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1. Introduction and preliminaries

Branciari metric spaces are among the recent generalizations of metric spaces and have been defined
by Branciari [3]. The main feature of these spaces is the replacement of the triangular inequality by a
rectangular inequality. The Branciari metric spaces are also referred to as rectangular or generalized metric
spaces. Another recent generalization of the metric spaces called b-metric spaces has been introduced by
Czerwik [4] and Bakhtin [2]. The difference between metric and b-metric shows itself in the triangle inequality
which contains a constant s > 1. Combining these two concepts, George et.al. [5] defined Branciari b-metric
spaces. This new metric space is also referred to as rectangular b-metric spaces. Several articles related with
this new metric space have been published recently [5] 11 [7].

In this paper we discuss the problem of existence and uniqueness of fixed points for contraction mappings
of Geraghty type defined on Branciari b-metric spaces.

We first introduce the basic notions used throughout the paper.

Branciari metric spaces are defined as follows [3].
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Definition 1.1. [3] Let X be a nonempty set and let d : X x X — [0,400) be a function such that for
all z,y € X and all distinct u,v € X each of which is different from x and y, the following conditions are
satisfied:

(1.) d(x,y) = 0 if and only if z = y;
(2) d(z,y) = d(y,z);
(3.) d(z,y) < d(z,u) + d(u,v) + d(v, y).
The map d is called a Branciari metric and the pair (X, d) is called a Branciari metric space.

Czerwik [4] and Bakhtin [2] defined the b-metric spaces as follows.

Definition 1.2. [2, [4] Let X be a nonempty set and let d : X x X — [0, +00) be a mapping satisfying the
following conditions for all x,y,z € X:

(1.) d(z,y) = 0 if and only if z = y;

(2.) d(z,y) = d(y, );
(3.) d(z,y) < s[d(x, z) + d(z,y)] for some real number s > 1.

Then the mapping d is called a b-metric and the pair (X, d) is called a b-metric space with a constant
s> 1.

Combination of the Branciari and b-metric spaces results in the following definition of the Branciari
b-metric spaces.

Definition 1.3. [5] Let X be a nonempty set and let d : X x X — [0,400) be a function such that for
all z,y € X and all distinct u,v € X each of which is different from x and y, the following conditions are
satisfied:

(1.) d(x,y) = 0 if and only if z = y;

(2.) d(z,y) = d(y, z);

(3.) d(z,y) < s[d(x,u) + d(u,v) + d(v, y)] for some real number s > 1.

The map d is called a Branciari b-metric and the pair (X, d) is called a Branciari b-metric space with a
constant s > 1.

Convergent sequence, Cauchy sequence, completeness and continuity on Branciari b-metric space are
defined as follows.

Definition 1.4. [5] Let (X, d) be a Branciari b-metric space, {x,} be a sequence in X and x € X. Then
1. A sequence {x,} C X is said to converge to a point x € X if, for every ¢ > 0 there exists ny € N such
that d(x,,z) < e for all n > ng. The convergence is also represented as

lim z,, =z or z,, — x as n — Q.
n—oo

2. A sequence {z,} C X is said to be a Cauchy sequence if, for every € > 0 there exists ng € N such that
d(Tn, Tnyp) < € for all n > ng, p > 0 or equivalently, if lim, o d(xy, Zn4p) = 0 for all p > 0.

3. (X,d) is said to be a complete Branciari b-metric space if every Cauchy sequence in X converges to
some z € X.

4. A mapping T : X — X on is said to be continuous with respect to the Branciari b-metric d if,

for any sequence {z,} C X which converges to some x € X, that is lim d(z,,x) = 0 we have
n—oo

lim d(Tx,,Tx)=0.

n—o0

One should be careful when working with the Branciari and Branciari b-metric spaces due to some of
their properties listed below.
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Remark 1.5. Let (X, d) be a Branciari or Branciari b-metric space.

1. If we denote an open ball of radius r centered at x € X as
Br(z,r) ={y € X : |d(z,y) <r},

such an open ball in (X, d) is not always an open set.
2. If T is the collection of all subsets ) of X such that for each y € Y there exist r > 0 with B,(y) C ),
then 7 defines a topology for (X, d), which is not necessarily Hausdorff.

