Real-Time Implementation of Sliding Mode Control Technique for Two-DOF Industrial Robotic Arm

Kağan Koray AYTEN¹, Ahmet DUMLU¹

ABSTRACT: This study presents a real-time implementation of the angle trajectory tracking control for the two DOF industrial robotic manipulators. For real-time trajectory tracking control, the classical proportional–integral–derivative (PID) control and the nonlinear Sliding Mode Control techniques have been considered. The SMC technique takes into account the complete dynamic model of the two DOF robot to increase the trajectory tracking performance of the manipulator. The experimental results demonstrate that the nonlinear SMC method has improved the trajectory tracking performance compared with the PID method.

Keywords: PID control, robot control, sliding mode control, trajectory control.

İki Serbestlik Derecesine Sahip Endüstriyel Bir Robotun Kayan Kipli Kontrol Yöntemi ile Kontrolünün Gerçek Zamanlı Uygulaması

Anahtar Kelimeler: Kayan kipli kontrol, PID kontrol, robot kontrol, yörünge kontrol.
INTRODUCTION

The purpose of robotic manipulators used in today’s modern industrial world is to improve the quality of products, to improve industrial productivity, correctness, speed and flexibility. Although the requirements of industrial applications are complex and difficult, robotic manipulators are increasingly being used more and more dangerous, tedious or repetitive industrial processes, where people do not want to work. More efficient and quality manufacturing is an important issue of the industry, and this demand has led to the development of more skilled and modern robotic manipulators. These skilled systems are usually autonomous and required initial actions, such as calibration, trajectory planning in order to fulfil their assigned tasks. For this reason, it is a very important step to accurately and precisely control the manipulator in the working environment in order to be able to fulfil the assigned tasks successfully. The main areas of research in the field of robotics manipulators can be summarized as robotic manipulator design, trajectory planning, trajectory optimization, and robot manipulator control. Among these scientific research areas, the control of robotic manipulators has a crucial place to follow a precise and reliable trajectory between the initial and final position of the robot (Dasgupta et al., 2009). Accurate trajectory control is a vital issue for the efficient operation of a given robotic application. For this reason, a large number of control methods have been applied in the literature for various types of robotic systems, such as, H infinity control (Makarov et al., 2016), neural network control (Li et al., 2017; Zhang et al., 2018), adaptive fuzzy control (Li et al., 2013; Chu et al., 2014) and fractional order control (Monje et al., 2007; Efe et al., 2008; Nikdel et al., 2016). Among the above mentioned control techniques, the sliding mode controller is an effective and robust control technique and is a variable structure for the unknown dynamics of unknown loads and nonlinear systems in the system. In many nonlinear systems, a sliding-mode control technique is used to improve system performance and system stability against external disturbances. In addition, this method is also used to simplify the design, increase the trajectory tracking accuracy and reduce model complexity (Utkin, 1977; Edwards and Spurgeon, 1998). The sliding modal control technique provides a systematic approach that improves system capability to eliminate the problem of stability preservation. In addition, it improves the system’s performance for modelling instabilities (Slotine and Li, 1991). Therefore, due to the characteristics of the sliding mode controller, many researchers have used this control method to overcome the control problem in their systems (Capisani and Ferrara, 2012; Baek et al., 2016; Zhang, 2017; Lee et al., 2017; Van et al., 2017).

According to the abovementioned, SMC control method was applied to improve the trajectory tracking performance of an industrial robotic manipulator. To demonstrate the effectiveness of the SMC technique, the given trajectory was also operated by a PID controller. Angular position and error values are given experimentally in order to compare the performance of two controllers. However, during the implementation of the PID controller, the un-modelled dynamics of the robot are taken into account. However, In the SMC method, the full dynamic model of the robot is taken into account. The most important feature of SMC is that it adjusts itself according to the uncertainties in the system. As a result of this study, it has been shown that SMC technique is a robust control method against unknown uncertainty and un-modelled dynamics.

SYSTEM DESCRIPTION

This section focuses on the mathematical analysis of an industrial robot with two degrees of freedom, and the implementation of a sliding-mode control method for precise position control of the robot.

Mathematical analysis of robot with two degrees of freedom

Figure 1 shows a schematic representation of a planar robot arm with two degrees of freedom.
The parameters related to the robot are given in Table 1.

