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ABSTRACT. In this work, the Wronskian determinant technique is performed to
(2+1)-dimensional non-local Ito equation in the bilinear form. First, we obtain
some sufficient conditions in order to show Wronskian determinant solves the
(2+1)-dimensional non-local Ito equation. Second, rational solutions, soliton
solutions, positon solutions, negaton solutions and their interaction solutions
were deduced by using the Wronskian formulations

1. INTRODUCTION

The nonlinear evolution equations (NLEEs) model abundant physical processes
which occur in the nature. Therefore, investigating and obtaining solutions of
these type equations have an extremely important place in nonlinear science. In
this context, in the literature a plenty of analytic and numerical methods were
developed such as inverse scattering transform, Hirota bilinear method, the Riccati
equation expansion method, the sine-cosine method, the tanh — sech method, G'/G
expansion method, Adomian decomposition method, He’s variational principle, Lie
symmetry method and many more ([1I,[3]-[6]-[7], [8],[14], [19]-[20], [22]-[23]).

Nowadays, besides to above aforementioned methods, the Wronskian determi-
nant method ([5], [I5]) depending upon Hirota bilinear forms has a wide range of
impact and applicability on the NLEES. Wronskian determinant technique is a im-
portant tool to get exact solutions to the corresponding Hirota bilinear equations
of the NLEE equations.

In [I1], we observe that there is a bridge between Wronskian solutions and gen-
eralized Wronskian solutions. It gives us a way to obtain generalized Wronskian
solutions simply from Wronskian determinants. The basic idea was used to gen-
erate positons, negatons and their interaction solutions through the Wronskian
formulation.
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It is demonstrated in [12] that for each type of Jordan blocks of the coefficient
matrix J (A;), there exist special sets of eigenfunctions. These functions were used
to generate rational solutions, solitons, positons, negatons, breathers, complexitons
and their interaction solutions. The obtained solution formulas of the representa-
tive systems allow us to construct more general Wronskian solutions than rational
solutions, positons, negatons, complexitons and their interaction solutions.

As stated in [13], integrable equations can have three different kinds of explicit
exact transcendental function solutions: negatons, positons and complexitons. Soli-
tons are usually a specific class of negatons. Roughly speaking, negatons and posi-
tons are solutions which involve exponential functions and trigonometric functions
of space variables, respectively, and they are all associated with real eigenvalues of
the associated spectral problems. But complexitons are different solutions which
involve both exponential and trigonometric functions of space variables, and they
are associated with complex eigenvalues of the associated spectral problems. Inter-
action solutions among negatons, positons, rational solutions and complexitons are
a class of much more general and complicated solutions to soliton equations, in the
category of elementary function solutions.

The generalized (2+1) dimensional non-local Ito equation

Upt + Ugzat + 3 (2UzUs + Ulgr) + SUgy (/ n dx) + auys + buy = 0. (1)
was firstly studied by Ito for generalizing the bilinear Korteweg-de Vries (KdV)
equation [9]. To get rid of the integral operator, we use the transformation

U= v,
to cast (1)) into the following equation
Vgtt + Vazawt + 3 (202002t + UgUsat) + 3Vazalt + QUzys + DUzze = 0. (2)

We observe increasing interest for Eq.(2) in the literature ([2], [4], [18],[21]). For
instance in [2I], Wazwaz obtains single soliton solutions and periodic solutions of
Eq. by tanh-coth method. He also constructs multiple-soliton solutions of sech-
squared type by using Hirota bilinear method. In [2], Adem constructs multiple
wave solutions of Eq. by exploiting the multiple exp-function algorithm.
To solve Eq. we can get dependent variable v by
V= Quy,

v=atuf), ~{ 020 ®)

where f(x,y,t) is an unknown real function which will be determined. Substituting
Eq. into Eq. , we have

