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Abstract

Cauchy’s formula for repeated integration is shown to be valid for the function

R(t) = λΓ(q)tq−1Eq,q(−λΓ(q)tq)

where λ and q are given positive constants with q ∈ (0, 1), Γ is the Gamma function, and Eq,q is a Mittag-
Leffler function. The function R is important in the study of Volterra integral equations because it is the
unique continuous solution of the so-called resolvent equation

R(t) = λtq−1 − λ
∫ t

0
(t− s)q−1R(s) ds

on the interval (0,∞). This solution, commonly called the resolvent, is used to derive a formula for the
unique continuous solution of the Riemann-Liouville fractional relaxation equation

Dqx(t) = −ax(t) + g(t) (a > 0)

on the interval [0,∞) when g is a given polynomial. This formula is used to solve a generalization of the
equation of motion of a falling body. The last example shows that the solution of a fractional relaxation
equation may be quite elementary despite the complexity of the resolvent.
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1. Introduction

In classical physics, the ordinary differential equation

x′(t) = −ax(t) + g(t) (1.1)

is sometimes called the relaxation equation (cf. [6, p. 138], [11]) when the constant a is positive. A general-
ization of (1.1) in a fractional calculus setting is the fractional relaxation equation

Dqx(t) = −ax(t) + g(t), (1.2)

where Dq denotes a fractional differential operator of order q with q ∈ (0, 1) (cf. [6, p. 138]; [12, p. 292]; [17,
p. 224]).

This paper is a study of (1.2) when g(t) is a polynomial. For given a > 0 and g, we will prove that this
equation has a unique continuous solution on the half-closed interval [0,∞) and that necessarily x(0) = 0.
Furthermore, in Section 7, we will derive a formula that expresses this solution as a sum involving two-
parameter Mittag-Leffler functions (cf. (7.13)). Moreover, we will show that each term of this sum can also
be expressed as a convolution integral involving the solution of the integral equation

R(t) = λtq−1 − λ
∫ t

0
(t− s)q−1R(s) ds, (Rλ)

where λ is a positive constant related to the value of the constant a. In fact, it is well-established that
(Rλ) has a unique continuous solution on the interval (0,∞) whenever λ and q are positive constants with
q ∈ (0, 1). A proof of this for a more general version of equation (Rλ) can be found in the 1971 monograph
by Miller [14, Ch. IV].

There is also the recent paper [3] that investigates (Rλ) directly. Not only is the existence and uniqueness
of a continuous solution of (Rλ) on (0,∞) proven there but also a formula for it is derived, namely

R(t) = λΓ(q)tq−1Eq,q(−λΓ(q)tq), (1.3)

where Eα,β (α, β > 0) denotes the two-parameter Mittag-Leffler function:

Eα,β(z) :=

∞∑
k=0

zk

Γ(αk + β)
. (1.4)

We use the following established terminology: resolvent equation refers to equation (Rλ) and resolvent
refers to its solution (1.3).

For given constants λ > 0 and q ∈ (0, 1), important characteristics of the resolvent (1.3) are:

(i) For all t > 0, 0 < R(t) ≤
(

q

q + λtq

)
λtq−1.

(ii) R(t)→∞ as t→ 0+ and R(t)→ 0 as t→∞.

(iii) The graph of R is decreasing and concave upward on (0,∞). In fact, R is completely monotone on
(0,∞). That is, R(t) is infinitely differentiable on (0,∞) and (−1)kR(k)(t) ≥ 0 for all t > 0 and for
k = 0, 1, 2, . . . .

(iv) For all t > 0,
1

1 + q
λtq
≤
∫ t

0
R(s) ds ≤ 1− e−

λtq

q .

(v)
∫∞
0 R(s) ds = 1.
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(vi) For given λ > 0, R is the unique continuous solution on (0,∞) of the initial value problem

Dqx(t) = −λΓ(q)x(t), lim
t→0+

t1−qx(t) = λ.

Items (i) and (ii) are proved in [3, Cor. 4.6, Thm. 7.3]. In [14, Thm. 7.2], Miller states that the solution
of the above-mentioned general version is completely monotone; for a proof of this, he references [7] (cf. [14,
p. 243]). A proof for the less general (1.3) that is based on the complete monotonicity of Eq,q(−t) for t ≥ 0 is
given in [3, pp. 29–30]. Item (iv) is proved in [3, Thm. 4.5]. Clearly (iv) implies (v). A proof of (vi) is found
in [3, Thm. 5.2].

The resolvent (1.3) is also expressed in terms of classical functions of mathematical physics in [3] and [5]
for the following values of q. For q = 1/2, it is shown in [3, (6.12)] that

R(t) = λΓ(12)t−1/2E 1
2
, 1
2
(−λΓ(12)t1/2)

=
λ√
t
− πλ2eπλ2t

(
1− erf(λ

√
πt)
)
, (1.5)

where erf(·) is the error function (cf. (4.14)). In [5, (5.7)], after adjusting the notation there to be in accord
with this paper, we find for q = 1/3 the formula

R(t) =
λ

( 3
√
t)2
−
√

3σ

2πλ 3
√
t

+ σ3e−σt

[
1 +

1

Γ(13)
γ(13 ,−σt) +

√
3

2π
Γ(13)γ(23 ,−σt)

]
(1.6)

where σ :=
[
λΓ(13)

]3 and γ(·, ·) denotes the lower incomplete gamma function (cf. (4.20)). In Figure 1 of
Section 4 the solid [resp. dashed] concave-upward curve is the graph of (1.5) [resp. (1.6)].

2. Riemann-Liouville Operators

For a function f that is (Riemann) integrable, we employ the integral operator J defined by

Jf(t) :=

∫ t

0
f(s) ds.

Furthermore, for n ∈ N (set of natural numbers), let the operator Jn denote the n-fold iterate of J ; that is,

Jn := JJn−1 for n ≥ 1

where J0 := I, the identity operator. For example, taking n = 2 and applying J2 to an integrable function
f , we have

J2f(t) =

∫ t

0
Jf(s) ds =

∫ t

0

(∫ s

0
f(u) du

)
ds =

∫ t

0

(∫ t2

0
f(t1) dt1

)
dt2

or

J2f(t) =

∫ t

0
dt2

∫ t2

0
f(t1) dt1.