Table 1. 2-DOF robot specification

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_0, y_0</td>
<td>Fixed Cartesian coordinate system</td>
</tr>
<tr>
<td>x_1, y_1</td>
<td>First-link moving coordinate system</td>
</tr>
<tr>
<td>x_2, y_2</td>
<td>Second-link moving coordinate system</td>
</tr>
<tr>
<td>q_1, q_2</td>
<td>Joint angles of the robot</td>
</tr>
<tr>
<td>m_1, m_2</td>
<td>Mass of robotic arms (2.45 kg, 6.55 kg)</td>
</tr>
<tr>
<td>I_1, I_2</td>
<td>Inertia of Robotic arms (0.024, 0.0365)</td>
</tr>
<tr>
<td>l_1, l_2</td>
<td>Length of link 1 and 2 (0.21m, 0.32m)</td>
</tr>
<tr>
<td>l_{c1}, l_{c2}</td>
<td>The length of mass centres of the links (0.105m, 0.19m)</td>
</tr>
<tr>
<td>g</td>
<td>Gravitational acceleration (9.81 kg/m²)</td>
</tr>
</tbody>
</table>

The forward kinematic equations of this robot arm can be calculated by Equations 1 and 2 as follows:

$$p_x = l_1 \cos(q_1) + l_2 \cos(q_1 + q_2)$$

(1)

$$p_y = l_1 \sin(q_1) + l_2 \sin(q_1 + q_2)$$

(2)
Equation 4 demonstrates the inverse kinematic equations as follows:

\[q_2 = \tan^{-1}\left(\frac{\sqrt{1 - D^2}}{D}\right) \]
\[q_1 = \tan^{-1}\left(\frac{P_x}{P_y}\right) - \tan^{-1}\left(\frac{l_2\sin(\theta_2)}{l_1 + l_2\cos(\theta_2)}\right) \]
\[\text{where } D = \frac{p_x^2 + p_y^2 - l_1^2 - l_2^2}{2l_1l_2}. \]

Equation of motion of the robot is given in Equation 5 as follows:

\[\tau = M(q)\ddot{q} + N(q, \dot{q}) + \tau_d \]
\[\text{In this equation, } \tau_d \text{ is the disturbance effects such as friction, } q \text{ is the position of the joints of the robot joint, and finally } \tau \text{ is the motor output torque. } M(q) \text{ is a mass matrix and is given by Equation 6 as follows;} \]

\[
\begin{bmatrix}
 m_1l_{c1}^2 + m_2(l_1^2 + l_2^2 + 2l_1l_2\cos(q_2) + l_1 + l_2) & m_2(l_2^2 + l_1l_2\cos(q_2) + l_2) & m_2l_2^2 + l_2 \\
 m_2(l_2^2 + l_1l_2\cos(q_2) + l_2) & m_2l_2^2 + l_2 \\
\end{bmatrix}
\]

\[N(q, \dot{q}) =
\begin{bmatrix}
 -m_2l_1l_2\sin(q_2)\dot{q}_2 & -m_2l_1l_2\sin(q_2)\dot{q}_2 & -m_2l_1l_2\sin(q_2)\dot{q}_1 & 0 \\
 m_2l_1l_2\sin(q_2)\dot{q}_1 & 0 & 0 & 0 \\
\end{bmatrix} +
\begin{bmatrix}
 (m_1l_{c1} + m_2l_1)g\cos(q_1 + q_2) \\
 m_2l_2g\cos(q_1 + q_2) \\
\end{bmatrix}
\]

In Equation 7, \(N(q, \dot{q}) \) shows the centrifugal and coriolis terms.

Sliding mode control technique

In order to use the equation of motion expressed by Eq. (5) in the sliding mode control, it is necessary to leave the \(q \) output variables in the equation alone. For this, if both sides of Eq. (5) are multiplied by \(M(q)^{-1} \), \(\ddot{q} \) is expressed as in Eq. (8).

\[\ddot{q} = f(q, \dot{q}, t) + g(q, t)u(t) + \xi(t, u(t)) \]

where \(f(q, \dot{q}, t) = -M(q)^{-1}N(q, \dot{q}), \) \(g(q, t) = M(q)^{-1}, \) \(u(t) = \tau \) and \(\xi(t, u(t)) \) defines the limited
against the external or system disturbances. The control signal used in the sliding mode control method consists of two components. The first component is the equivalent control component that is used to at least reduce the error values. The second component is a switched control component that can make the system susceptible to disruptive effects resulting from unknown uncertainties. In this proposed method, a sliding surface $s(t)$ is selected as follows;

$$s = \lambda e + \dot{e}$$

(9)

where, λ is a positive constant matrix, e is a tracking error matrix and it can be given as $e = [q_d - q]$.

