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OSCILLATION OF NONLINEAR FOURTH-ORDER DIFFERENCE
EQUATIONS WITH MIDDLE TERM

M. EMRE KAVGACI

Abstract. In this article, we study oscillatory properties of the fourth-order
difference equation with middle-term

∆4xm − am∆2xm+1 + bmf(xm+σ) = 0,

in case when the corresponding second-order difference equation ∆2hm −
amhm+1 = 0 is nonoscillatory.

1. Introduction

Consider the fourth-order nonlinear difference equation

∆4xm − am∆2xm+1 + bmf(xm+σ) = 0, (1.1)

where σ ∈ N is a deviating argument and {am}, {bm} are real sequences for m ∈ N.
Function f : R→ R, is continuous such that uf(u) > 0 for u 6= 0 where R denotes
the set of real numbers.
Throughout the paper we assume

amam+1 > 0, bm > 0, m ∈ N

and
∞∑
m=1

m|am| <∞. (1.2)

By a solution of the equation (1.1), we mean a real sequence {xm} satisfying equa-
tion (1.1) form ∈ N. A nontrivial solution {xm} of (1.1) is said to be nonoscillatory
if it is either eventually positive or eventually negative, and it is oscillatory other-
wise. Equation (1.1) is said to be oscillatory if all its solutions are oscillatory.
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In the recent years, a great importance has been paid to the study of oscillatory
behavior of fourth-order differential equations [6, 7] and difference equations [2, 3,
4, 5, 14, 16, 19], see also the monograph [1] and [15].
In the continuous case, the fourth-order differential equation

x(4)(t) + q(t)x(2)(t) + r(t)f(x(ϕ(t))) = 0

can be written as (
h2(t)

(x′′(t)
h(t)

)′)′
+ h(t)r(t)f(x(t)) = 0

h′′(t) + q(t)h(t) = 0 is nonoscillatory and h is its eventually positive solution, see
e.g. [7].
Došlá and Krejcova [11, 12] have investigated a class of fourth-order nonlinear

difference equations of the form

∆
(
an

(
∆bn (∆cn (∆xn)

γ
)
β
)α)

+ dnx
λ
n+τ = 0, (1.3)

and Jankowski, Schmeidel and Zonenberg [14] have generalized the some results of
[11] for neutral equation

∆
(
an

(
∆bn (∆cn (∆ (xn + pnxn−δ))

γ
)
β
)α)

+ dnf(xn−τ ) = 0, (1.4)

where α, β and γ are the ratios of odd positive integers, integers τ , δ are deviating
arguments.
In this paper we investigate oscillatory properties of the equation (1.1). Our

approach is based on the transformation of (1.1) to the two-terms equation of
the form (1.3) and to application of oscillation results for equation (1.3) stated in
[11, 12].

2. Preliminaries

Consider second order linear equation

∆2hm − amhm+1 = 0. (2.1)

Let (2.1) be nonoscillatory. The following definition is given by Patula [17].

Definition 2.1. If there exist two linearly independent solutions v and w of (2.1)
such that v/w → 0 , as n → ∞, then v is recessive solution and w is dominant
solution of (2.1).

We remark that the recessive solution always exist and is unique up to a constant
factor, see [17, Theorem 1].

Lemma 2.1. If (2.1) is nonoscillatory, there exist a recessive solution h such that
∞∑
m=1

1

hmhm+1
=∞.
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Proof. See [17, Theorem 1] and [1, Theorem 6.3.1]. �
Lemma 2.2. If

∑∞
m=1m|am| < ∞, then (2.1) has recessive solution which tends

to positive constant.

Proof. Let am > 0 for m ≥ 1. Then the conclusion follows from [10, Theorem 4].
In case am < 0 for m ≥ 1, the statement follows from [13, Theorem 4.2]. �
From Lemma 1 and Lemma 2 we have the following Lemma.

Lemma 2.3. If
∑∞
m=1m|am| <∞, then recessive solution h of (2.1) provides

∞∑
m=m0

1

hmhm+1
=∞,

∞∑
m=m0

hm =∞. (2.2)

Proof. See [1, Theorem 6.3.8] and [13, Theorem 4.2]. �
Now, we consider equation (1.1) and we write it as a two-terms equation.

Lemma 2.4. Let the equation (2.1) be nonoscillatory and let h be its solution such
that hm > 0 for m ≥ 1. Then, we have for m ≥ 1

∆4xm − am∆2xm+1 =
1

hm+1
∆

[
hmhm+1∆

(
1

hm
∆2xm

)]
. (2.3)

Consequently, x is solution of equation (1.1) if and only if it is a solution of equation
in the disconjugate form

∆

[
hmhm+1∆

(
1

hm
∆2xm

)]
+ bmhm+1f(xm+σ) = 0. (2.4)

Proof. Assume that ym ≡ hmum, where u = (um) is any sequence. Firstly, we show
that

hm+1(∆
2ym − amym+1) = ∆(hmhm+1∆um). (2.5)

Using the definition of difference operator, we can easily obtain that

∆(hmhm+1∆um) = hm+1(hm+2∆um+1 − hm∆um) (2.6)

and
∆2ym = hm+2um+2 − 2hm+1um+1 + hmum. (2.7)

From equation (2.1), we can write amhm+1 = ∆2hm and

amym+1 = um+1∆
2hm = um+1(hm+2 − 2hm+1 + hm). (2.8)

From (2.7) and (2.8)

hm+1(∆
2ym − amym+1) = hm+1(hm+2∆um+1 − hm∆um). (2.9)

Then, right side of equation (2.6) is equal to right side of equation (2.9) and we
obtain,

∆2ym − amym+1 =
1

hm+1
∆(hmhm+1∆um)

where um = ym
hm

and ym = ∆2xm. �
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Remark 2.1. If h is recessive solution of (2.1), then by Lemma 3, (2.2) holds and
equation (2.4) is said to be in the canonical form.