2 2 2
OWggtt + QWgpraat + 3 (20[ WeggWagt T O lew.L.Lit) + 3« WrrrrWat

+ QaWggyt + WDWygar = 0, (4)
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which can be integrated twice with respect to = to give
QWi + CWapmt + 30 Wet Wy + aawy; + abwyy = C, (5)

where C' is the constant of integration.
If we get
6o = 302, a0 = 2,
then can be written as
Wit + Wagat + OWatWay + Wy + bwyy = C. (6)

Substituting w = In f into Eq. @, we get

fu ft2 I t_f 2ft_ [ 2tf + J 2f t+afyt_afy2ft+ ft_ fot =C. (7)

ff f f f f f f o r
Substituting C' = 0 into Eq. and employing Hitora derivative operators [8] we
obtain the Hitora bilinear form of Eq. as

(D} + D2Dy; + aDyD; + bD, D) f.f
= f(fxzxt+ftt+afyt+bfzt)+3fxzf$t_fz£2_fx;vzft_3fa:xtfw_afyft_bfzft~ (8)

In this work, our intention is to present the generalized Wronskian solutions of
the Eq. . The generalized Wronskian solutions are obtained through Wronskian
solutions. The generalized Wronskian solutions can be viewed as Wronskian solu-
tions. Solitons are examples of Wronskian solutions, and positons and negatons are
examples of generalized Wronskian solutions ([I1]-[I0]).

The paper is organized as follows. In Section 2, the Wronskian determinant
solution is deduced for Hirota bilinear form corresponding to Eq. . In Section
3, using Wronskian formulation rational solutions, solitons, positons, negatons and
their interaction solutions are presented. Lastly, conclusions are given in Section 4.

2. Wronskian formulation

We first present notation to be used and recall the definitions and theorems that
appear in ([5],[15])-[17]).
The solutions determined by v = 2 (In f), with f = |N — 1| and

O 40 o
RV
W(¢1,¢2,,,,7¢H)Z(N—1;¢):|N—1|: . . . . 7N217
.0 '1 ) ]V.fl
PN

9)

where

P = TG0 g = P i 1<i<N. (10
(¢1)¢2”777¢n) ) (bz ¢z’ d)z (933j 7 J = ) XX . ( )
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to the Eq. will be called Wronskian solutions ([5],[I5] and [1I7]). Now, we give
the following important properties on determinants ([I7]).

Property 1. If D is N * (N —2) matrix, and a, b, ¢, d are n-dimensional column
vectors then,

|D,a,b||D,c,d| —|D,a,c||D,b,d| +|D,a,d||D,b,c| =0 . (11)

Property 2. If a;(j = 1,...,n) is an n-dimensional column vector, and b;(j =
1,...,n) is a real constant different form zero then

N N
ZbZ |a’13 az, ""7aN| = Z |a1’ A2 -.eey ba’j7 e AN (12)
i=1 Jj=1

where baj = (blalj;b2a2ja ----- abNaNj)T~

Property 3.

N N
N ) (SN 1) < I -8 21
i=1 1=1

—IN—-4,N-2,N—1,N+1|—|[N—3,N—1,N +2|

+2|N —3,N,N+1|+|N —2,N +3). (13)
Now, we present a set of sufficient conditions consisting of systems of linear partial
differential equations which guarantees that the Wronskian determinant solves the
Eq. in the bilinear form . Upon solving the linear conditions, the resulting
Wronskian formulations bring solution formulas, which can yield rational solutions,
solitons, negatons, positons and interaction solutions. Also, positons, negatons and
their interaction solutions are called the generalized Wronskian solutions ([I1]).