3. The limit of a convergent sequence {z,} € X is not necessarily unique.
4. A convergent sequence in X is not necessarily a Cauchy sequence.
5. Branciari or Branciari b-metric is not necessarily continuous.

All these drawbacks are illustrated in the following example inspired by [5].

1

Example 1.6. [5] Let A = {,n € N}, B ={0,3} and X = AU B. Define the function d(z,y) : X x X —
n

[0, 00) such that d(x,y) = d(y,x) in the following way.

if =y,

if x,yeA,

if ze€Ayée B,

0
4
d(z,y)=q 1
n
2 if =zyeB.

It is not difficult to see that the function d(z,y) is not a metric, not a b-metric, not a Branciary metric
but only a Branciari b-metric with s = 2. It is also clear that

. 1 1

3 Mo 0 = 108 5, =0
and

lim d(—,3) = lim — =0

i, o = i, 5 =0

1
that is, the sequence {2—} has two different limits, the numbers 0 and 3.
n

In addition, the sequence { 2—} is convergent, but not a Cauchy sequence because
n

. . 1 1 .
plggod(a:m:cnw) B plggod 20 2n + 2p) B nh—>r{>lo4 =4

Finally, note that the open set Bl(%) contains 0, that is Bl(%) = {0, 3, %}, but there is no positive r for
which B,(0) C Bi(3).

Therefore, when working on Branciari metric space, we need the following property stated in proved in
[10].

Proposition 1.7. [10] Let {xy,} be a Cauchy sequence in a Branciari metric space (X, d) such thatlimy, o d(zp, x) =
0, where x € X. Then limy, o0 d(xyn,y) = d(z,y), for ally € X. In particular, the sequence {x,} does not
converge toy if y # x.

Remark 1.8. The Proposition is valid if we replace Branciari metric space by a Branciari b-metric space.
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Geraghty type contraction mappings have been introduced by Geraghty [6] who defined a class F of
functions 3 : [0, 00) — [0, 1) satisfying

lim ((t,) =1 implies lim ¢, =0,

n—oo n—o0

and with the help of these functions defined contraction mappings in the following manner.
Let (X, d) be a metric space and let T : X — X be a mapping satisfying

d(Tx,Ty) < B(d(z,y))d(z,y), (1.1)

for all z,y € X and some function 8 € F. He proved the existence and uniqueness of fixed points of such
contractions on metric spaces.
In the context of b-metric spaces, Geraghty type contractions have been modified as follows [7]. Let Fj

1
be the class of functions 5 : [0,00) — [0, —) for which
s
: L. . .
lim B(t,) = — implies lim ¢, =0, (1.2)
n—o00 S n—o00

holds for some s > 1. On a b-metric space (X,d) with a constant s > 1 Geraghty type contraction is a self
mapping T : X — X satisfying
d(Tz,Ty) < p(d(z, y))d(z,y), (1.3)

for all z,y € X and some function 5 € F;.
As examples of functions from the class Fs we can give the following functions.

Example 1.9.

1
The function f : [0,00) — [0, —) defined as 5(t) = eXPSﬁ for some s > 1is in the class F; .
s

1
The function £ : [0,00) — [0, ;) defined as §(t) = ﬁ is in the class Fs.

Finally, we recall the concept of a-admissible mappings defined by Samet et al [12].

Definition 1.10. A mapping T : X — X is called a-admissible if for all x,y € X we have
a(z,y) > 1= a(Tz,Ty) > 1, (1.4)

where o : X x X — [0, 00) is a given function.

2. Geraghty contractions on Branciari b-metric spaces

In many recent publications on fixed point on b-metric, quasi b-metric, Branciari b-metric, b-metric
like spaces etc., the authors modify the contractive condition and the auxiliary functions involved in these
conditions by taking into account the constant s > 1 of the space. In this sense, the Banach contractive
condition on b-metric and related spaces becomes

d(Tz,Ty) < kd(z,y), for all x,y € X

where 0 < k < %
In this paper, we deal with contractions of Geraghty type on Branciari b-metric spaces.
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Definition 2.1. Let (X, d) be a Branciari b-metric space with a constant s > 1 and let a : X x X — [0, 00)
and 8 € Fs be two given functions. A generalized Geraghty type a-admissible contractive mapping
T:X — X is of type (I) if it is a-admissible and satisfies

a(z,y)d(Tx, Ty) < B (M(z,y)) M(x,y), forall z,y € X, (2.1)

where

M(z,y) = max{d(x,y),d(z,Tx),d(y, Ty)}.