In general,

Jnf(t) =

∫ t

0
dtn

∫ tn

0
dtn−1 · · ·

∫ t3

0
dt2

∫ t2

0
f(t1) dt1. (2.1)

This particular iterated integral can be expressed in terms of a single integral with a weighted integrand
as in (2.2) below. It is known as Cauchy’s formula for repeated integration (cf. [16, p. 38]). This formula
is found in Abramowitz and Stegun’s handbook [1, (25.4.58)]; and in some textbooks, such as [8, p. 487], it
appears as an exercise. We omit its proof here because it is basically the mathematical induction argument
that is used in the proof of Theorem 3.2 in Section 3.
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Theorem 2.1 (Cauchy’s formula for repeated integration). Let n ∈ N. If f is integrable on [0, T ], then

Jnf(t) =
1

(n− 1)!

∫ t

0
(t− s)n−1f(s) ds (2.2)

for t ∈ [0, T ].

Now let us extend the values of n in (2.2) from N to R+ (set of strictly positive real numbers) by replacing
(n − 1)! with Γ(n), where Γ denotes the Gamma function. This leads to the well-known definition of the
Riemann-Liouville integral operator of order n.

Definition 2.2. For any n ∈ R+, Jn denotes the integral operator

Jnf(t) :=
1

Γ(n)

∫ t

0
(t− s)n−1f(s) ds, (2.3)

where f denotes a function for which the integral exists. Jn is called the Riemann-Liouville fractional integral
operator of order n. Furthermore, J and J0 denote the operators

J := J1 and J0 := I (2.4)

where I denotes the identity operator.

Just as the integral operator Jn can be defined for all values of n ∈ R+, the same is true of Dn, namely,
the classical ordinary differential operator of order n ∈ N. That is, for an n-times differentiable function f ,

Df(t) :=
d

dt
f(t), D2f(t) :=

d2

dt2
f(t), . . . , Dnf(t) :=

dn

dtn
f(t).

This can be expressed recursively as follows:

Dn := DDn−1 for n ≥ 2,

where D1 := D and D0 := I, the identity operator.
In the following extension of the definition of Dn, we employ the floor function b·c, where bnc denotes

the largest integer less than or equal to n.

Definition 2.3. For a given n ∈ R+, Dn denotes the differential operator

Dnf := DmJm−nf (2.5)

where m = bnc+ 1 and f denotes a function for which the right-hand side exists. For n = 0, Dnf := f . Dn

is called the Riemann-Liouville fractional differential operator of order n (cf. [6, p. 27]).

Remark 2.4. The symbol Dn on the left-hand side of (2.5) denotes the fractional differential operator of
order n whereas Dm on the right-hand side denotes the ordinary differential operator dm/dtm since m ∈ N.
If n ∈ N, then m = bnc+ 1 = n+ 1; so

Dnf = Dn+1J1f = DnDJf = DnIf = Dnf.

Thus the definition of the operator Dn is well-defined.

Remark 2.5. Combining (2.3) and (2.5), we obtain the form

Dnf(t) =
1

Γ(m− n)

dm

dtm

∫ t

0
(t− s)m−n−1f(s) ds (2.6)

that is found in well-known works such as [10, (2.1.10) on p. 70].
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Example 2.6. Let n = q where 0 < q < 1. Then

m = bqc+ 1 = 1 and m− n = 1− q.

Consequently,
Dqf(t) = D1J1−qf(t) = DJ1−qf(t)

or

Dqf(t) =
1

Γ(1− q)
d

dt

∫ t

0
(t− s)−qf(s) ds. (2.7)

3. Cauchy’s Formula for the Resolvent

Theorem 3.1. Let n ∈ R+. Let R be the resolvent, namely, the unique continuous solution of (Rλ) on
(0,∞). Then ∫ t

0

∫ s

0
(s− u)n−1R(u) du ds =

∫ t

0

∫ t

u
(s− u)n−1R(u) ds du

for all t > 0.

Proof. See the proof of Theorem 4.3 in [3], where the Tonelli-Hobson test ([2, p. 415], [15, p. 93]) is employed;
and note that the proof is valid not only for n ∈ (0, 1) but for all n > 0.

We now use this theorem to show that Cauchy’s formula for repeated integration can be applied to the
resolvent R(t), notwithstanding the singularity at t = 0.

Theorem 3.2. For n ∈ N,

JnR(t) =
1

(n− 1)!

∫ t

0
(t− s)n−1R(s) ds (3.1)

for t ≥ 0.

Proof. For a given t ≥ 0, it is well-known (cf. [14, Ch. IV]) that the resolvent integral function

JR(t) =

∫ t

0
R(s) ds (3.2)

exists. Furthermore, it is proven in [3, Thm. 9.5] that

JR(t) = 1− Eq(−λΓ(q)tq)

where Eα, for α ∈ R+, denotes the one-parameter Mittag-Leffler function, which is defined by

Eα(z) :=
∞∑
k=0

zk

Γ(αk + 1)
. (3.3)

Since Eq(z) is an entire function of z (cf. [6, Thm. 4.1]) in the complex plane, it follows that

JnR(t) =

∫ t

0
dtn

∫ tn

0
dtn−1 · · ·

∫ t2

0
R(t1) dt1

exists and is continuous on [0,∞) for each n ∈ N.
Note that (3.1) simplifies to (3.2) when n = 1. We complete the proof using mathematical induction to

establish that (3.1) is true for all n ∈ N. Suppose that (3.2) is also true when n = k for some k ∈ N. Then

Jk+1R(t) = JJkR(t) =

∫ t

0
JkR(s) ds

=

∫ t

0

[
1

(k − 1)!

∫ s

0
(s− u)k−1R(u) du

]
ds.
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Interchanging the order of integration and appealing to Theorem 3.1, we have

Jk+1R(t) =
1

(k − 1)!

∫ t

0

(∫ t

u
(s− u)k−1ds

)
R(u) du

=
1

(k − 1)!