Theorem 1. Assuming that ¢, = ¢; (x,y,t) (where i = 1,2,...,N) satisfies the
following linear partial differential equations (LPDEs)

N

j=1
Gip = mP; 4 (15)
¢i,y = n¢i,xwx + k¢z,x (16)

with A
n=—-,m= —(b+ ak)
then [ = |N/—\1| defined by (@ solves the bilinear Eq. (@
Proof. Considering @7 we can obtain the following derivatives
f=IN-1]
fo=|N=2,N]
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foo=|N—3,N—1,N|+|N—2,N+1|
fooe =|N—4,N—2N—1,N|+2[N-3,N—1,N+1/+|N—2,N +2].
In addition, keeping in mind the conditions of —, we can produce that
fi = m|m,N|
for =m(N —3,N —1,N|+|N —2,N +1|)
Jue = m2(|]7——\3,N —1,N|+ |m,N+ 1))
fy =n|N —4,N=2, N—1,N|-n|N — 3, N—1, N+1|+n|N — 2, N+2|+k|N — 2, N|
fu=mn|N—5,N-3 N-2 N—1,N|—mn|N —3,N,N+1|+mn|N — 2, N +3|
+mk|N —3,N — 1, N| + mk|N — 2, N + 1]
foot =m(N—4,N—2,N—1,N|+2|]N—3,N—1,N+ 1|+ |N —2,N +2|)
Fooat =m(N — 5, N—3, N—2, N—1, N|+3|N — 4, N—2, N—1, N+1|+2|N — 3, N, N+1]
+3IN —3,N— 1N +2/+|N —2,N +3|)
Therefore, we can compute all terms in Eq. such as
3fvafor = 3m(N —3,N—1,N|+|N — 2, N+1|)(|N — 3, N—1, N|+|N — 2, N+1]|)
= 3m(N —3,N —1,N|+ |N —2,N +1|)2
—3m(N—2,N+1/—|N—3,N—1,N|+2|N —3,N — 1, N|)2
=3m(N—2,N+1|—|N —3,N—1,N|)2+12m|N —3,N — 1, N||N —2,N + 1],
- - (17)
Ffosat =m|N —1|((N =5,N—=3,N—2 N—1,N|+3[N—4,N—2 N —1,N +1|
42N —3,N,N+1/+3|N—3,N—1,N+2|+|N—2,N +3|),
Ffu=m?N—1(|N—3,N —1,N|+|N —2,N +1|),
af fyr = a|]7—\1|(mn|N/—\5,N— 3,N—2,N—-1,N| —mn|m,N,N+ 1]
+mn|N — 2, N + 3| + mk|N —3,N — 1, N| + mk|N — 2, N + 1]),
bf for = bm|N —1|(|[N —=3,N — I, N|+ |[N —2,N + 1)),
F(Fowat + frt + afyr + bfar) = [N — 1|((m + amn) [N —5,N —3,N —2,N — 1, N|
+3m|N —4,N —2,N —1,N + 1| + (2m — amn) [N — 3, N, N + 1|
+3m|N — 3, N—1, N+2|+(m + amn) |N — 2, N+3|+(m? + amk + bm) [N — 3, N—1, N|
+ (m® + amk + bm) [N — 2, N +1]). (18)
We can obtain from Eq. and Eq. (Property 3)

m+ amn = —3m
4

n=——
a
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and
m? 4+ amk +bm =0
m = —(b+ ak).
Then, Eq. can be rewritten as the following
f(fowat + fro +afys +bfp) = —3m|N —1|(|[N —5,N —3,N —2,N — 1, N|

—IN—-4,N—-2,N—1,N+1|—2|N—3,N,N+1| - |N —3,N —1,N +2|
+IN —2,N +3|)
= 3m(N—2,N+1|—|N —3,N—1,N|)2+12m|N —3,N,N +1||]N — 1| (19)
and
—f? = —m?|N =2, N|?
—foaafe = —m|N —2,N|(|N —4,N=2, N—1, N|4+2|N — 3, N—1, N+1|+|N — 2, N+2|)
—3fretfe = —3m|N — 2, N|(IN — 4, N—2,N—1, N|+2|N — 3, N—1, N+1|+|N — 2, N+2|)
—af,f = —am|N — 2, N|(n|N —4,N—2, N—1, N|-n|N — 3, N—1, N+1|+n|N — 2, N+2|
+E|N —2,N|) = bfofy = —bm|N — 2, N||N — 2, N| = —bm|N — 2, N|?
— 2~ fowofi=3Feat fo—afy fi—bfofr = —12m|N — 3, N=1, N+1||N — 2, N| (20)