We will first prove an existence theorem for fixed point of the class of contractive mappings given in

Definition P11

Theorem 2.2. Let (X,d) be a complete Branciari b-metric space with a constant s > 1 and o : X x X —
[0,00) and 8 € Fs be two given functions. Let T : X — X be a continuous a-admissible mapping satisfying

a(z,y)d(Tz, Ty) < B(M(z,y)) M(x,y), forall z,y€ X, (2.2)

where
M(z,y) = max{d(z,y),d(x,Tx),d(y, Ty)}.

Assume that there exists xg € X such that a(xo, Tzo) > 1 and a(xo, T?x0) > 1. Then T has a fized point.
Proof. Choosing zg € X such that a(zg, Twg) > 1 and a(xg, T?z0) > 1 we define the sequence {z,} as
Tpy1 =Tz, for n e N.

Suppose that x, # x,11 for all n > 0. Otherwise, for some k& € N we would have x = x11 = Tz, that is,
xj, would be a fixed point of T" and the proof would be completed.
Since T is a-admissible, from a(xg, Txg) > 1 we have

a(zg, 1) = a(xg, Txo) > 1 = a(Txo, Tx1) = a(z1,22) > 1,

and inductively,
oy, Tpt1) > 1, for all n € N. (2.3)

Also, from the condition a(zg, T%xg) > 1 we have
afxg, 29) = a(zo, T?xg) > 1 = a(Txo, Txo) = a(zy,x3) > 1,

and hence,
oy, Tnto) > 1, for all n € N. (2.4)

We define the sequences {d,} and {e,} as
dp = d(Tp—1,2yn), en=d(Tp_1,Tns1). (2.5)
We will prove that both the sequence {d,} and {e,} converge to 0, that is,

nh—>r2<> d(xp—1,Tn) = nh_)r{)lo d(xp—1,Tnt1) =0 (2.6)

1
Regarding 1} and the fact that 0 < f(t) < —, the contractive condition (2.23) with x = x, and
s

Y = Tpy1 becomes

=d(Txp—1,Txy)

< a(xp—1,x0)d(Txp—1,Txy) ) (2.7)
/B(M(-Tnfla Zvn))M(l’n*l» xn) < ;M(xnfla -’En),

d(xna xn-i-l)

IN
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for all n > 1, where

M(xn—la xn) max {d(xn—h xn)7 d(xn—la Tﬂ?n_l), d(.%‘n, Txn)}
= Inax {d(l’n,h xn)v d(:Cn,l, l'n)a d(.’)?n, $n+1)}
d

= max {d(xn—h -%'n), (T, wn—i—l)} .

Suppose that M (zp—1,%,) = d(zy, Tnt1) for some n > 1. Then we have

1
d(xn7xn+1) < 5(d($n, $n+1))d(3§'n, xn—l—l) < gd(xn7mn+l)a

which is not possible. Therefore, for all n > 1 M(x,—1,2,) = d(xp—1,zy,). In this case, the inequality ([2.7))
implies
d(xrw ‘rn—l—l) 5(d(xn—la $n))d($n_1, xn) < %d(mn—h xn)

d(zn_1,xy), for all n > 1. (2.8)

<
<

In other words, the sequence {d,} = {d(z,—1, )} is positive and decreasing and hence, converges to
some d > 0. If we take limit as n — oo in (2.8]) we obtain

1
d= lim dyq1 < lim B(dy)d, =d lim p(d,) < —d. (2.9)
n— 00 n—o00 n—o00 S
1
This implies lim,,_,~ (d,) = — and hence, by (1.2),
s
lim d, = lim d(zp—1,2,) =0. (2.10)
n—0o0 n—oo
On the other hand, we observe that repeated application of (2.8 leads to
1 1

