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Abstract

In this paper we present some of my favorite problems, all the time open, in the fixed point theory. These
problems are in connection with the following two:

e Which properties have the fixed point equations for which an iterative algorithm is convergent ?

e Let us have a fixed point theorem, T', and an operator f (single or multivalued) which does not satisfy
the conditions in 7'. In which conditions the operator f has an invariant subset Y such that the restriction
of ftoY, f ‘Y, satisfies the conditions of T 7
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1. Introduction

In this paper we present some problems, all the time open problems, in the fixed point theory. These
problems are in connection with the following two research directions:

(I) Which properties have the fixed point equations for which an iterative algorithm is convergent ?

(II) Let us have a fixed point theorem, T, and an operator f (single or multivalued) which does not satisfy
the conditions in the theorem T'. In which conditions the operator f has an invariant subset Y such
that the restriction of f to Y, f!Y, satisfies the conditions of T 7

Throughout this paper, the standard notations and terminology are used. See for example, [33], [37] and

[49]. For the basic fixed point theorems, see: [13], [19], [3], [9], [49] and [55].
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2. Picard and weakly Picard operators

Let (X, —) be an L-space ( (X, 7)-topological space, —; (X, d)-metric space, i>; (X, ]|-]|)-normed space,

M, —;...)and f: X — X be an operator.

By definition, f is a weakly Picard operator if the sequence {f"(x)},en converges for all x € X at its
limit (which may depend on z) is a fixed point of f. If f is a weakly Picard operator, then we consider the

operator f* : X — X, defined by, f*(z) := lim f"(z).
n—oo
We remark that the operator f°° is a set retraction on the fixed point set of f, F.

If f is a weakly Picard operator and Fy = {«*}, then by definition f is called Picard operator. If f is a

Picard operator, we have that,
Fy = Fgn = {2"}, for all n € N*

and if f is a weakly Picard operator, then,
Fy=Fp #0, for all n € N*.

In the case of a metric space and of a contraction we have the following result.

Theorem 2.1 (see [47]). Let (X, d) be a complete metric space and f : X — X be an l-contraction.

we have:
(i) f is a Picard operator (Fp = {x*}).
(ii) d(x,x*) < (d(x, f(x))), for all x € X, where (t) = 74, t > 0.
(717) If {yn}nen is a sequence in X such that
d(Yn, f(yn)) = 0 as n — oo,
then, y, — x* as n — oo.

(10) If {yn}tnen is a sequence in X such that

d(yn—f—l, f(yn)) — 0 as n — oo,
then, y, — x* as n — 0.

From this result, the following problem rises:

Then

Problem 2.2. Let (X,d) be a complete metric space and f : X — X be an operator. Which metric

conditions on f imply a similar conclusion as that of Theorem ?

Let us consider another result:

Theorem 2.3 (see [48]). Let (X,d) be a complete metric space and f : X — X be an operator. We suppose

that:
(1) There exists | €]0, 1 such that,
d(f*(x), f(x)) < ld(z, f(x)), for allz € X,
i.e., f is a graphic contraction.
(2) lim f(f*(z)) = f(lim f*(z)), for allz € X.

Then we have:
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(1) f is a weakly Picard operator.
(i1) d(z, f*(x)) < ﬁd(x,f(m)), foralze X.
(i13) Fora* € Fy, let Xp« :={x € X | f™(x) = 2" as n — oo}. Let {yn}nen be a sequence in X, such that
d(Yn, f(yn)) — 0 as n — oo.
Then, y, — x* as n — oo.

(iv) Let {yn}nen be a sequence in Xp, x* € Fy. If 1 < % and

d(Yn+1, f(yn)) — 0 as n — oo,
then, y, — x* as n — oo.
This result suggests the following problem:

Problem 2.4 (see [48]). Which metric conditions imposed on an operator f imply a similar conclusion as
that in Theorem 2.3] ?