∫ t

0

[
(s− u)k

k

]s=t
s=u

R(u) du

=
1

(k − 1)!

∫ t

0

[
(t− u)k

k

]
R(u) du =

1

k!

∫ t

0
(t− u)kR(u) du,

which is precisely (3.1) when n = k + 1. Thus, as (3.1) is true for n = 1, it must be true for all n ∈ N.

The following result will be needed in the next section to prove Lemma 4.2. Although the proof is
straightforward, it can be found in a number of places (e.g., [6, p. 28]).

Lemma 3.3. Let q ∈ (0, 1) and p > −1. If p 6= q − 1, then

Dqtp =
Γ(p+ 1)

Γ(p− q + 1)
tp−q (3.4)

for t > 0. If p = q − 1, then Dqtp = 0 for t > 0.

4. Solution of a fractional relaxation equation

The following proof is an adaptation of a proof in [6, Thm. 2.14].

Theorem 4.1. Let n ∈ R+
0 , where R+

0 = R+ ∪ {0}. If a function f is continuous and absolutely integrable
on an interval (0, T ], then

DnJnf(t) = f(t) (4.1)

for all t ∈ (0, T ].

Proof. This is trivially true for n = 0 since by definition J0 := I and D0 := I. It is also true for n = 1
because by the Fundamental Theorem of Calculus

D1J1f(t) = DJf(t) =
d

dt

∫ t

0
f(s) ds = f(t)

for 0 < t ≤ T . It follows from this and an induction argument that (4.1) is true for all n ∈ N0, where
N0 := N ∪ {0}.

Now consider (4.1) for a given n > 0 when it is not a positive integer. Then, by Definition 2.3,

DnJnf = DmJm−nJnf

where m = bnc+ 1. Since f by hypothesis is continuous and absolutely integrable on (0, T ] and m+ n ≥ 1,
we have

Jm−nJnf(t) = J (m−n)+nf(t) = Jmf(t)

for 0 ≤ t ≤ T by [4, Lemma 4.8]. As a result, since m ∈ N,

DnJnf(t) = DmJmf(t) = f(t)

for 0 < t ≤ T .

The following result relates solutions of (1.2) to those of a Volterra integral equation when g(t) ≡ b, a
constant. It will be extended to all polynomials in Section 7.
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Lemma 4.2. Let a, b, and q be constants with a > 0, b ∈ R, and q ∈ (0, 1). If there is a continuous solution
of the fractional relaxation equation

Dqx(t) = −ax(t) + b (4.2)

on the interval [0,∞), then it is also a solution of

x(t) = βtq − λ
∫ t

0
(t− s)q−1x(s) ds (4.3)

on [0,∞) when β and λ have the values

β =
b

Γ(q + 1)
and λ =

a

Γ(q)
. (4.4)

Conversely, let β ∈ R and λ > 0 and suppose there is a continuous solution of the integral equation (4.3) on
[0,∞). Then it is also a continuous solution of (4.2) on [0,∞) when

a = λΓ(q) and b = βΓ(q + 1). (4.5)

Proof. Let β ∈ R and λ > 0 be given constants. Then let a and b be defined by (4.5). Suppose there is a
continuous function x(t) that satisfies the integral equation (4.3) on [0,∞). Expressing this in terms of the
Riemann-Liouville integral operator (2.3), we obtain

x(t) = βtq − λΓ(q) · 1

Γ(q)

∫ t

0
(t− s)q−1x(s) ds = βtq − aJqx(t).

Applying the Riemann-Liouville differential operator Dq to this and using Theorem 4.1, we get

Dqx(t) = βΓ(q + 1)− ax(t) = b− ax(t)

since Dqtq = Γ(1 + q) (cf. Lemma 3.3). In other words, the function x(t) must also be a solution of (4.2) on
[0,∞). Note from (4.3) that x(0) = 0.

Now let a > 0 and b ∈ R be given constants. Then define constants β ∈ R and λ > 0 by (4.4) and
suppose x(t) is a continuous function satisfying (4.2) on [0,∞). And so

DJ1−qx(t) = −ax(t) + b

since Dq = DJ1−q. For a fixed t > 0, let η ∈ (0, t). The integration∫ t

η

d

ds
J1−qx(s) ds =

∫ t

η
(−ax(s) + b) ds

yields

J1−qx(t)− J1−qx(η) = −a
∫ t

η
x(s) ds+ b(t− η). (4.6)

Lemma 3.1 in [3, p. 5] implies that

lim
η→0+

J1−qx(η) =
1

Γ(1− q)
lim
η→0+

∫ η

0
(η − s)−qx(s) ds = 0. (4.7)

Because of this and the continuity of x on [0,∞), we obtain

J1−qx(t) = −a
∫ t

0
x(s) ds+ bt = −aJx(t) + bt
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upon taking the limit of both sides of (4.6) as η → 0+. Then the application of D1−q yields

D1−qJ1−qx(t) = −aD1−qJx(t) + bD1−qt,

which because of Theorem 4.1 and (2.5) simplifies to

x(t) = −aDJqJx(t) + bD1−qt. (4.8)

It follows from [4, Lemma 4.8] that

DJqJx(t) = DJJqx(t) = Jqx(t)

and from Lemma 3.3 that
D1−qt =

1

Γ(q + 1)
tq.

Therefore, we conclude from (4.8) that any continuous solution of (4.2) on [0,∞) must also be a solution of

x(t) = −aJqx(t) +
b

Γ(q + 1)
tq

= − a

Γ(q)

∫ t

0
(t− s)q−1x(s) ds+ βtq = βtq − λ

∫ t

0
(t− s)q−1x(s) ds.

Moreover, we see from this integral equation that x(0) = 0.

Remark 4.3. Observe in the statement of Lemma 4.2 that no initial condition accompanies the fractional
differential equation (4.2). At first this may appear to be an oversight until we realize from the proof that
positing the existence of a continuous solution x(t) of (4.2) for t ≥ 0 implies x(0) = 0.

With the next theorem we complete what was initiated with Lemma 4.2 and that is to show that (4.2)
and (4.3) do in fact share the same continuous solution on [0,∞). But first let us dispose of the special case
b = 0.

