Sadeghi et al., 2012; Afzal et al., 2015; 
Rahmati et al., 2015). Grade distribution of block 
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models can be generated by geostatistical methods 
such as the Ordinary Kriging, Multi-Gaussian Kriging 
and Sequential Gaussian simulation. Geostatistical 
simulations are designed to overcome the smoothing 
effect of estimation methods (such as ordinary 
kriging and simple kriging) (e.g., Chiles and Delfiner, 
2009). These methods are applied to continuous 
and indicator variables of respectively sequential 
Gaussian simulation (SGS e.g., Deutsch and Journel, 
1998) and sequential indicator simulation (SIS e.g., 
Journel, 1983). Recently, geological phenomena e.g., 
mineralization, and alteration are separated effectively 
by combining simulation methods with fractal 
modeling (Afzal et al., 2014; Soltani et al., 2014; 
Sadeghi et al,. 2015). 

The main aim of this paper was to indicate the 
relationship between copper grade, the probability of 
occurrence of copper ore minerals and host rocks in a 
VMS deposit. For this purpose, C-V fractal model was 
applied to Cu realizations produced from sequential 
Gaussian simulation. Also, U-V fractal model was 
used to distinguish different probability zones in two 
copper minerals of Nohkouhi deposit (i.e. chalcopyrite 
and malachite) using sequential indicator simulation.

2. Regional Geology of Mineral Deposit

The Nohkouhi copper deposit is located in Posht- e- 
Badam block as a part of Central Iran microcontinent 

(Figure 1a). This deposit contains 1.5 Mt measured 
of ore at average grades of 1% Cu (Karmania, 2013). 
Black shale and rhyodacite are main host of copper 
mineralization (Figure 1b). Based on Hajsadeghi et al 
(2017) studies copper mineralization occurred during 
three stages. Firstly, pyrite and minor chalcopyrite are 
deposited in the black shale, synchronously (Figure 
2a, b, c). Second stage occurred during intrusion of 
rhyodacite in black shale. Copper enriched in black 
shale as a result of circulation of hydrothermal fluid 
(Figure 2d). Chalcopyrite formed as semi massive 
and veinlet with euhedral pyrite, lesser sphalerite and 
galena. During third stage, sulfide minerals oxidized 
and produced malachite, limonite, goethite, hematite 
± azurite ± gypsum. 

3. Applied Methods

3.1. Concentration-Number Fractal Model

Concentration- number (C-N) fractal model is one 
of the fractal models (Mandelbort, 1983) which it is 
used to separate geochemical background and anomaly 
in a geochemical dataset. The model is defined as (1): 

N(≥ρ) ∞ ρ-ᵦ  (1)

where N (≥ρ) denotes the sample number with 
concentration values greater than ρ value. ρ is 

Figure 1- a) The location of Nohkouhi deposit in the regional geology map of Iran (Green stars; Simplified from Sahandi et al., 2002),
 b) Geology of the Nohkouhi deposit. Abbreviations: SSZ = Sanandaj-Sirjan zone, Za = Zagros, Y = Yazd block, PB = Posht-e-Badam 

block, T = Tabas block, L = Lut block.
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Figure 2- Schematic block diagram illustrating the most probable geodynamic scenario of the formation of Nohkouhi deposit (Hajsadeghi 
et al., 2017), a) sandstone and barren black shale are deposited, b-c) black shale and pyrite rich ± chalcopyrite had been deposited 
synchronously during first stage of mineralization while felsic magma ascended to the ground, d) copper mineralization is enriched 
as a result of circulation of magmatic fluid (second stage).

concentration of element, and β is the fractal 
dimension. The main advantage of this method is 
classification of geochemical populations before their 
estimation (Sadeghi et al., 2012; Rezaei et al., 2015).

3.2. Concentration-Volume (C-V) Fractal Model

The C-V fractal model was first introduced by 
Afzal et al. (2011) for separation of mineralization 
host rocks in different types of ore deposits. It has to be 
added here that in the C- V model, “C” can be replaced 
by either “concentration” (e.g. grade, or tonnage), 
or “probability” (e.g. uncertainty). In this paper, the 
researchers used “C” to refer to concentration. C- V 
fractal model can be expressed as:

V (c≤ ν) ∞ c -a1; V (c> ν) ∞ c -a2     (2)

where V (c ≤ ν) and V (c > ν) indicate volumes (V) 
with concentration values (c) smaller and greater 
than contour values (ν), respectively; a1 and a2 are 
characteristic exponents.