For a better understanding of the above problems, let us consider the following considerations:

(a) A weakly Picard operator f : (X,d) — (X, d) satisfies a retraction-displacement condition (see [§]) if
there exists an increasing function ¢ : Ry — R4, ¥(0) = 0 and continuous in 0, such that

d(z, f*(z)) < Y(d(z, f(x))), for all z € X.

This condition is useful in studying the data dependence of the fixed point, and of Ulam stability of
the fixed point equations (see [44]).

So, conclusions (i) in Theorems and are retraction-displacement conditions for the operator f.

(b) Conclusions (#4i) in Theorems and can be formulated as follows: The fixed point problem for
the operator f is well posed.

(¢) Conclusions (iv) in Theorems and can be formulated as follows: The operator f has the
Ostrowski property.

Problem 2.5. To study similar problems in the case of multivalued operators.

References for Problems [2.2] - [47], [48], [39], [50], [52], [8], [28], [31], [32], [49], [51], [56], [57], [54],

Problem 2.6. To study similar problems in the case of a convergent iterative algorithm.

References: [42], [27], [7], [6], [25], [2€6], ...

3. Conjecture on global asymptotic stability

Let (X,—) be an L-space and f : X — X be an operator. A fixed point z* of f is by definition globally
asymptotically stable if f is a Picard operator, i.e., f*(z) — z* as n — oo, for all z € X.
In 1976, J.P. LaSalle presented (see [20]) the following conjecture:

Conjecture 1 (LaSalle’s Conjecture). Let f : R™ — R™ be such that:

(1) there exists x* € R™ with f(z*) = x*;
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(i) fe CHR™R™);
(7it) the spectral radius of the differential of f at z, p(df(z)) < 1, for all x € R™.
Then, x* is globally asymptotically stable.

Papers on this conjecture were given by (see [46]): A. Cima - A. Gasull - F. Manosas (1995, 1999, 2001,
2011, 2014), G. Meisters (1996), A.G. Aksoy - M. Martelli (2001), A. Castaneda - V. Guinez (2012), D.
Cheban (2014), ... The results are as follow:

(a) counterexamples to LaSalle Conjecture;
(b) classes of functions for which LaSalle Conjecture is a theorem;

(¢) to study the dynamic generated by a function f € C*(R™,R™), with p(df(z)) < 1, for all z € R™.

We have the following remark: Let (X, —) be an L-space and f : X — X be an operator. The following
statements are equivalent:

(¢) fis a Picard operator;
(i1) for all k € N*, f* is a Picard operator;
(ii7) there exists k € N* such that f* is a Picard operator.
Starting from this general remark, in [46] the following conjecture is presented.

Problem 3.1 (a conjecture). Let X be a real Banach space, 2 C X be an open, convex subset and
f:Q — Q be an operator. We suppose that:

(i) feCHQ,X);

(i) p(df¥(z)) <1, for all z € Q and all k € N*;
(i13) Fyp # 0.
Then, f is a Picard operator.

In connection with the above conjecture the following problems arise:
Problem 3.2. In which conditions we have that:
p(df(z)) <1, forall z € Q = p(dff(z)) <1, for all z € Q and all k € N*?

Problem 3.3. In which conditions we have that:

p(df(z)) <1, for all x € @ = f is nonexpansive with respect to

an equivalent norm on X7

We remember that if (X, ||-]|) is a complex Banach space and f : X — X is a bounded linear operator
with the spectrum o(f), then (see [17], [5], [14], [, ...)

1 1
p(f) = sup |A| = lm ||f"||» = inf ||f"||» = inf |f].
sup A= B L = g 11 = 1
If X is a real Banach space and f : X — X is a bounded linear operator, X¢ the complexification of X,
fc : Xc — Xc the complexification of f, then by definition, p(f) := p(fc).
References: [46], [20], [4], [25], [26], ...
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4. Nonexpansive operators and graphic contractions

Problem 4.1. Let (X, ||-]|) be a (real or complex) Banach space. Which nonexpansive operators f : X — X
are graphic contractions ?