Lemma 4.4. There is one and only one continuous solution of

Dqx(t) = −ax(t) (a > 0) (4.9)

on [0,∞); it is the trivial solution x(t) ≡ 0.

Proof. It follows from Lemma 4.2 that any continuous solution of (4.9) on [0,∞) must also be a continuous
solution of

x(t) = −λ
∫ t

0
(t− s)q−1x(s) ds

where λ = a/Γ(q). But the only solution of this integral equation is x(t) ≡ 0 (cf. [3, p. 15]).

Theorem 4.5. For given constants a > 0, b ∈ R, and q ∈ (0, 1), the fractional relaxation equation (4.2) has
one and only one continuous solution on [0,∞), namely

x(t) =
b

a

∫ t

0
R(s) ds =

b

a
[1− Eq(−atq)] , (4.10)

where R denotes the resolvent corresponding to λ = a/Γ(q). This is also the unique continuous solution of
the integral equation (4.3) on [0,∞) when β and λ have the values given by (4.4).
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Proof. First consider the integral equation (4.3) where β ∈ R and λ > 0 are given constants. From [3,
Thm. 8.3] we know that if a function f is continuous on the interval [0,∞), then

x(t) = f(t)− λ
∫ t

0
(t− s)q−1x(s) ds

has a unique continuous solution on [0,∞). Moreover, this solution is given by the linear variation of
parameters formula:

x(t) = f(t)−
∫ t

0
R(t− s)f(s) ds.

Taking f(t) = βtq, this becomes

x(t) = βtq −
∫ t

0
R(t− s)βsq ds = βtq − β

∫ t

0
(t− u)qR(u) du. (4.11)

In other words, this is the unique continuous solution of (4.3) on [0,∞).
But we can simplify (4.11) as follows: integrating the resolvent equation (Rλ) and interchanging the order

of integration (cf. Thm. 3.1), we obtain∫ t

0
R(s) ds =

λ

q
tq − λ

q

∫ t

0
(t− u)qR(u) du.

Thus, ∫ t

0
(t− u)qR(u) du = tq − q

λ

∫ t

0
R(s) ds.

Substituting this into (4.11) and defining a and b by (4.5), we get

x(t) = βtq − β
[
tq − q

λ

∫ t

0
R(s) ds

]
= βq · 1

λ

∫ t

0
R(s) ds

=
bq

Γ(q + 1)
· Γ(q)

a

∫ t

0
R(s) ds =

b

a

∫ t

0
R(s) ds.

In [3, Thm. 9.5], we find the formula ∫ t

0
R(s) ds = 1− Eq(−atq).

Therefore (4.10) is the unique continuous solution of (4.3). Moreover, Lemma 4.2 implies that it is also the
unique continuous solution of (4.2) on [0,∞).

Remark 4.6. We have shown that there is one and only one continuous solution x(t) of the fractional
relaxation equation (4.2) on the half-closed interval [0,∞). Moreover, from (4.10) we see that x(0) = 0.
Thus, the initial value problem

Dqx(t) = −ax(t) + b, x(0) = x0

has no continuous solution on [0,∞) unless x0 = 0.
Also, observe that if we formally let q = 1 in (4.10), then it simplifies to

x(t) =
b

a
[1− E1(−at)] =

b

a

(
1− e−at

)
(4.12)

since E1(z) = ez (cf. (3.3)). Note that this is the unique continuous solution of the classical initial value
problem

x′(t) = −ax(t) + b, x(0) = 0.



L. C. Becker and I. K. Purnaras, Adv. Theory Nonlinear Anal. Appl. 2 (2018), 11–32. 20

Corollary 4.7. If b 6= 0, then solution (4.10) has the following properties:

(i) x(0) = 0.
(ii) limt→∞ x(t) = b/a.
(iii) If b > 0 (b < 0), then x(t) is strictly increasing (decreasing) on [0,∞) and x(t) > 0 (x(t) < 0) for all

t > 0.
(iv) If b > 0 (b < 0), then x(t) is concave downward (upward) on (0,∞).
(v) If b > 0, then the derivative x′(t) is completely monotone on (0,∞), whereas −x′(t) is completely

monotone on (0,∞) if b < 0.

Proof. Properties (i) and (ii) follow from (4.10) from which we see that x(0) = 0 and

lim
t→∞

x(t) =
b

a
lim
t→∞

∫ t

0
R(s) ds =

b

a

∫ ∞
0

R(s) ds =
b

a
.

Since the derivative of (4.10) is

x′(t) =
b

a

d

dt

∫ t

0
R(s) ds =

b

a
R(t), (4.13)

it follows that x′(t) > 0 if b > 0. And so x(t) is strictly increasing on [0,∞). This together with x(0) = 0
implies that x(t) > 0 for t > 0. Likewise, if b < 0, then x(t) is strictly decreasing on [0,∞) and x(t) < 0 for
t > 0. This concludes the proof of (iii).

To prove (iv), we use the result stated in Section 1 that the resolvent R is a completely monotone function
on (0,∞). Thus,

x′′(t) =
b

a
R′(t).

And so x′′(t) ≤ 0 if b > 0 and x′′(t) ≥ 0 if b < 0.
Finally, (v) follows from (4.13) and the complete monotonicity of R.

Example 4.8. We illustrate some of the properties of solutions of (4.2) that are enumerated in Corollary 4.7
by choosing two different values of q and graphing the corresponding solutions (4.10). For both values, let
a = b = 1.

First let q = 1/2. Then (4.10) is
x(t) = 1− E1/2(−

√
t).

According to [10, (1.8.6)],
E1/2(z) = ez

2
[1 + erf(z)]

where erf(z) is the error function:

erf(z) :=
2√
π

∫ z

0
e−u

2
du. (4.14)

Thus,
x(t) = 1− et

[
1 + erf(−

√
t)
]

= 1− et + et erf(
√
t) (4.15)

is the unique continuous solution of
D1/2x(t) = −x(t) + 1 (4.16)

on [0,∞). The graph of (4.15) is the solid concave-downward curve in Figure 1. (All the graphs in this paper
were created with MapleTM 17.)