3.3. Sequential Gaussian Simulation

Sequential Gaussian simulation (SGS) is a 
conditional simulation of continuous variable 
(Goovaerts, 1996; Chiles and Delfiner, 1999). In 
this algorithm, data are transformed to a Gaussian 
distribution with a zero mean and a unit variance. 
In this method, hard data are obtained by moving 
conditioning data to the nearest grid nodes. The other 
nodes are simulated and considered as soft data. The 
procedure of sequential Gaussian simulation is as 
follows:

• Simulated node is  randomly selected in the grid 
(1st randomness);

• Simulated value is selected from interval 
calculated from zero-realization (2nd 
randomness); 

• Final histogram and distribution in each 
realization can be calculated from both hard and 
soft data:

http://www.sciencedirect.com/science/article/pii/S0375674215300996#bb0005
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Z*
SGS=Z*

SK +/- sK(U) (3)

where Z*
SK calculate from simple kriging estimate; 

sK(U) signifies standard deviation of kriging estimate; 
and (U) is a random value from normal function and 
Z*

SGS is simulated value (Rossi and Deutsch, 2013).

3.4. Sequential Indicator Simulation

Sequential indicator simulation (SIS) is deployed 
for categorical variables (e.g., Journel and Isaaks 
1984). The realization is achieved through the 
following procedure:

• A random path is defined through the grid nodes 
to be simulated (target nodes). This part also 
includes data points (data nodes);

• Conditional cumulative distribution function is 
determined (ccdf) by the Indicator Kriging;

• Order relations is corrected to build a complete 
ccdf model;

• A simulation value draw from the corrected 
ccdf;

• Add the simulated value to the conditioning 
dataset;

• Proceed to the next node on the random path and 
repeat the above steps.

4. Experimental Dataset

The dataset consists of 559 rock samples with 
intervals of 2m gathered from 17 drill holes. The drill 
holes locations are provided on the geological map 
(Figure 1b). Drill hole samples were analyzed for 26 
elements (Table 1) using inductively coupled plasma 
optical emission spectrometry (ICP-OES). 

The copper grade histogram and C-N log-log plots 
for Cu were generated as depicted in figure 3a and 3b. 
Based on C-N fractal model, there are six populations 
for Cu. The first population for Cu appeared at grades 
below 160 ppm. The second population occurred 
between grades 160 ppm and 900 ppm. These 
populations are related to black shale and rhyodacite 
with very weak mineralization (Figure 3c). 

The third and fourth populations are related to low 
grade mineralization in rhyodacite and black shale 
(Figure 3d), ranging between 900 to 3100 ppm and 
3100 to 6300 ppm, respectively. The fifth population 
included major Cu mineralization which occurred in 
Cu grades between 6300 and 17800 ppm (Figure 3e). 
Eventually, the sixth population for the C-N log-log 
plot of Cu illustrates both extreme mineralization 
(Figure 3f) and enrichment in samples with Cu values 
higher than 17800 ppm.

5. C-V Fractal Modeling of Copper Grade Based 
on SGS

Sequential Gaussian simulation was used for 
generating 10 realizations of the copper grade. 
Nohkouhi deposit is simulated using 600.000 cells, 
which have a cell dimension of 2 m×2 m×2 m in the 
X, Y, and Z directions, respectively.

The grade data are transformed into Gaussian 
distribution, on which the semi-variogram analysis is 
performed. Due to the lack of boreholes in azimuth 
70o, no experimental variogram has been obtained. 
Hence, based on geological knowledge (e.g. ratio 
between structural axis), the range of the second 
direction (Az 70o) was considered equal to 75% of the 
range of the major axis.

Consequently, the following semi-variogram 
model, consisting of a nugget effect and a nested 
spherical model, was obtained (Figure 4):

Table 1- Detection limits for analyzed elements.