Let x be a solution of (2.4) and denote the quasi-differences of x as

x[1] = ∆xm, x
[2] = 1

hm
∆x[1], x[3] = hmhm+1∆x

[2].

Lemma 2.5. If (2.2) holds, then any eventually positive solution {xm} of (2.4) is
one of the following types:
type (a): xm > 0, x[1] > 0, x[2] > 0, x[3] > 0 for large m,
type (b): xm > 0, x[1] > 0, x[2] < 0, x[3] > 0 for large m.

Proof. We consider (2.4) as a four-dimensional system
∆xm = ym

∆ym = hmzm

∆zm = 1
hmhm+1

wm

∆wm = −bmhm+1f(xm+σ),

(2.10)

where
(x, y, z, w) = (x, x[1], x[2], x[3]).

Proceeding by the similar way as in [11], proof of Lemma 2, we obtain the conclu-
sion. The details are omitted here. �

3. Oscillation results

In this section, we give oscillation results for equation (1.1). During this section
we assume that equation (2.1) is nonoscillatory and h is a solution of (2.1) such
that hm > 0 for m ≥ 1.
Solution x of (1.1) is called quickly oscillatory, if it is of the form

xm = (−1)mpm, pm > 0 for m ∈ N.

The following result can be seen as a necessary condition for existence of quickly
oscillatory solutions.

Lemma 3.1. If σ is even, then equation (1.1) has no quickly oscillatory solutions.

Proof. Let xm = (−1)mpm be a quickly oscillatory solution of (1.1). By Lemma 4,
xm is solution of (2.4) and system (2.10). Then, the proof is the similar way as in
[11], proof of Theorem 1 and [14], proof of Theorem 3.1. �

Theorem 3.1. Let (1.2) holds. If
∑∞
i=1 bi =∞, then (1.1) is oscillatory.

Proof. By Lemma 4, we can transform equation (1.1) to equation (2.4). The proof
follows from [14], proof of Theorem 4.4. �
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Theorem 3.2. Let (1.2) holds and there exist λ > 0 such that

lim
u→∞

f(u)

uλ
> 0. (3.1)

Equation (1.1) with σ ≥ 1 is oscillatory if any of the following conditions holds:
(i) λ < 1,

∑∞
m=1 bmm

λ =∞;

(ii) λ > 1,
∑∞

m=1 bmm =∞.

Proof. For the sake of contradiction, let (1.1) have a nonoscillatory solution and
let h be recessive solution of (2.4) such that limm→∞hm = 1. Without loss of
generality assume xm > 0 for m ≥ 1. By Lemma 4, x is nonoscillatory solution of
(2.4). By Lemma 5, x is type (a) or type (b).

(i) Let x be of type (a) such that xm > 0 for m ≥ 1. Then, limm→∞ xm = ∞.
Consider equation

∆

[
hmhm+1∆

(
1

hm
∆2υm

)]
+ bmhm+1

f(xm+σ)

xλm+σ
υλm+σ = 0. (3.2)

This equation has a solution υ = x of type (a). Using (3.1), we have that there
exist K > 0 such that f(xm+σ)

xλm+σ

≥ K. We apply to (3.2), lemma in [11, Lemma 4]

with α = β = γ = 1 and σ ≥ 1. We have

bmhm+1
f(xm+σ)

xλm+σ
≥ K

2
bm, for large m.

Thus,
∞∑
m=1

bmhm+1
f(xm+σ)

xλm+σ
mλ =∞,

and by [11, Lemma 4 and Corollary 1], equation (3.2) is oscillatory. This is a
contradiction with the fact that (3.2) has a nonoscillatory solution υ = x.

(ii) Let x be of type (b). Then, there exist limm→∞ xm. Because of the continuity
of f there exist K > 0 such that

lim
m→∞

f(xm+σ)

xλm+σ
≥ K, for large m,

and proceeding the similar way as in (i), we get that (3.2) has no nonoscillatory
solution of type (b). This completes the proof. �

Theorem 3.3. Let (1.2) holds and there exist λ > 0 such that

lim
u→∞

f(u)

uλ
> 0.

Equation (1.1) with σ ≥ 3 is oscillatory if any of the following conditions hold:
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(i) λ > 1 and
∞∑

m=m0

m2
∞∑

k=m−2
bk =∞, (3.3)

(ii) λ = 1 and

lim
m→∞

sup

(
m3

∞∑
k=m−3

bk

)
=∞. (3.4)

Proof. (i) λ > 1, by [12, Corollary 2-(i)] equation (1.1) with σ ≥ 3 has no solution
of type (a) or type (b) if

∞∑
m=m0

m2
∞∑

k=m−2
bk =∞.

(ii) λ = 1, by [12, Corollary 2-(ii)] equation (3.4) implies

lim
m→∞

sup
(
m

∞∑
m=m0

bkk
2
)
> 1.

This completes the proof. �
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[11] Z. Došlá, J. Krejčová, Oscillation of a class of the fourth-order nonlinear diff erence equations,
Adv. Difference Equ. (2012), 2012:99, 14 pp.
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