Now let q = 1/3. By (4.10) the unique continuous solution of

D1/3x(t) = −x(t) + 1 (4.17)

on [0,∞) is
x(t) = 1− E1/3(−

3
√
t). (4.18)
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Figure 1: Solutions (1.5), (1.6), (4.15) and (4.21).

The second term can be calculated with the help of formula (1.8.5) in [10]: for m = 2, 3, 4, . . . ,

E1/m(z) = ez
m

[
1 +m

∫ z

0
e−u

m

(
m−1∑
k=1

uk−1

Γ(k/m)

)
du

]
.

Consequently,

E1/3(t) = et
3

[
1 + 3

∫ t

0
e−u

3

(
1

Γ(1/3)
+

u

Γ(2/3)

)
du

]
= et

3

[
1 +

3

Γ(1/3)

∫ t

0
e−u

3
du+

3

Γ(2/3)

∫ t

0
u e−u

3
du

]
. (4.19)

We can also express the solution (4.18) in terms of the lower incomplete gamma function γ(a, z), namely

γ(a, z) :=

∫ z

0
ua−1e−u du. (4.20)

Changing the variable of integration to z = u3, we obtain∫ t

0
e−u

3
du =

1

3

∫ t3

0
z−2/3e−z dz =

1

3
γ(1/3, t3).

Likewise, the same change of variable yields∫ t

0
u e−u

3
du =

1

3

∫ t3

0
z−1/3e−z dz =

1

3
γ(2/3, t3).

Thus,

E1/3(t) = et
3

[
1 +

γ(1/3, t3)

Γ(1/3)
+
γ(2/3, t3)

Γ(2/3)

]
.

Therefore, an alternative form of (4.18) is

x(t) = 1− e−t
[
1 +

γ(1/3,−t)
Γ(1/3)

+
γ(2/3,−t)

Γ(2/3)

]
. (4.21)

Its graph is the concave-downward dashed curve in Figure 1.
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5. Generalization of the equation of motion of a falling body

Consider the vertical downward motion of a body of mass m when it is released from rest above the
ground. Besides the force due to gravity and the resisting force (drag force) exerted on the body as it moves
through the air, assume that all other forces acting on the body are negligible. Also, let us suppose that the
drag force is proportional to the velocity v of the body. Since the direction of the drag force is opposite that
of the velocity of the body (downward, which we take as negative), the drag force Fd points upward. Thus
Fd = −kmv, where the proportionality constant k > 0. Since the gravitational force acting on the body is
Fg = −mg, Newton’s second law of motion yields

m
dv

dt
= Fg + Fd = −mg − kmv.

Hence, we obtain the familiar classical equation of motion

dv

dt
= −kv − g, v(0) = 0 (5.1)

that is found in most undergraduate physics textbooks, such as [13, p. 68]. Solving (5.1) by either separating
variables or using the integrating factor ekt, we obtain the solution

v(t) = −g
k

+
g

k
e−kt. (5.2)

Now suppose we generalize the equation of motion (5.1) by replacing the classical differential operator
d/dt with the Riemann-Liouville operator Dq. But this does not make complete sense due to the dimensional
inconsistency of the units, where we see from (5.1) that k has the dimension of inverse time. However, we
can rectify this with the replacement

d

dt
→ k1−qDq

suggested by Rosales et al. in [18, p. 519]. (Actually they use the Caputo fractional derivative; however, since
q ∈ (0, 1) and the initial condition is v(0) = 0, the Caputo and Riemann-Liouville derivatives are equivalent.)
Consequently, the fractional generalization of (5.1) is

k1−qDqv = −kv − g, v(0) = 0

or
Dqv = −kqv − kq−1g, v(0) = 0. (5.3)

From Theorem 4.5 we see that the unique continuous solution of (5.3) is

v(t) = −g
k

+
g

k
Eq(−(kt)q). (5.4)

This agrees with the velocity formula in [18]. Note that by formally letting q = 1, (5.4) simplifies to (5.2)
because of (3.3).

6. Repeated integration of the resolvent

Lemma 6.1. Let R(t) be the resolvent, namely, the unique continuous solution of (Rλ) on (0,∞). Then∫ t

0
R(s) ds =

λ

q

[
tq −

∫ t

0
(t− u)qR(u) du

]
(6.1)

for t ≥ 0.
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Proof. Integrating (Rλ) and interchanging the order of integration (cf. Thm. 3.1), we get∫ t

0
R(s) ds = λ

∫ t

0
sq−1 ds− λ

∫ t

0

∫ s

0
(s− u)q−1R(u) du ds

=
λ

q
tq − λ

∫ t

0

(∫ t

u
(s− u)q−1 ds

)
R(u) du

=
λ

q
tq − λ

q

∫ t

0
(t− u)qR(u) du.

Theorem 6.2. Let n ∈ N. The nth repeated integral of the resolvent R(t), namely

JnR(t) =

∫ t

0
dtn

∫ tn

0
dtn−1 · · ·

∫ t2

0
R(t1) dt1,

is given by the formula

JnR(t) =
λΓ(q)

Γ(q + n)

[
tq+n−1 −

∫ t

0
(t− u)q+n−1R(u) du

]
(6.2)

for t ≥ 0.

Proof. It follows from Lemma 6.1 that formula (6.2) holds for n = 1. Let us show via a proof by induction
that it holds for all n ∈ N.

Suppose for some k ∈ N that (6.2) holds for n = k. Then

Jk+1R(t) =

∫ t

0
JkR(s) ds

=
λΓ(q)

Γ(q + k)

∫ t

0

[
sq+k−1 −

∫ s

0
(s− u)q+k−1R(u) du

]
ds

=
λΓ(q)

Γ(q + k)

[
tq+k

q + k
−
∫ t

0

∫ s

0
(s− u)q+k−1R(u) du ds

]
.