Element Ag Al As Ca Cd Ce Co Cr Cu Fe La Li Mg
Unit ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm

Detection limit 0,1 100 0,5 100 0,1 1 1 1 1 100 1 1 100
Element Mn Mo Ni P Pb S Sb Sc Th V Y Yb Zn

Unit ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm
Detection limit 5 0,5 1 5 1 50 0,5 0,5 0,5 1 0,5 0,2 1
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γ N160E= 0.2 nugget+ 0.8 Sph (52) 4

γN070E= 0.2 nugget+ 0.8 Sph (40) 5

γhorizental= 0.2 nugget+ 0.8 Sph (32) 6

where the distances into brackets denote the ranges 
along each directions.

Thresholds values of simulated Cu grades were 
identified using C-V log-log plots of the simulations 
(Figure 5). The simulations indicate four or five 
populations with different thresholds, as depicted in 
figure 5 and table 2. The enriched zones in the different 
simulated data are higher than 2,23%. Moreover, the 
main mineralization of Cu commences from 0,5% 
for sim 1, 3, 6, 7, 8, 9, and 10. In addition, the major 
Cu mineralized zones occurred in Cu values greater 
than 0,3% in sim 2, 4 and 5. One can see that, there is 
similar threshold with minor difference between them. 
So just two realization will be investigated.

6. U-V Fractal Modeling Of Copper 
Mineralization Based On SIS

In this study, SIS is used to simulate two copper 
ore minerals of chalcopyrite and malachite, separately. 
Indicator variables for copper minerals are defined as:

Imalachite    ={ if malachite present 7  0 other 

I chalcopyrite ={ 1 if chalcopyrite present 8  0 other 

The experimental variogram are fitted by nugget 
effect and spherical model (Figure 6). However, as 
in the previous section, due to the lack of boreholes 
in azimuth 70°, no experimental variogram has been 
obtained. So, the range of the second direction (Az 
70°) was considered equal to 75% of the range of the 
major axis. 

   γK160E= 0.02 nugget+ 0.18 Sph (144)
chalcopyrite={ γK070E= 0.02 nugget+ 0.18 Sph (108) 9
   γvertical= 0.02 nugget+ 0.18 Sph (40)

  γK160E= 0.02 nugget+ 0.16 Sf (200)
malachite ={ γK070E= 0.02 nugget+ 0.16 Sf (150) 10
  γvertical= 0.02 nugget+ 0.16 Sf (21)

where the distances into brackets represent the ranges 
along the directions.

Figure 3- a) Histogram of Cu, b) C-N log-log plot for Cu 
concentrations in Nohkouhi deposit, c) barren black shale, 
d) disseminated chalcopyrite, e) veinlet of chalcopyrite, 
f) Massive-semi-massive chalcopyrite hosted by black 
shale.

Figure 4- Experimental (dashed lines) and theoretical (solid 
lines) semi variograms along major (N160E) and minor 
(vertical) anisotropy axis (Gaussian transformed grade 
data).
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Figure 5- C-V log–log plots of different realizations of SGS and E-type.
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The probability maps of chalcopyrite and malachite 
were calculated and U-V fractal modeling was obtained 
for these ores. Threshold values were determined in the 
U-V log-log plot as breakpoints which reveal a power-
law relationship between probability of minerals and 
the volumes occupied (Figure 7). Three breakpoints 
(0,13, 0,6, 0,83 and 0,13, 0,52, 0,83 for chalcopyrite 
and malachite respectively) appeared in the U-V 
log-log plots which represent four populations for 
chalcopyrite and malachite (Figure 7). As a result, the 

Table 2- Cu threshold values (ppm) were recognized using C–V 
fractal model for different realizations.

ForthThirdSecondFirst Realization no.
-2238756231000Sim 1

2238770793548630Sim 2
-223875623891Sim 3

2238770793162794Sim 4
2238779433162794Sim 5

-223875011794Sim 6
-223875011891Sim 7
-223875011891Sim 8
-2238756231000Sim 9
-223875011891Sim 10

Figure 6- Sample (dashed lines) and modeled (solid lines) 
semi variograms along main anisotropy directions, 

 a) chalcopyrite, b) malachite.

Figure 7-  U–V log–log plots of copper ore minerals in the Nohkouhi 
deposit (Cpy: Chalcopyrite; Mal: Malachite).