Differentiating Equation (9) with respect to time, the following equation is obtained

$$\dot{s} = \lambda \dot{e} + \ddot{e}$$

(10)

This can be further written as,

$$\dot{s} = \lambda \dot{e} + (\ddot{q}_d - \ddot{q})$$

(11)

Substituting \ddot{q} from Equation (8) into Equation (11) yields;

$$\dot{s} = \lambda \dot{e} + \ddot{q}_d - f(q) - g(q)u$$

(12)

It is well known that, in the second order sliding surface condition, if, $s(t)$ and $\dot{s}(t)$ equal to null then the tracking error e reaches to zero. Hence, the reaching phase control law u_{eq} can be obtained by using the $\ddot{s}(t) = 0$ as follows;

$$u_{eq} = \frac{-f(q)}{g(q)} + \frac{\lambda \dot{e}}{g(q)} + \frac{\ddot{q}_d}{g(q)}$$

(13)

However, it is not possible to control the system using only the reaching phase control law. As previously mentioned, the effect of constrained but unknown uncertainties during the operation of the system may be serious. Therefore, by adding the switching control law, u_{sc}, to the Equation (14), it can be ensured that the system is more robust against the external or system uncertainties during the motion.

$$u_{sc} = k_x sgn(s)$$

(14)

where, k_x is the switching gain matrix and $sgn(s)$ can be expressed given as below.
Thus, the total feedback SMC control law \((u) \) for the system is written as follows;

\[
 u = u_{eq} + u_{sc} = -\frac{f(q)}{g(q)} + \frac{\lambda e}{g(q)} + \frac{\dot{q}}{g(q)} + k_s \text{sgn}(s)
\]

Practically, the control law given in Eq. (16) can result in oscillations due to the high-frequency switching and this oscillation is called chattering effect. To overcome the control-chattering during the implementation, the \(\text{sgn} \) (high-frequency switching function), can be approximated to the \(\text{sat} \) function, which is called the smooth limited function. The SMC implementation block diagram is shown in Figure 2.

![Figure 2. The block diagram of SMC](Image)

EXPERIMENTAL RESULTS AND DISCUSSIONS

The proposed sliding mode control method has been experimentally performed on a Denso VP-6242G industrial robot manipulator, as shown in Fig. 3. The Denso VP-6242G robot consists of six rotary joints driven by six servo motors. The sampling frequency of the system is given as 1KHz. In this study, to show the applicability of the sliding-mode control method to a robotic system with two proposed degrees of freedom, the second and third joints of the robot are considered while the other joints are locked, as shown in Fig. 3. In order to prove the proposed control method can perform well, the third degrees of polynomial trajectories have been defined in this work. For the experimental application, the initial joints positions are starting form \(-45^\circ\) and \(-45^\circ\) for \(q_1 \) and \(q_2 \), respectively. The manipulator task consists of moving the joints from an initial point \((q_1=-45^\circ \text{ and } q_2=-45^\circ)\) to final point \((q_1=0^\circ \text{ and } q_2=45^\circ)\). For the first 4 seconds, the joints angles, \(q_1 \) and \(q_2 \), have to move to \(45^\circ \) and \(0^\circ \), respectively and last 4 seconds, the angles of \(q_1 \) and \(q_2 \) have to move to \(0^\circ \) and \(45^\circ \). The initial and final velocities and accelerations are zero for all joints.
In order to demonstrate the effectiveness of the proposed method, the comparison has been made between PID and Sliding mode control techniques. As it can be seen from Figure 4, the proposed SMC technique follows the reference trajectory more accurately than the PID control technique. According to the trajectory tracking response for both controllers in Figure 4 and 5, PID controller causes overshoot values at the beginning of the motion for joint 1 (q_1) and joint 2 (q_2). However, as can be seen from Figures 4 and 5, overshoot values are eliminated completely for the proposed SMC controller case due to the SMC technique is a robust and an efficient control technique for un-modelled dynamics and un-known loads of the robotic system. Also, both transient and steady-state error values are reduced by using the proposed SMC controller as shown in Figures 6 and 7.
Figure 4. Trajectory tracking for joint 1 (q_1)

Figure 5. Trajectory tracking for joint 2 (q_2)

Figure 6. Tracking error for joint 1 (q_1)
CONCLUSION

In this study, 6 DOF was transformed into an industrial robot 2 DOF robot manipulator. First, mathematical modelling of two DOF robotic systems was performed. Two different control techniques such as PID and SMC were used for experimental study. System dynamics are not taken into consideration in PID method. In the SMC method, the full dynamic model of the system is considered. In the experimental study, the performances of the controllers were compared for the given trajectory. According to the results, SMC method was found to be a powerful control against uncertainty and un-modelled dynamics in the system.

REFERENCES