After substituting of the Eq. 7 and into (8]) we obtain the following
Pliicker relation:

(D? + DDy + aD, D, +bD,D,) ff = 12m|N —3,N — 1, N||[N =2, N + 1|

+12m|N —3,N,N +1||N — 1| — 12m|N —3,N — 1, N + 1||N — 2, N|
As result of Property 1, we get
12m|N —3,N — 1, N||N —2,N + 1| + 12m|N — 3, N, N + 1||N — 1|
—12m|N —3,N — 1, N + 1||N —2,N| = 0.
|
This demonstrates that f = \]7—\1| solves the bilinear Eq. . The correspond-
ing solution of Eq. is
_ 2 _,IN-2,N]

v=2(lnf)x—7— |]7_\1|
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3. Wronskian solutions of Eq.

In this section, new exact solutions including rational solutions, soliton solutions,
positon solutions, negaton solutions and their interaction solutions are formally

derived to Eq.(8) ([1I]-[10]).
The Jordan form of a real matrix

J (A1) 0
1 J (A2)
A= '
0 L JOwm) |
has the following type of block:
Ai 0
1N
J(Xi) =
0 LA J ks
This type of block has the real eigenvalue A;.
3.1. Rational solutions. Let’s assume that J (A1) is
A1 0
1 XN
J (M) =
0 LM kixky
If the eigenvalue A; = 0, then J (A1) becomes to the following form:
0 0
1 0
0 10

k1Xk1
Then the conditions ([14)-(16]), convert to
D120 =0 Git100 =0, &p = —(b+ak)d, ,,

4 .
d)i,y = _a(bi,xa:m + k¢i’z , @ >1
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If we can obtain the functions of ¢;(i > 1) from Eq.(21]) then

v = 28m ln W(¢1, ¢27 ceeey (rbkl)

is called a rational Wronskian solution of order k.
After solving

4
¢)1,ww =0 ’ (bl,t = _(b+ ak)¢)1,w ’ ¢)1,y = _E¢1,xzx + k(bl,a:

we get
o1 =1 (x + ky — (b+ ak)t) + ca.

where cq,co and k # 0 are all real constants.
Similarly, by solving

4 .
_E(biJrl,xa:w + k¢i+l7w ,yi1>1,

Biv1ze =i s Git1e=—(0+ak)pi i1, Pip1,y =

then zero,first and second order rational solutions can be achieved.

1) Zero-order: When ¢; = 1,¢0 = 0,¢; = x + ky — (b + ak)t, we have the
corresponding Wronskian determinant f = W(¢,) = = + ky — (b + ak)t, and the
associated rational Wronskian solution of zero-order:

2
x+ky — (b+ ak)t

v =20, InW(¢,) = (22)

2) First-order: When ¢ = 1l,¢c0 = 0,¢; = = + ky — (b + ak)t, we have

3
Py = w — %y and the corresponding Wronskian determinant f =

3
W (g, d9) = M + 2%, and the associated rational Wronskian solution
of first-order

2(z + ky — (b + ak)t)?
(z+ky—(b+ak)t)®

4y
3 +a

v =20, InW(py,p,) = (23)

3) Second-order: When ¢, =z + ky — (b + ak)t, ¢y = —(x+ky_(()-b+ak)t)3 - %y’
z+ky—(b+ak)t)® N 2y(z+ky—(b+ak)t)?
120 a

we have ¢; = ( / and the corresponding Wronskian
determinant f = W(¢q, dq, ¢5) = (wtky=(b+ak)t)® + dy(wthy—(btak)e)’ 12732, and

45 3a
the associated rational Wronskian solution of second-order

4(z+ky—(b+ak)t)® 8y(z+ky—(b+ak)t)?
15 + a (24)
wtky—(bt+ak)t)® | dy(zt+ky—(b+ak)t)®  16y>
45 + 3a a2

v =20, W (91, 9, 03) = 7
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3.2. Solitons, negatons and positons. If the eigenvalue A; # 0, J (A1) becomes
to the following form