Figure 8- Different probability mineralization zones for 
 a) chalcopyrite b) malachite based on the U–V fractal 

modeling and probability map of 30 realizations of 
copper ores. Section A-B is provided on figure 1.

plots revealed four zones with variable probabilities, 
ranging from low to highly probable zones (Figure 8). 
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Table 5- Overall accuracy (OA), Type I and Type II errors (T1E and T2E, respectively), resulted from U-V fractal models of copper minerals 
and C–V fractal modeling of realizations 10.

CPY ≥ 0,83 0,6 ≤ CPY < 0,83 0,13 ≤ CPY < 0,6 CPY < 0,13

C
u 

≥ 
22

38
7

A B

50
11

 ≤
 C

u 
< 

22
38

7

A B

89
1 

≤ 
C

u 
< 

50
11

A B

C
u 

< 
89

1

A B
1820 79836 21417 44668 119453 186288 33030 136801

C D C D C D C D
32036 509621 170285 386943 118973 189274 122538 330944

OA 0,82 OA 0,66 OA 0,50 OA 0,58
ETI 0,95 ETI 0,89 ETI 0,50 ETI 0,79
ETII 0,14 ETII 0,10 ETII 0,50 ETII 0,29

Mal ≥ 0,83 0,52 ≤ Mal < 0,83 0,13 ≤ Mal < 0,52 Mal < 0,13

C
u 

≥ 
22

38
7

A B

50
11

≤ 
C

u 
< 

22
38

7

A B

89
1≤

 C
u 

< 
50

11

A B

C
u 

< 
89

1

A B
1847 15576 28187 40160 82580 142470 90390 222103

C D C D C D C D
32009 573881 163515 391451 159607 238656 65178 245642

OA 0,92 OA 0,67 OA 0,52 OA 0,54
ETI 0,95 ETI 0,85 ETI 0,66 ETI 0,42
ETII 0,03 ETII 0,09 ETII 0,37 ETII 0,47

7. Comparison of Fractal and Host Rock Models 
of the Deposit

The results derived from C-V fractal modeling 
of the deposit are correlated with U-V fractal model 
of copper minerals. Confusion matrix is utilized to 
calculate spatial correlations between the results 
provided by U-V and C-V fractal models (Table 3; 
Carranza, 2011). Due to similar results, only two 
realizations were reviewed (realization 1 and 10). 
Based on confusion matrix (Tables 4-5), generally, 
the realizations represent the proper results of a 
highly probable delineation (CPY≥0,83 and Mal 

Table 3- Matrix for comparing performance of fractal modeling 
results with geological model. A, B, C, and D represent 
numbers of voxels in overlaps between classes in the 
binary geological model and the binary results of fractal 
models (Carranza, 2011).

Geological model

Inside zone Outside zone

Fractal 
model

Inside zone True positive (A) False positive (B)

Outside zone False negative (C) True negative (D)

Type I error = 
C/(A +C)

Type II error =
B / (B + D)

Overall accuracy =(A+D)/(A+B+C+D)

Table 4- Overall accuracy (OA), Type I and Type II errors (T1E and T2E, respectively), resulted from U-V fractal models of copper minerals 
and C–V fractal modeling of realizations 1.