Commentaries: If f is a graphic contraction then in)f(||:17 — f(x)|| =0. If 2 C X is an invariant subset of
re
f and f is a graphic contraction then, in)f( |z — f(x)| = 0. On the other hand, in the case of nonexpansive
Te

operators we have the following Goebel-Karlovitz Lemma (see [12]): Let Q@ C X be a convex, closed and

bounded subset. Let D C €2 be a weakly compact, convex, minimal invariant set for a nonexpansive operator

f:Q — Q. If for a sequence {z,}nen, h_)m |z, — f(zn)|| = 0, then for any z € D, we have that,
n—oo

lim ||z — x| = diam(D).
n—oo
So, the above problem is a hard one.

Problem 4.2. Let X be an ordered Banach space. Which increasing, linear and nonexpansive operators
f: X — X are graphic contractions ?

Problem 4.3. Let X be a Banach space. Which multivalued nonexpansive operators 7' : X — P(X) are
graphic contractions ?

References: [36], [40], [43], [45], [1], [2], [10], [16], [19], [18], [30], [39], [49], ...

5. Abstract and concrete Gronwall lemmas

Let (X,—,<) be an ordered L-space and f : X — X be an operator. The following results are well
known (see [38]:

Lemma 5.1 (Abstract Gronwall Lemma for Picard operators). We suppose that:
(i) f is a Picard operator (Fy = {x*});
(ii) f is an increasing operator.
Then we have that:
(a) ze X,z < f(z) = x < z¥;
(b) xe X, x> f(x) =z >a*.
Lemma 5.2 (Abstract Gronwall Lemma for weakly Picard operators). We suppose that:
(1) f is a weakly Picard operator;
(ii) f is an increasing operator
Then we have that:
(@) v€ X,z < f(x) = o < f>(2);
b)) zeX, x> f(z) = x> fx).

The above abstract Gronwall lemmas are very usefully for giving some concrete Gronwall lemmas. On
the other hand a large number of concrete Gronwall lemmas are obtained by direct proofs. The following
problems are arising;:

Problem 5.3. In which Gronwall lemmas the upper bounds are fixed points of the corresponding operator
?

Problem 5.4. If there are found solutions for the Problem which of them are consequences of some
abstract Gronwall lemmas ?

References: [38], [35], [21], [11], [22], [23], [33], [39], [49], ...
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6. Invariant subsets with fixed point property

For a rigorous formulation of a problem (I7), from Introduction, we recall a few basic notions and
examples of the fixed point structure theory (see [37]).

Let € be a class of structured sets (ordered sets, ordered linear spaces, topological spaces, metric spaces,
Hilbert spaces, Banach spaces, ordered Banach spaces, generalized metric spaces, ...). Let Set* be the class
of nonempty sets and if X is a nonempty set, then, P(X) := {Y € X | Y # 0}. We also shall use the
following notations:

PC):={U e P(X) | X € ¢},

M(U,V):={f:U — V| f is an operator},

M(U) .= M(U,U),

S:C— Set*, X — S(X) C P(X),

M : Dy C P(C) x P(C) — M(P(C), P(C)), (U,V)— M(U,V) Cc M(U,V)

By a fixed point structure (f.p.s.) on X C € we understand a triple (X, S(X), M) with the following
properties:

(i) U e S(X)= (U,U) € Dy
(it) U € S(X), fe M(U) = Fy # 0;
(7i1) M is such that:

(Y.Y) € Dy, Z€P(Y), (Z,Z) € Dy = M(Z) D {f], | f e M(Y)}.

Here are some examples of f.p.s.

Example 6.1 (The f.p.s. of progressive operators). Let C be the class of partially ordered sets. For
(X, <) et let
S(X):={Y € P(X) | (Y, <) has at least a maximal element}

and
MY)={f:Y=>Y|xz<f(x), forall x € Y}.

Then, (X,S(X),M) is af.p.s.
Example 6.2 (The Tarski’s f.p.s.). Let C be the class of partially ordered sets. For (X, <) € C, let
S(X):={Y € P(X) | (Y,<) is a complete lattice}

and
M(Y):={f:Y = Y | f is an increasing operator}.