Now, taking into account ({2.4)), we substitute x = x,,—1 and & = x,41 in (2.23). This yields

d(Txp—1,TTn1)
(Tn—1, Tnae1)d(Tzp—1, TTni1) (2.12)

«
1
B(M(xn—l’ xn—&-l))M(l'n—lv xn—i—l) < gM(l'n—lv xn—i—l)a

d($n7 CL‘n_t,_Q) =
<

IN

for all n > 1, where

(xnfla Tl‘nfl)a d($n+1, Tanrl)}
(xn—la xn)a d(xn-f—la xn+2)} ’

M(-rnfl’ xn+1) = max {d(l‘nfl, $n+1)>

= max {d(zn-1, Tn+1), (2.13)

d
d

Regarding ([2.8]), the maximum M (z,_1,2n+1) is either d(xy—1,Zn4+1) or d(zn—1,2,), that is, either e, or
dy,. From the inequality (2.12)) we have

1 1
en+1 = d(Tn, Tnt2) < EM(en) = S max{ey, dn } (2.14)

for all n € N. In addition, from ({2.8]) we have
dn-{—l <d, < max{em dn}a

from which we deduce
max{eni1,dnt1} < max{e,,d,} for all n > 1,
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that is, the sequence {max{e,,d,}} is non increasing and hence, it converges to some [ > 0. Assume that
[ > 0. Taking into account ([2.10]) we obtain

I = lim,_ o max{e,,d,} = max{lim, o €p, lim, oo dy}
= max{limy, 00 €n,0} = lim,, o0 €.

On the other hand, letting n — oo in (2.14) we conclude
= nh_)rgo eni1 < nlggo max{ey,dn} =1,
which contradicts the assumption [ > 0. Hence, [ = 0, and then we have
nlg& en = nhﬁ\ngo d(xn—1,Tp41) = 0. (2.15)

Next, we will prove that x, # x,, for all n # m. Assume that x, = x,, for some m,n € N with n # m.
By the initial assumption, we have d(zy, n4+1) > 0 for each n € N. Without loss of generality we may take
m > n + 1. The assumption x,, = z,, implies

d(xp, Tryn) = d(Tm, Tam).
Recalling the inequality (2.7)) we have

d(xp, Tpt1) = d(xp, Txy) = d(zm, Toy)
= d(Txmfla TSUm) < O5(35771715 xm)d(Tl‘mflv Tﬂjm) (216)

< B (1, 0)) M (1, 0m) < M (1, 0m),

where
M(zpm—1,Tm) = max{d(Tm—1,%m),d(@m-1,TTm-1),d(Tm, TTm)}
= max {d(Tm-1,Tm), A(Tm—1,Tm), d(Tm, Tm+1)} (2.17)
= maXx {d(xmfb xm)a d(xm7 xm+1)} - d(xmfla xm)a

because of (2.8]). Then we have,

1
d(xm7xm+1) < gd(xm—hxm) < d(xm—laxm)a
for all m > n + 1. Continuing the process we conclude,
ATy Trmy1) < A(Tm—1,Tm) < A(Tm—1,Tm) < ... < d(Tp,Tnt1), (2.18)

which contradicts the assumption z,, = x,, for some m # n. Therefore, our initial assumption is incorrect
and we should have z,, # x,, for all m # n.
Now we will prove that {z,} is a Cauchy sequence, that is,
lim d(zy,zp+k) =0, for all k € N. (2.19)

n—oo

Notice that holds for £k =1 and k = 2 due to and . Therefore, we assume that k£ > 3. We
consider separately the cases with odd and even k£ € N.