CPY ≥ 0,83 0,6 ≤ CPY < 0,83 0,13 ≤ CPY < 0,6 CPY < 0,13

C
u 

≥ 
22

38
7

A B

56
23

≤ 
C

u<
22

38
7

A B
10

00
 ≤

 C
u<

56
23

A B

C
u 

< 
10

00

A B
5484 76172 18807 47278 122502 183239 49481 120350

C D C D C D C D
28372 513285 153233 403995 120559 187688 121067 332414

OA 0,83 OA 0,67 OA 0,50 OA 0,61
ETI 0,83 ETI 0,89 ETI 0,49 ETI 0,70
ETII 0,13 ETII 0,11 ETII 0,49 ETII 0,26

Mal ≥ 0,83 0,52 ≤ Mal < 0,83 0,13 ≤ Mal < 0,52 Mal < 0,13

C
u 

≥ 
22

38
7

A B

56
23

≤ 
C

u<
22

38
7

A B

10
00

≤ 
C

u<
56

23

A B

C
u 

< 
10

00

A B
2772 14651 27082 41265 87388 137662 111560 200933

C D C D C D C D
31084 574806 144958 410008 159481 238782 58988 251831

OA 0,92 OA 0,70 OA 0,52 OA 0,58
ETI 0,91 ETI 0,84 ETI 0,64 ETI 0,34
ETII 0,02 ETII 0,09 ETII 0,36 ETII 0,44
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≥0,83). Moreover, C–V modeling of realizations is 
appropriate for moderate probability (0.6≤CPY<0.83 
and 0,52≤Mal<0,83). On the other hand, C–V 
fractal modeling provides relatively poor results 
for low and very low probabilities (0,13≤CPY<0,6, 
CPY<0,13, 0,13≤Mal<0,52, Mal<0,13) of copper 
minerals. Hence, this finding can be used to show the 
relationship between two probability zones (i.e. high 
and moderate) and copper grades. 3D models of the 
rock types (black shale, rhyodacite, and sandstone) 
were generated by employing SIS and geological drill 
core data (Hajsadeghi et al., 2016). Figure 9a displays 
the most frequently occurring model of rock types.

Merging C-V and U-V fractal models with the most 
frequent model of rock types helps delineate different 
copper populations in this deposit (Figure 9). Based 
on the log–log plots, Cu concentrations in massive, 
semi-massive, and oxide zones, hosted by black shale 
and partly by rhyodacite, are shown to be greater 
than 22387 ppm. The disseminated and veinlet zones 
have a concentration range varying between 5011 and 

7943 ppm. This zone is hosted by black shale and 
rhyodacite. Besides, it was observed that low-grade 
host rocks had a Cu concentration between 1000 and 
5011 ppm which is hosted by both of the host rocks. 
Finally, the barren part of all three host rocks (black 
shale, rhyodacite, and sandstone) is characterized by a 
Cu concentration lower than 1000 ppm. Geostatistical- 
fractal simulations conform to the hydrothermal and 
mineralization process of Nohkouhi copper deposit.

8. Conclusion

C-V fractal model revealed different copper grade 
mineralization’s which are related to various copper 
ores and accumulations in Nohkouhi VMS deposit. U- 
V fractal model was used to obtain different probability 
zones for occurrence of copper minerals. C-V fractal 
modeling provided four or five populations. Several 
copper populations were delineated based on the 
results of U-V and C–V fractal modeling and the most 
frequently occurring model of rock types. Massive, 
semi-massive, and oxide zones - hosted by black shale 

Figure 9- a) Most frequent occurrence model of rock types obtained by SIS (Hajsadeghi et al., 2016), b) Mineralized host rock characterized 
by MAL> 0.52 or CPY> 0.6, c) different Cu populations based on C–V fractal modeling in a simulation in realization 1, d) different 
Cu populations based on C–V fractal modeling in a simulation in realization 10. Section A-B is provided on figure 1.
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were found to be higher than 2,24%. The disseminated 
and veinlet zones, hosted by black shale and rhyodacite, 
each showed a concentration range of 1,99-2,24% and 
0,31-0,56%, respectively. Additionally, low-grade 
host rocks, occurring in black shale and rhyodacite, 
exhibited a Cu concentration ranging between 0.1- 
0,31 %. Eventually, the barren part of all host rocks, 
consisting of black shale, rhyodacite, and sandstone, 
were featured by a Cu concentration lower than 0.1%. 
These are related to characterize of Nohkouhi VMS 
deposit which suggested in pervious study (Hajsadeghi 
et al., 2017). However a 3D model can be more useful 
in exploration than a simple schematic model. 

Acknowledgments

The authors are grateful to Zarmesh Group for 
providing the dataset used in this study.

References
Afzal, P., Alghalandis, Y.F., Khakzad, A., Moarefvand, P., 

Omran, N.R. 2011. Delineation of mineralization 
zones in porphyry Cu deposits by fractal 
concentration–volume modeling. Journal of 
Geochemical Exploration 108(3), pp.220-232.