Interchanging the order of integration as in Theorem 3.1, we obtain

Jk+1R(t) =
λΓ(q)

Γ(q + k)

[
tq+k

q + k
−
∫ t

0

(∫ t

u
(s− u)q+k−1 ds

)
R(u) du

]
=

λΓ(q)

Γ(q + k)

[
1

q + k
tq+k − 1

q + k

∫ t

0
(t− u)q+kR(u) du

]
=

λΓ(q)

Γ(q + k + 1)

[
tq+k −

∫ t

0
(t− u)q+kR(u) du

]
.

This shows that (6.2) holds for n = k + 1 if it holds for n = k. Therefore, by induction, (6.2) holds for all
n ∈ N.

Corollary 6.3. Let m ∈ N0, λ > 0, and q ∈ (0, 1). Let R(t) be the resolvent corresponding to the parameter
λ, i.e., the unique continuous solution of (Rλ). Then∫ t

0
(t− s)q+mR(s) ds = tq+m − 1

λ
· Γ(q +m+ 1)

Γ(q)Γ(m+ 1)

∫ t

0
(t− s)mR(s) ds. (6.3)

Proof. From Theorems 3.2 and 6.2, we have two different formulas for JnR(t). As a result, setting n = m+1
in (3.1) and (6.2), we get

λΓ(q)

Γ(q +m+ 1)

[
tq+m −

∫ t

0
(t− s)q+mR(s) ds

]
=

1

m!

∫ t

0
(t− s)mR(s) ds.

Now solve this for the integral on the left-hand side.
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7. Solution of (1.2) for a given polynomial g

The first result of this section generalizes Lemma 4.2.

Lemma 7.1. Let a > 0, b ∈ R, m ∈ N0, and q ∈ (0, 1). If there is a continuous solution of

Dqx(t) = −ax(t) + btm (7.1)

on [0,∞), then it is also a solution of

x(t) = βtq+m − λ
∫ t

0
(t− s)q−1x(s) ds (7.2)

on [0,∞) when

β =
bm!

Γ(q +m+ 1)
and λ =

a

Γ(q)
. (7.3)

Conversely, let β ∈ R and λ > 0 and suppose there is a continuous solution of (7.2) on [0,∞). Then it is
also a continuous solution of (7.1) on [0,∞) when

a = λΓ(q) and b =
β

m!
Γ(q +m+ 1). (7.4)

Proof. Equation (7.2), written in terms of the Riemann-Liouville integral operator, is

x(t) = βtq+m − λΓ(q)Jqx(t).

Applying the differential operator Dq, we get

Dqx(t) = βDqtq+m − λΓ(q)DqJqx(t) = β
Γ(q +m+ 1)

Γ(m+ 1)
tm − ax(t)

=
β

m!
Γ(q +m+ 1)tm − ax(t) = −ax(t) + btm,

where we have used Theorem 4.1, Lemma 3.3, and (7.4). Thus, if a continuous solution of (7.2) exists for
t ≥ 0, it must also be a solution of (7.1) when a and b have the values given by (7.4).

Conversely, suppose there exists a continuous solution x(t) of (7.1) on [0,∞); hence

DJ1−qx(t) = −ax(t) + btm.

Integrating, as in the proof of Lemma 4.2, we have∫ t

η

d

ds
J1−qx(s) ds =

∫ t

η
(−ax(s) + bsm) ds

or

J1−qx(t)− J1−qx(η) =

∫ t

η
(−ax(s) + bsm) ds. (7.5)

Taking the limit of both sides as η → 0+, we obtain

J1−qx(t) =

∫ t

0
(−ax(s) + bsm) ds = −aJx(t) +

b

m+ 1
tm+1

since J1−qx(η)→ 0 (cf. (4.7)). Applying D1−q, we get

D1−qJ1−qx(t) = −aDJqJx(t) +
b

m+ 1
DJqtm+1
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or
x(t) = −aJqx(t) +

b

m+ 1
· Γ(m+ 2)

Γ(m+ q + 1)
tm+q

because of Lemma 3.3 and Theorem 4.1. Since m ∈ N0, this simplifies to

x(t) = −aJqx(t) +
bm!

Γ(m+ q + 1)
tm+q.

We conclude that if a continuous solution x(t) of (7.1) exists, then it must also be a solution of

x(t) =
bm!

Γ(m+ q + 1)
tm+q − a

Γ(q)

∫ t

0
(t− s)q−1x(s) ds.

In the next theorem we prove that (7.1) does have a unique continuous solution on [0,∞). Moreover, with
the following formula, which is found in [17, p. 25], we show how to express it in terms of a Mittag-Leffler
function.

Lemma 7.2. Let γ ∈ R and α, β, p ∈ R+. Then∫ t

0
(t− s)p−1Eα,β(γsα)sβ−1 ds = Γ(p)tp+β−1Eα,β+p(γt

α) (7.6)

for t > 0.

Proof. Let us use (1.4) to write the integrand as the sum

(t− s)p−1Eα,β(γsα)sβ−1 = (t− s)p−1
( ∞∑
k=0

(γsα)k

Γ(kα+ β)

)
sβ−1 =

∞∑
k=0

gk(s),

where

gk(s) := (t− s)p−1 γk

Γ(kα+ β)
skα+β−1.

Using an integration formula in [4, (4.4)] (or [6, p. 229 ]), we find for t > 0 that∫ t

0
|gk(s)| ds =

|γ|k

Γ(kα+ β)

∫ t

0
(t− s)p−1skα+β−1 ds

=
|γ|k

Γ(kα+ β)
tp+kα+β−1

Γ(p)Γ(kα+ β)

Γ(p+ kα+ β)
= Γ(p)tp+β−1

(|γ|tα)k

Γ(kα+ β + p)
<∞.

It then follows from a generalization of Levi’s theorem for series ([2, p. 269]) that∫ t

0
(t− s)p−1Eα,β(γsα)sβ−1 ds =

∫ t

0

∞∑
k=0

gk(s) ds =

∞∑
k=0

∫ t

0
gk(s) ds

= Γ(p)tp+β−1
∞∑
k=0

(γtα)k

Γ(kα+ β + p)
= Γ(p)tp+β−1Eα,β+p(γt

α).