A1 0
1 N
0 1 M

klxkl
We start from the eigenfunction ¢, (A1), which is determined by

(01(AM1)) 4 = M101(A1) , (01(M1)), = —(b+ ak) (¢1 (M),
(B100)y =~ (B30 + (B0, (25)

General solutions to this system in two cases of A\; > 0 and \; < 0 are

S1(M) = Clsinh(\/x(m+ky(b+ak)t4y}‘1>>

a

+Cy cosh (\/E (a: +ky— (b+ak)t — 4ya)‘1 )) (26)

when A; > 0,

61(\) = Cscos <\/_T1 <£+ky_ b+ ak)t - 4ya)\1>)
—Casin <\/—T1 <w +hy— (b+ak)t— 4‘”;1)) (27)
ak

when % < A1 < 0 respectively, where C1,Cs,C3 and Cy are arbitrary real con-
stants.
1) Solitons: The n—soliton solution is a special n—negaton:

v = 28z IHW(¢1,¢23 ----- a(bn)

with ¢, given by
dyAi ‘
¢, =cosh [ VN |xz+ky— (b+ak)t— +7, ], iodd,
a

Ay
qbi:Sinh(\/)\j(x—i—k‘y—(b—&—ak’)t— y&)_‘_%)’ i even,

a

where 0 < A; < Ag.... < A\, and 7, (1 <14 < n) are arbitrary real constants.
Zero-order:

v = 20,InW(¢,) =20,In (cosh <\/Z <£c +ky— (b+ak)t— 4ya)\1> + ’yl)>
2v/A1 tanh(6;) (28)
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v = 20,InW(¢;) =20;In (sinh <\/)\71 (w +ky—(b+ak)t — 4ya)\1> + 71>)

= 2\/ )\1 coth(@l) (29)
where 0 = \/Ail(:tJrk:yf (b+ ak)t — %) +7, AM1>0

First-order:

v = 20, InW(cosh(¢,),sinh(¢,))

_ 2 (A1 — A2) (sinh (61 + 62) — sinh (0, — 63)) (30)
(VAL — VA2) cosh (01 + 02) — (VA1 + v/A2) cosh (61 — )

where 0; = \/)Ti(ﬂﬁ—ky— (b+ ak)t — %) +7;, A >0, i=1,2.
2) Positons: We obtain two special positon solutions as the following
v =20, InW(p, 0@, ....., 0 1 ¢)
4y
d(N) =cos | V=X a:+/<;y—(b+ak)t—7 + A <0,

¢(A)—sin<\/7(x+ky(b+ak)t4z)\> +’y) A < 0.

Zero-order:

v = 20,InW(¢;) =20;In (cos (\/ -\ (m +ky—(b+ak)t — 4ya)\1> +71>)

= —2v/-X\ tan(93) (31)
v = 20,InW(¢,)=20,In (sm <\/—7)\1 (x +ky— (b+ak)t — - ) +%>>
= 2¢/—A1cot(f3) (32)
where 03 = \/TM(QH-M— (b + ak)t — %) +7
First-order:
v =20, In W (cos(6), Oy, cos(h)) = 4y/=1 (1 + cos(20))
2V=X1 (f” +ky — (b+ak)t— %) + sin(26)
(33)

Wheree:\/—i)\l(fv-i-k‘y—(b—&—ak)t—%) T

3) Negatons: We obtain two special negaton solutions as the following

v = 28$ 11’1W(¢, 8)\¢’ ----- ’8];\3_1¢)

¢ = cosh (ﬁ(w—kky—(b—kak)t—zlz)\) +’y>
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ng:sinh(ﬁ(m—i—ky—(b—kak)t—le)\)+’y)

where A > 0 and + is an arbitrary constant.
First-order:

v = 20, In W (cosh(#), Oy, cosh()) = 44/A1 (1 + cosh(26))
2VAL ( -+ by = (b-+ ak) £ = 224) 4 sinh(20)