Case 1. Let k = 2m + 1 where m > 1. We have x; # x, for all [ # s and z; # x;11 for all [ > 0, so that
we can apply repeatedly the condition 3. in Definition which implies

d(SEn, xn+2m+1) < S[d($n7 anrl) + d(anrly $n+2) + d($n+27 xn+2m+l)]
sld(zn, Tnt1) + d(Tnt1, Tny2)]
SQ[d(xn—i—?’ xn+3) + d(ﬂjn—i-?n $n+4) + d(xn+4u $n+2m+1)]

d(l‘n, xn—i—k)

+ IA I

s[d(zn, Tpt1) + d(Tn+1, Tnto)] + 52[d(xn+27 Tnt3) + d(Tnt3, Tnta)]
Sg[d($n+47 Tpts) + d(Tnts, Tnte)] + -0+ 5m+1[d(xn+2m: Tniy2m+1)]
5d(Tn, Tpi1) + 82d(Tpy1, Tna2) + 83d(Tna2, Tnis)

oot Sn+2m71d($n+2m, $n+2m+1)-

+IA A+ IA -
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Then, by the inequality (2.11]) we conclude

1 1
d(l’n,$n+k) S Sni—ld(xo’xl) + Sfﬂd(l'(),.%’l) —+ ...+ Wd(.’l)(],l‘l)
n+2m 1 n—2 1
= d(xo,71) [ Z sk Zsk]
k=0 k=0
$n+2m+1 -1 snfl -1
- d _
(z0,1) L””m(s —-1) s"2%(s— 1)}
Letting n — oo in the last inequality we obtain
Sn+2m+1 -1 sn—l -1
< li < li — = .
0= Jim, d@n onip) < lim dlwo, z1) [m< YR T 1>] 0 (2.20)

Case 2. Let k = 2m where m > 2. Again, repeated application of the inequality 3. in Definition yields

d(Tns Tptk) = d(@n, Tntom) < S[d(Tn; Tpt1) + d(Tnt1, Tnt2) + d(Tnt2, Tnyom))]
< sld(@n, Trg1) + d(Tpg1, Tng2)]
+ SQ[d(xn—i—Q’ xn—i—S) + d($n+3, xn+4) + d(ﬂ?n+4, $71—5—2777,)]
< sld(@n, Tnt1) + d(@pg1, Tos2)] + SQ[d(aner Tnt3) + d(Tnt3, Tnta)]
+ sml [d($n+2m—4a $n+2m—3) + d(xn+2m—3a xn+2m—2)
+ d($n+2m—25 xn—&-?m)]
< Sd(l‘n, xn+1) + 32d(xn+17 xn+2) + Sgd(xn—{—% $n+3)
+ .+ 3n+2m_3d(xn+2m—37 xn+2m—2) + Sm_ld(xn+2m—2u xn+2m)-

By the inequality in (2.11)), we have

1 1
d(@n, Tnyk) < Sgd(zo,21) + sjd($0a$1) +...+ Wd(iﬂovfh)
+ Sm_ld(xn—i—Qm—Zu ZCn-i—Zm)
n+2m—2 1 n—2 1
= d(wo,71) [ Z 5 Z;k + " d(zngom-2, Tniom) (2.21)
k=0 k=0
Sn+2m71 -1 Snfl -1
- d _
(z0,21) L”+2m(s —1) s 2(s— 1)}

Sm_ld(xn+2mf2a $nJer)-
From ([2.15)) we have nhﬁlglo s (2t 9m—2, Tnyom) = 0 and hence, letting n — oo in (2.21)) we deduce

0 < lim d(zp,Tnik)
n—,oo

= lim, 00 {d(ﬂfo’xl)[
= 0.

5n+2m—1 -1 Sn—l -1

snt2m(s — 1) B s 2(s—1)

:| + Sm_ld(mn+2m—27 $n—Q—Zm)}

As a result, for any k € N, we have

nh_}ngo d(xp, Tpir) =0,

that is, the sequence {z,} is a Cauchy sequence in (X,d). Since (X,d) is a complete Branciari b-metric
space, there exists u € X such that
lim d(xy,u) =0. (2.22)

n—oo

Since T is a continuous mapping, then, from ([2.22)) we have

nh_)rgo d(Txp, Tu) = nh_)rrgo d(xpt1,Tu) =0,
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that is, the sequence {z,,} converges to Tu. Then the Proposition implies that T'u = u, that is, u is a
fixed point of T'. O

Adding an additional condition to the statement of the Theorem [2.2] we can prove the uniqueness of the
fixed point.

Theorem 2.3. Let all the conditions of Theorem[2.2 hold. Assume that for every pair x and y of fized points
of T, a(x,y) > 1. Then the fized point of the mapping T is unique.