Afzal, P., Ahari, H.D., Omran, N.R., Aliyari, F. 2013. 
Delineation of gold mineralized zones using 
concentration–volume fractal model in Qolqoleh 
gold deposit, NW Iran. Ore Geology Reviews 55, 
pp.125-133.

Afzal, P., Alhoseini, S.H., Tokhmechi, B., Ahangaran, 
D.K., Yasrebi, A.B., Madani, N., Wetherelt, A. 
2014. Outlining of high quality coking coal by 
concentration–volume fractal model and turning 
bands simulation in East-Parvadeh coal deposit, 
Central Iran. International Journal of Coal 
Geology 127, pp.88-99.

Afzal, P., Madani, N., Shahbeik, S., Yasrebi, A.B. 
2015. Multi-Gaussian kriging: a practice to 
enhance delineation of mineralized zones by 
Concentration–Volume fractal model in Dardevey 
iron ore deposit, SE Iran. Journal of Geochemical 
Exploration 158, pp.10-21.

Afzal, P., Tehrani, M.E., Ghaderi, M., Hosseini, M.R. 
2016. Delineation of supergene enrichment, 
hypogene and oxidation zones utilizing staged 
factor analysis and fractal modeling in Takht-e-
Gonbad porphyry deposit, SE Iran. Journal of 
Geochemical Exploration, 161, pp.119-127.

Carranza, E.J.M. 2009. Controls on mineral deposit 
occurrence inferred from analysis of their spatial 

pattern and spatial association with geological 
features. Ore Geology Reviews 35(3), pp.383-
400.

Carranza, E.J.M. 2011. Analysis and mapping of geochemical 
anomalies using logratio-transformed stream 
sediment data with censored values. Journal of 
Geochemical Exploration 110(2), pp.167-185.

Cheng, Q. 1999. Spatial and scaling modelling for 
geochemical anomaly separation. Journal of 
Geochemical Exploration 65(3), pp.175-194.

Cheng, Q., Agterberg, F.P., Ballantyne, S.B. 1994. The 
separation of geochemical anomalies from 
background by fractal methods. Journal of 
Geochemical Exploration 51(2), pp.109-130.

Chilés, J.P., Delfiner, P. 2012. Geostatistics: modeling spatial 
uncertainty (Vol. 497). John Wiley & Sons.

Daneshvar Saein, L., Rasa, I., Rashidnejad Omran, N., 
Moarefvand, P., Afzal, P. 2012. Application of 
concentration-volume fractal method in induced 
polarization and resistivity data interpretation for 
Cu-Mo porphyry deposits exploration, case study: 
Nowchun Cu-Mo deposit, SE Iran. Nonlinear 
Processes in Geophysics 19(4), pp.431-438.

Delavar, S.T., Afzal, P., Borg, G., Rasa, I., Lotfi, M., Omran, 
N.R. 2012. Delineation of mineralization zones 
using concentration–volume fractal method in 
Pb–Zn carbonate hosted deposits. Journal of 
Geochemical Exploration 118, pp.98-110.

Deutsch, C.V., Journel, A.G. 1998. Geostatistical software 
library and user’s guide. Oxford University Press, 
New York.

Goncalves, M.A., Mateus, A., Oliveira, V. 2001. 
Geochemical anomaly separation by multifractal 
modelling. Journal of Geochemical Exploration 
72(2), pp.91-114.

Goovaerts, P. 1996. Geostatistics for natural resources 
evaluation. Oxford University Press on Demand.

Gumiel, P., Sanderson, D.J., Arias, M., Roberts, S. Martín-
Izard, A. 2010. Analysis of the fractal clustering 
of ore deposits in the Spanish Iberian Pyrite Belt. 
Ore Geology Reviews 38(4), pp.307-318.

Hajsadeghi, S., Asghari, O., Mirmohammadi, M., Meshkani, 
S.A. 2016. Indirect rock type modeling using 
geostatistical simulation of independent 
components in Nohkouhi volcanogenic massive 
sulfide deposit, Iran. Journal of Geochemical 
Exploration 168, pp.137-149.

Hajsadeghi, S., Mirmohammadi, M., Asghari, O., Meshkani, 
S.A. 2017. Geology and mineralization at the 
copper-rich volcanogenic massive sulfide deposit 
in Nohkouhi, Posht-e-Badam block, Central 
Iran. Ore Geology Review doi:https://doi.
org/10.1016/j.oregeorev.2017.11.030.