(34)
Where@:\/x(ﬂc+ky—(b+ak)t—%>+71

3.3. Interaction solutions. A Wronskian solution v = 29, In W (¢ (\), ¢5(A), ...,
0 (A); 1 (1), ...y (1)) will be called as Wronskian interaction solution between two
solutions determined by the two sets of eigenfunctions

(¢1(>‘)7 ¢2()‘)7 ey ¢k()‘);w1(:u’)v "'77/)l(/-j')) (35)

Moreover, one can generate more general Wronskian interaction solutions for in-
stance using the rational solutions, negatons and positons.

Now, our aim is to demonstrate some special Wronskian interaction solutions.
First, we consider the following eigenfunctions:

(rbrational =+ ky - (b + ak) 13

¢soliton = cosh (\/x ((L’ + ky - (b + Clk‘) t— 4y>\1 ))
a
4yAa
(bpositon = CO8 \/_7>‘2 T+ ky - (b + Qk) t—

a

where A\; > 0, Ay < 0 are constants.
We get the following Wronskian interaction determinants using the rational, a
single soliton and a single positon solutions

W (rationals Ssotiton) = V1 (z + ky — (b+ ak) t) sinh(61) — cosh(61)  (
W (Drationats Spositon) = —V/ A2 (& + ky — (b -+ ak) ) sin(fz) — cos(82) ~ (37)
W (Golitons Bpositon) = —V —Az cosh(6) sin(f3) — /A1 sinh(61) cos(82)  (38)
where 8; = m(ﬂky— (b+ ak)t — %) By = m(ﬁky— (b+ak)t — %)
Then, the corresponding Wronskian interaction solutions are
2v/A1 (z + ky — (b+ ak) t) cosh(6;)

VAL (z + ky — (b+ ak)t) sinh(01) — cosh(6)
(39)

36)

v =20, In W((brationalv ¢soliton) =

—2Xo (z + ky — (b + ak) t) cos(62)
V=22 (x + ky — (b+ ak) t)sin(f2) + cos(HQ() )
40

v =20, In W((brationalv (bpositon) -
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2 (A1 — A2) cosh(67) cos(62)
v —Ag cosh(f1) sin(f3) + /A1 sinh(61) cos(62)
(41)
where §; = \/H(x—i—ky— (b+ ak)t — %) , 0s = m(x+ky— (b+ ak)t — %)
The following is one Wronskian interaction determinant and solution involving
the three eigenfunctions.

U= 2ar In W(d)solitonv ¢posit0n) =

W(¢rational7 ¢solit0nv ¢positon) = (ZIJ +ky — (b + ak) t)
X ()\2 v/ A1 sinh(67) cos(02) + A1/ —Aa cosh(6;) Sin(ﬁg))
+ (A1 — A2) cosh(67) cos(62) = p (42)

2q

v = 2893 In W(¢rational7 ¢solit0n7 ¢posit011> = ? (43)

where
qg=(x+ky— (b4 ak)t) /=M Aa (A1 — A2) sinh(0) sin(f2)+ A1/ A1 sinh(0;) cos(f2)
+)\2 VvV 7)\2 COSh(gl) sin(@z)
4 4
01 = /N <x—|—ky— (b+ ak)t — yjl) 0y = /=N, <x+ky— (b+ ak)t — yf)

4. CONCLUSIONS

In summary, based on Hirota’s bilinear method, we have used Wronskian de-
terminant method to construct exact solutions of (241) dimensional nonlocal Tto
equation. The performance of this method is reliable and effective and gives more
important physical solutions including solitons, negatons and positons. Some of
the results are in agreement with the results obtained in the previous literature,
and also new results are formally developed. We hope that the obtained solutions
can be used in numerical schemes as initial values and they may be of significant
importance for the explanation of some special physical phenomenas.
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