Then, (X, S(X), M) is a f.p.s.
Example 6.3 (The f.p.s. of contractions). Let € be the class of complete metric spaces. Let
S(X):={Y € P(X) | Y is closed}

and
MY):={f:Y =Y | fis a contraction}.

Then, (X,S(X), M) is a f.p.s.
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Example 6.4 (The f.p.s. of Schauder). Let € be the class of Banach spaces. Let
S(X):={Y € P(X) | Y is compact and convex}

and
M(Y):={f:Y =Y | f is continuous}.

Then, (X, S(X),M) is afp.s.
Now, our problem (I7) takes the following form:

Problem 6.5. Let (X,S(X),M) beafps. on X € Cand f: A — A be an operator with A C X. In which
conditions there exists Y C A such that

(a) Y € 5(X);
(b) f(Y)CY;
(c) fly e M(Y)?
We have a similar problem in the case of multivalued operators.
References: [37], [41], [29], [49], ...
7. Strict fixed point problems

Let X be a nonempty set and 7' : X — P(X) be a multivalued operator. Let Fr:={z € X |z € T(z)}
be the set of fixed point of 7" and (SF)r := {x € X | T'(x) = {z}} be the strict fixed point set of T'.

We have the following result (see [33], p.87):

Let (X,d) be a metric space and T : X — P(X) be a multivalued [-contraction. If, (SF)r # (), then,

Pr = (SF)r = {="}.
The following problem is arising:
Problem 7.1. For which multivalued generalized contractions we have that
(SF)r #0 = Fr=(SF)r={z"}?

Problem 7.2. Let (X, S(X), M°) be a multivalued fixed point structure (see [37]) on X € C. Let Y € S(X)
and T' € M°(Y). In which conditions we have that

Fr=(SF)r?
Commentaries:
(1) Let f,g:R — R be such that:
(a) Fy = Fy;
(b) z < f(z) < g(x), for all x € R.
Let T : R — P(R) be defined by,
T(x) = {tf(x) + (1 = t)g(x) | ¢ € [0, 1]}.

Then we have that, Fr = (SF)p.
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(2) Let (X,d) be a metric space, X = U X be a partition of X, and for each A € A, Ty : X, — P(X))
AEA
be a multivalued contraction with respect to the Pompeiu-Hausdorff functional. We suppose that,

(SF)r, #0, for all X € A.
Let T': X — P(X) be defined by, T'(x) = Ty(x), if x € X, A € A.
It is clear that, Fp = (SF)p # 0.

(3) Let (X,S(X), M) be a fixed point structure of progressive operators on a partially ordered set (X, <).
Let Y € S(X) and f,g € M(Y). We suppose that:

(a) f(x) <g(x), forall x €Y,

(b) = < f(x), for each nonmaximal element z € Y.

Let T: Y — P(Y) be a multivalued operator defined by,

T(z):={yeY | flz) <y <g(x)}
Then, FT = (SF)T ?é @
References: [34], [53], 28], [49], [31], ...

8. Commutative pairs of operators with coincidence property

Problem 8.1. Which are the f.p.s. (X,S(X), M), X € C, with the following property:

Y eS(X), f,ge M(Y), fog=gof = there
exists z € Y such that f(z) = g(x)?

Commentaries:
(1) In the case of Tarski’s fixed point structure we have that, Fy N Fy # (.
(2) In the case of Schauder’s fixed point structure, the Problem takes the following form:

Conjecture 2 (Horn’s Conjecture). Let X be a Banach space, Y C X, compact and convezr subset
and f,g :' Y — Y be two continuous operators. If fog = go f, then there exists x € Y such that

f(x) = g(x).
(3) The Horn’s Conjecture includes:

Conjecture 3 (Schauder-Browder-Nussbaum Conjecture). Let X be a Banach space, Y C X be a
bounded, closed and convex subset and f :Y — Y be a continuous operator. If there exists ng € N*
such that f™ is compact, then Fy # (.

References: [37], [41], [15], [24], [18], [49], ...
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