With the integration formulas involving the resolvent that we found in Section 6.1 and the variation of
parameters formula that was used earlier in the proof of Theorem 4.5, we can now establish the existence of
continuous solutions of equations (7.1) and (7.2) on [0,∞) and their uniqueness.
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Theorem 7.3. Let a > 0, b ∈ R, m ∈ N0, and q ∈ (0, 1). The fractional relaxation equation (7.1) has the
unique continuous solution

x(t) =
b

a

∫ t

0
(t− s)mR(s) ds = bm! tq+mEq,q+m+1(−atq) (7.7)

on [0,∞), where R denotes the resolvent corresponding to λ = a/Γ(q). It is also the unique continuous
solution of the integral equation (7.2) on [0,∞) when β and λ have the values given by (7.3).

Proof. First consider the integral equation (7.2) for given values of β ∈ R and λ > 0. By the variation of
parameters formula, the function

x(t) = βtq+m −
∫ t

0
R(t− s)βsq+m ds = βtq+m − β

∫ t

0
(t− s)q+mR(s) ds

is the unique continuous solution of (7.2) on [0,∞). Because of Corollary 6.3, this solution can be simplified
as follows: first define a and b by (7.4). Then

x(t) = βtq+m − β
[
tq+m − 1

λ
· Γ(q +m+ 1)

Γ(q)Γ(m+ 1)

∫ t

0
(t− s)mR(s) ds

]
=
β

λ
· Γ(q +m+ 1)

Γ(q)Γ(m+ 1)

∫ t

0
(t− s)mR(s) ds

=
bm!

Γ(q +m+ 1)
· Γ(q)

a
· Γ(q +m+ 1)

Γ(q)Γ(m+ 1)

∫ t

0
(t− s)mR(s) ds

=
b

a

∫ t

0
(t− s)mR(s) ds. (7.8)

In short, we have shown that (7.8) is the unique continuous solution of (7.2) on [0,∞) if a and b have the
values given by (7.4). Furthermore, we can see from Lemma 7.1 that it is also the unique continuous solution
of the fractional differential equation (7.1) on [0,∞).

Finally, let us show how to express (7.8) in terms of a Mittag-Leffler function. From (1.3) we find that
the resolvent of (Rλ) corresponding to λ = a/Γ(q) is

R(t) = λΓ(q)tq−1Eq,q(−λΓ(q)tq) = atq−1Eq,q(−atq).

Hence, from (7.8) we have

x(t) =
b

a

∫ t

0
(t− s)mR(s) ds = b

∫ t

0
(t− s)msq−1Eq,q(−asq) ds.

Then, by setting p = m+ 1, α = β = q, and γ = −a in Lemma 7.2, we obtain

x(t) = bΓ(m+ 1)t(m+1)+q−1Eq,q+m+1(−atq) = bm!tm+qEq,q+m+1(−atq)

for t > 0. Note this formula is also valid for t = 0 since from (7.8) we see that x(0) = 0.

Remark 7.4. According to (7.7), the solution of (7.1) when m = 0 is

x(t) =
b

a

∫ t

0
R(s) ds = b tqEq,q+1(−atq).

From equations (9.7) and (9.8) in [3], we see that

tqEq,q+1(−atq) =
1

a
[1− Eq(−atq)] .

Thus,

x(t) =
b

a
[1− Eq(−atq)] ,

which is precisely what was stated in Theorem 4.5.
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Remark 7.5. If we disregard the hypothesis that q ∈ (0, 1) and set q = 1, then (7.7) becomes

x(t) = bm! t1+mE1,2+m(−at).

Can this formal substitution be justified? In [6, p. 69] and [17, p. 18], we find the formulas:

E1,1(x) = ex and E1,n(x) =
1

xn−1

(
ex −

n−2∑
k=0

xk

k!

)
for n = 2, 3, . . . .

Setting n = 2 +m and x = −at, we obtain

x(t) = bm! t1+m
1

(−at)m+1

(
e−at −

m∑
k=0

(−at)k

k!

)

= (−1)m+1 bm!

am+1
e−at − (−1)m+1 bm!

am+1

m∑
k=0

(−at)k

k!

= (−1)m+1 bm!

am+1
e−at +

b

a

m∑
k=0

(−1)m+2+k m!

am−kk!
tk.

Thus,

x(t) =
b

a

m∑
k=0

(−1)m−k
m!

k! am−k
tk +

b

a
(−1)m+1m!

am
e−at. (7.9)

Writing out some of the terms of (7.9), we have

x(t) =
b

a

[
(−1)m

m!

am
+ (−1)m−1

m!

am−1
t+ · · ·+ tm

]
+ (−1)m+1 bm!

am+1
e−at.

Now note that when we evaluate this at t = 0, we get

x(0) = (−1)m
bm!

am+1
+ (−1)m+1 bm!

am+1
= 0,

which agrees with the value of (7.7) at t = 0. Also note that the fractional differential operator Dq is defined
to be the ordinary first-order differential operator D when q = 1 (cf. Def. 2.3). So the formal substitution
q = 1 in (7.7) suggests that (7.9) is the solution of the classical initial value problem

x′(t) = −ax(t) + btm, x(0) = 0. (7.10)

Let us see if this is truly the case.
By the classical variation of parameters formula, the solution of (7.10) is

x(t) = e−atx(0) +

∫ t

0
e−a(t−s)bsm ds, (7.11)

which simplifies to

x(t) = be−at
∫ t

0
smeas ds

since x(0) = 0. Integrating by parts or consulting a table of integrals, such as [9, 2.321], we find that∫
smeas ds = eas

m∑
k=0

(−1)k
k!

ak+1

(
m

k

)
sm−k.
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Hence,

x(t) = be−at
∫ t

0
smeas ds = b

m∑
k=0

(−1)k
k!

ak+1

(
m

k

)
tm−k − b(−1)m

m!

am+1
e−at

=
b

a

m∑
k=0

(−1)k
m!

(m− k)!ak
tm−k +

b

a
(−1)m+1m!

am
e−at.

With an appropriate change in the index of summation, we see that this is equivalent to (7.9). In sum, we
have shown that (7.9) does in fact solve the classical initial value problem (7.10).

Because of Corollary 6.3 and Theorem 7.3, we can express the convolution of tp for p > −1 and the
resolvent R in terms of two-parameter Mittag-Leffler functions. This is the content of the next result.