Proof. Since the existence of a fixed point is already proved in Theorem we need to prove only the
uniqueness. Assume that the map T has two distinct fixed points, say x,y € X, such that x # y, or
d(xz,y) > 0. We put these two points in the contractive condition (2.23)) and use the fact that a(x,y) > 1
which gives

(2, y) = ale,y)d(Te, Ty) < B (2, )Mz, y) < - M(z,),
where,
M(z,y) = max{d(z,y),d(Tz,z),d(Ty,y)} = d(z,y).
This implies
() < ~d(z,y),

which is a contradiction and hence, d(z,y) = 0, or, x = y. This completes the proof of the uniqueness. [

In the next theorem we replace the continuity of the mapping T" by the so-called a-regularity of the
Branciari b-metric space.

Theorem 2.4. Let (X,d) be a complete Branciari b-metric space with a constant s > 1 and o : X x X —
[0,00) and 8 € Fs be two given functions. Let T : X — X be an a-admissible mapping satisfying

ofx,y)d(Tz, Ty) < B (M(x,y)) M(z,y), for all z,yc X, (2.23)

where
M(z,y) = max{d(z,y),d(z, Tz),d(y,Ty)}.

Suppose also that

(i) There exists xo € X such that a(zg, Txg) > 1 and a(zg, T?x) > 1.
(13) For any sequence {xn} C X such that lim, oo d(zpn,x) = 0 and satisfying o(zy, Tnt1) > 1 for all
n € N, we have o(zy,x) > 1 for alln € N.
(tit) For every pair x and y of fized points of T, a(z,y) > 1.

Then T has a unique fized point.

Proof. Taking xg € X as the element satisfying the condition (i), we construct the sequence {x,} as usual,
that is, z, = Tx,_1, for n € N,
The convergence of this sequence can be shown exactly as in the proof of Theorem
Let u be the limit of {x,}, that is,
lim d(xy,u) =0.

n—oo

We will show that u is a fixed point of T. For the sequence {z,} which converges to u we have from ([2.3])
that a(xy, zp+1) > 1 for all n € Ng. Then, the condition (i¢) in the statement of the theorem implies that

a(xn,u) > 1, for all n € Ny.
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We write the contractive inequality (2.23|) for x,, and wu, that is,

d(xpt1,Tu) = d(Txp,Tu) < a(zy,uw)d(Tx,, Tu)
1 2.24
< M) M (g, ) < Mz, u), 224
s
where
M (xp,u) = max{d(xn,u),d(zn, Tn+1), d(u, Tu)}.
Since the sequence {z,} is Cauchy and lim,,,~ d(z,,u) = 0, by the Proposition we have,
li_>m d(xpi1, Tu) = d(u, Tu). (2.25)
On the other hand,
ILm M(zp,u) = le max{d(xn,u),d(xn, Tni1),d(u, Tu)} = d(u, Tu). (2.26)
Therefore, by letting n — oo in (2.24]) and regarding (2.25)) and (2.26]) we obtain
: 1. 1
d(u,Tu) = nlgr;o d(xpy1,Tu) < Enlinéo M(zp,u) = gd(u,Tu). (2.27)

This yields d(u, Tu) = 0, hence, u is a fixed point of T'. We skip the uniqueness proof since it is identical to
the proof of Theorem [2.3] O

We next define another class of Geraghty type mappings on Branciari b-metric spaces.

Definition 2.5. Let (X, d) be a Branciari b-metric space with a constant s > 1 and let « : X x X — [0, 00)
and 5 € Fs be two given functions. A generalized Geraghty type a-admissible contractive mapping
T:X — X is of type (II) if it is a-admissible and satisfies

a(z,y)d(Tz, Ty) < B (N(z,y)) N(z,y), for all z,y € X, (2.28)

where

5o lde, Ta) + dl, Ty}

Remark 2.6. For all z,y € X the relation d(x,y) < N(z,y) < M(x,y) holds.