11

Bull. Min. Res. Exp. (2020) 161: 1-11

Hassanpour, S., Afzal, P. 2013. Application of concentration–
number (C–N) multifractal modeling for 
geochemical anomaly separation in Haftcheshmeh 
porphyry system, NW Iran. Arabian Journal of 
Geosciences 6(3), pp.957-970.

Journel, A.G. 1983. Nonparametric estimation of spatial 
distributions. Journal of the International 
Association for Mathematical Geology 15(3), 
pp.445-468.

Journel, A.G., Isaaks, E.H. 1984. Conditional indicator 
simulation: Application to a Sachatchewan 
uranium deposits. Marhematical Geology 16 
(7):685-718.

Karmania, A. 2013.Company, Preliminary Exploration 
Report in Nohkouhi Area, Tehran (73 pp., (In 
Persian)).

Li, C., Ma, T., Shi, J. 2003. Application of a fractal 
method relating concentrations and distances 
for separation of geochemical anomalies from 
background. Journal of Geochemical Exploration 
77(2), pp.167-175.

Lin, X., Zhang, B., Wang, X. 2014. Application of factor 
analysis and concentration-volume fractal 
modeling to delineation of 3D geochemical 
patterns: a case study of the Jinwozi gold field, NW 
China. Geochemistry: Exploration, Environment, 
Analysis 14(4), pp.359-367.

Mandelbrot, B.B. 1983. The fractal geometry of nature (Vol. 
173). Macmillan.

Rahmati, A., Afzal, P., Abrishamifar, S.A., Sadeghi, B. 
2015. Application of concentration–number and 
concentration–volume fractal models to delineate 
mineralized zones in the Sheytoor iron deposit, 
Central Iran. Arabian Journal of Geosciences 
8(5), pp.2953-2965.

Rezaei, S., Lotfi, M., Afzal, P., Jafari, M.R., Meigoony, 
M.S. 2015. Delineation of Cu prospects utilizing 

multifractal modeling and stepwise factor analysis 
in Noubaran 1: 100,000 sheet, Center of Iran. 
Arabian Journal of Geosciences 8(9), pp.7343-
7357.

Rossi, M.E., Deutsch, C.V. 2013. Mineral resource 
estimation. Springer Science & Business Media.

Sadeghi, B., Moarefvand, P., Afzal, P., Yasrebi, A.B., Saein, 
L.D. 2012. Application of fractal models to outline 
mineralized zones in the Zaghia iron ore deposit, 
Central Iran. Journal of Geochemical Exploration 
122, pp.9-19.

Sadeghi, B., Madani, N., Carranza, E.J.M. 2015. Combination 
of geostatistical simulation and fractal modeling 
for mineral resource classification. Journal of 
Geochemical Exploration 149, pp.59-73.

Sahandi, M. R., Soheily, M., Sadeghi, M., Delavar, S.T., 
Jafari Rad, A. 2002. Geological Map of Iran, 
1:1,000,000. Geological Survey of Iran, Tehran, 
Unpublished

Soltani, F., Afzal, P., Asghari, O. 2014. Delineation of 
alteration zones based on Sequential Gaussian 
Simulation and concentration–volume fractal 
modeling in the hypogene zone of Sungun 
copper deposit, NW Iran. Journal of Geochemical 
Exploration 140, pp.64-76.

Sun, T., Liu, L. 2014. Delineating the complexity of Cu–
Mo mineralization in a porphyry intrusion by 
computational and fractal modeling: A case study 
of the Chehugou deposit in the Chifeng district, 
Inner Mongolia, China. Journal of Geochemical 
Exploration 144, pp.128-143.

Yasrebi, A.B., Afzal, P., Wetherelt, A., Foster, P., 
Esfahanipour, R. 2013. Correlation between 
geology and concentration-volume fractal 
models: significance for Cu and Mo mineralized 
zones separation in the Kahang porphyry deposit 
(Central Iran). Geologica Carpathica 64(2), 
pp.153-163.



12


	Button 1: 
	Button 28: 
	Button 27: 
	Button 26: 
	Button 6: 