N(z,y) = max{d(z,y)

An existence-uniqueness theorem for the class of contraction mappings introduced in Definition [2.5] is
stated below. We observe that the proof of this theorem is trivial once we take into account the Remark [2.6]

Theorem 2.7. Let (X,d) be a complete Branciari b-metric space with a constant s > 1 and let a : X x X —
[0,00) and 8 € Fs be two given functions. Let T : X — X be an a-admissible mapping satisfying

a(z,y)d(Tx, Ty) < B(N(z,y)) N(z,y), forall z,y € X,
where )
N(z,y) = max{d(z,y), o_ld(z, Tx) + d(y, Ty)]}.
Suppose also that

(i) There exists xg € X such that a(xo, Txo) > 1 and a(xo, T?x) > 1.
(ii) FEither T is continuous or, for any sequence {xy} C X with limy, o d(xn, ) =0 and a(xn, Tpy1) > 1
for alln € N, we have a(xp,x) > 1 for all n € N.
(tit) For every pair x and y of fized points of T, a(z,y) > 1.

Then T has a unique fized point.
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By the Remark we also easily conclude the following existence-uniqueness result.

Theorem 2.8. Let (X,d) be a complete Branciari b-metric space with a constant s > 1 and let a« : X x X —
[0,00) and 8 € Fs be two given functions. Let T : X — X be an a-admissible mapping satisfying

a(z,y)d(Tz,Ty) < B (d(z,y)) d(z,y), forall z,y € X.
Suppose also that

(i) There exists xg € X such that a(xg, Txo) > 1 and a(zg, T?x) > 1.
(13) Either T s continuous or for any sequence {xn} C X with lim, oo d(zn,z) = 0 and satisfying
a(Tp, Tnt1) > 1 for alln € N, we have a(xp,x) > 1 for all n € N.
(tit) For every pair x and y of fized points of T, a(z,y) > 1.

Then T has a unique fized point.

3. Consequences

In this section, we give some consequences of the Theorem2.2] First, we notice that a Branciari b-metric
spaces with s = 1 is simply a Branciari metric space.

Corollary 3.1. Let (X,d) be a complete Branciari metric space and let o : X x X — [0,00) and 5 € F be
two given functions. Let T : X — X be an a-admissible mapping satisfying

a(z,y)d(Tz, Ty) < B(M(z,y)) M(x,y), forall z,y€ X,

where
M(z,y) = max{d(z,y),d(z,Tz),d(y, Ty)}.

Suppose also that

(i) There exists xg € X such that a(zg, Txo) > 1 and a(zg, T?x0) > 1.
(13) Either T s continuous or for any sequence {xn} C X with limy, o d(zn,x) = 0 and satisfying
a(Tp, Tnt1) > 1 for alln € N, we have a(xp,x) > 1 for all n € N.
(tit) For every pair x and y of fized points of T, a(z,y) > 1.

Then T has a unique fized point.

Corollary 3.2. Let (X,d) be a complete Branciari metric space and let o : X x X — [0,00) and € F be
two given functions. Let T : X — X be an a-admissible mapping satisfying

afx,y)d(Tz,Ty) < B(N(x,y)) N(z,y), for all z,yc X,

where

Nz, y) = max{d(r,y), 3 d(r, Te), d(y, Ty)]).

Suppose also that
(i) There exists xg € X such that a(zg, Txg) > 1 and a(zg, T?x) > 1.
(13) Either T is continuous or for any sequence {xn} C X with limy, o d(zn,z) = 0 and satisfying
a(Tp, Tpt1) > 1 for all n € N, we have a(xy,x) > 1 for all n € N.
(ii7) For every pair x and y of fized points of T, a(x,y) > 1.

Then T has a unique fized point.
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Corollary 3.3. Let (X,d) be a complete Branciari metric space and let o : X x X — [0,00) and 5 € F be
two given functions. Let T : X — X be an a-admissible mapping satisfying

a(z,y)d(Tz,Ty) < B (d(z,y)) d(z,y), for all z,y € X.
Suppose also that

(i) There exists xg € X such that a(xo, Txo) > 1 and a(xg, T?x0) > 1.
(13) Either T s continuous or for any sequence {xn} C X with limy, o d(zn,z) = 0 and satisfying
(T, Tnt1) > 1 for alln € N, we have a(xp,x) > 1 for all n € N.
(tit) For every pair x and y of fized points of T, a(z,y) > 1.

Then T has a unique fized point.

Also the choice a(z,y) = 1 gives fixed point results for self mappings on Branciari b-metric spaces. We
list some of these consequences below.

Corollary 3.4. Let (X,d) be a complete Branciari b-metric space with a constant s > 1 and let § € Fy be
a given function. Let T : X — X be a continuous self mapping satisfying

d(Tz,Ty) < p(M(z,y)) M(z,y), foral z,y € X,

where
M(z,y) = max{d(z,y),d(z, Tz),d(y, Ty)}.

Then T has a unique fized point.

Corollary 3.5. Let (X,d) be a complete Branciari b-metric space with a constant s > 1 and let f € Fg be
a giwen function. Let T : X — X be a continuous self mapping satisfying

d(Tz,Ty) < B (N(z,y)) N(z,y), for all z,y € X,
where 1
N(z,y) = max{d(z,y), _[d(z, T), d(y, Ty)]}-
Then T has a unique fized point.

Corollary 3.6. Let (X,d) be a complete Branciari b-metric space with a constant s > 1 and let f € Fy be
a giwven function. Let T : X — X be a continuous self mapping satisfying

d(Tx, Ty) < B(d(z,y)) d(x,y), for all z,y € X,
Then T has a unique fized point.

Finally, we give the following example which illustrates the theoretical results discussed above.

1111

Example 3.7. Let X = AU B where A = {2’4’6’8

[0, 00) such that d(z,y) = d(y, z) as follows.

} and B = [1,2]. Define the function d : X x X —

For z,y € B,or x € A and y € B, d(x,y) = |z — y| and

d(3,7) = d(g 5) =02
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1
Clearly, d is a Branciari b-metric with s = 3
Let T: X — X be defined as

% if z€B
Txr =
% if z€A
We see that
0 if z,ye A
(T, Ty = 02 if zeAy=1

01 if z€A,y=2
0.1 if z,yeB

Then, for all x,y € X the mapping T satisfies the condition

3 1/2
d(Tz,Ty) < —d = d
(T2, Ty) < 55d(,y) 10/3 (z,9),
1
Hence, the conditions of the Corollary hold with 5(t) = 95 = 23—0 and T has a unique fixed point which
S

o1
IS.’L'—G.

4. Concluding Remarks

The general structure of the mappings discussed in this paper makes it possible to deduce many particular
existence and uniqueness results.

As it was already mentioned, by taking s = 1 and/or a(x,y) = 1 in all the theorems and corollaries,
various existing results on Branciari b-metric and Branciari metric spaces can be obtained.

On the other hand, it should be noticed that by choosing the function « in the definition of a-admissible
mappings in a particular way, it is possible to obtain existence and uniqueness results for maps defined on
partially ordered Branciari or Branciari b-metric space.

Indeed, if we define a partial ordering < on a Branciari b-metric space (X, d) and take T': X — X as an
increasing mapping, we can easily proof the following fixed point theorem.

Theorem 4.1. Let (X,d, <) be a complete Branciari b-metric space with a constant s > 1 on which a partial
ordering = is defined. Suppose that T : X — X is an increasing mapping satisfying the following:

(2)
d(T'z, Ty) < (M (z,y))M(z,y),
for all z,y in X with x < y and some function [ € Fs where
M (z,y) = max{d(z,y), d(z,Tx),d(y,Ty)}.

(ii) There exists o € X such that xg =< Txo and o = T?x.
(1ii) Either T is continuous or, for any increasing sequence {xyn} € X which converges to x we have x, < x
for all n € N.

Then T has a fized point. If, in addition any two fixed points of T are comparable, that is, x Xy ory < ,
then the fixed point of T is unique.

Proof. Observe that all the conditions of Theorems and [2.4] hold if we choose the function « as

1 it x=Lyory =2
a(,y) _{ 0 if otherwise

Then, the mapping 7" has a unique fixed point. O

Finally, we note that all the consequent results of Theorems [2.2] 2.3 and [2.4] can be written on Branciari
b-metric spaces with a partial ordering and proved in a similar way.
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