Corollary 7.6. Let m ∈ N0. Let R be the resolvent of (Rλ); that is,

R(t) = λΓ(q)tq−1Eq,q(−λΓ(q)tq)

where λ > 0 and 0 < q < 1. Then for p > −1,∫ t

0
(t−s)pR(s) ds

=


tq−1 − Γ(q)tq−1Eq,q(−λΓ(q)tq) if p = q − 1

λΓ(q)m! tq+mEq,q+m+1(−λΓ(q)tq) if p = m

tq+m − Γ(q +m+ 1)tq+mEq,q+m+1(−λΓ(q)tq) if p = m+ q.

Proof. Suppose p = q − 1. Then it follows from (Rλ) and (1.3) that∫ t

0
(t− s)q−1R(s) ds = tq−1 − 1

λ
R(t) = tq−1 − 1

λ

[
λΓ(q)tq−1Eq,q(−λΓ(q)tq)

]
= tq−1 − Γ(q)tq−1Eq,q(−λΓ(q)tq).

Now suppose p = m where m ∈ N0. Then from Theorem 7.3 we have∫ t

0
(t− s)mR(s) ds = am! tq+mEq,q+m+1(−atq)

= λΓ(q)m! tq+mEq,q+m+1(−λΓ(q)tq)

since a = λΓ(q).
Finally consider the case when p = m+ q. Then it follows from the previous case and Corollary 6.3 that∫ t

0
(t− s)m+qR(s) ds

= tq+m − 1

λ
· Γ(q +m+ 1)

Γ(q)m!
· λΓ(q)m! tq+mEq,q+m+1(−λΓ(q)tq)

= tq+m − Γ(q +m+ 1)tq+mEq,q+m+1(−λΓ(q)tq).

Our final result employs Theorem 7.3 to obtain the unique continuous solution of

Dqx(t) = −ax(t) + g(t) (1.2)

on the interval [0,∞) when g(t) is a given polynomial.



L. C. Becker and I. K. Purnaras, Adv. Theory Nonlinear Anal. Appl. 2 (2018), 11–32. 29

Theorem 7.7. Let q ∈ (0, 1) and a > 0. Let n ∈ N0 and bm ∈ R for m = 0, 1, 2, . . . , n. The fractional
relaxation equation

Dqx(t) = −ax(t) +

n∑
m=0

bmt
m (7.12)

has one and only one continuous solution on [0,∞), namely,

x(t) =
n∑

m=0

bmm!tq+mEq,q+m+1(−atq). (7.13)

Proof. For m = 0, 1, . . . , n, let xm denote the continuous solution of

Dqx(t) = −ax(t) + bmt
m

on [0,∞), whose existence and uniqueness was established with Theorem 7.3. It is clear from (2.7) that Dq

is a linear operator. Consequently,

Dq

(
n∑

m=0

xm(t)

)
=

n∑
m=0

Dqxm(t) =
n∑

m=0

(−axm(t) + bmt
m)

= −a
n∑

m=0

xm(t) +

n∑
m=0

bmt
m = −a

n∑
m=0

xm(t) + g(t)

where

g(t) :=
n∑

m=0

bmt
m. (7.14)

Thus x(t) :=
∑n

m=0 xm(t) is a continuous solution of (7.12) on [0,∞).
As for uniqueness, suppose that y(t) is also a continuous solution. Applying the operator Dq to

z(t) := x(t)− y(t),

we get
Dqz(t) = −ax(t) + g(t)− [−ay(t) + g(t)] = −a [x(t)− y(t)] = −az(t)

for t ≥ 0. It follows from Lemma 4.4 that z(t) ≡ 0. In other words, y(t) ≡ x(t) on [0,∞).
Finally, we obtain (7.13) from (7.7).

Example 7.8. The equation
D1/2x(t) = −x(t) + 1− 3t− 2t2 + t3 (7.15)

has the unique continuous solution

x(t) = t3 − 16

5
√
π
t5/2 + t2 − 8

3
√
π
t3/2 − t+

2√
π
t1/2 (7.16)

on the interval [0,∞).

Proof. Referring to (7.12) and (7.14), we have q = 1/2, a = 1, and

g(t) =
3∑

m=0

bmt
m = 1− 3t− 2t2 + t3 (7.17)

where
b0 = 1, b1 = −3, b2 = −2, b3 = 1.
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Accordingly, we see from (7.13) that

x(t) =

3∑
m=0

bmm!t
1
2
+mE 1

2
, 1
2
+m+1(−

√
t)

= t
1
2E 1

2
, 3
2
(−
√
t)− 3t

3
2E 1

2
, 5
2
(−
√
t)− 4t

5
2E 1

2
, 7
2
(−
√
t) + 6t

7
2E 1

2
, 9
2
(−
√
t)

is the unique continuous solution of (7.15) on [0,∞).
Each of these four terms can be expressed as a finite sum of powers of t and a constant multiple of

et erf(
√
t). For instance, consider the second term. From (1.4) we have

E 1
2
, 5
2
(t) =

∞∑
k=0

tk

Γ(12k + 5
2)
. (7.18)

By the Cauchy-Hadamard formula for convergence and Stirling’s formula for the Gamma function, the power
series (1.4) defining Eα,β(z) converges absolutely for all z in the complex plane (cf. [6, p. 68]), and a fortiori
for all real values of z. Consequently, we can rearrange the terms of (7.18) as follows:

E 1
2
, 5
2
(t) =

∞∑
k=2

t2k−3

Γ(k + 1)
+

∞∑
k=2

t2k−4

Γ(k + 1
2)
.

In [1, (6.1.12)] we find the formula

Γ
(
k + 1

2

)
=

1 · 3 · 5 · 7 . . . (2k − 1)

2k
Γ
(
1
2

)
.

Thus,

E 1
2
, 5
2
(t) =

∞∑
k=2

t2k−3

k!
+

1√
π

∞∑
k=2

2kt2k−4

1 · 3 · 5 · 7 . . . (2k − 1)
.

It then follows that

t
3
2E 1

2
, 5
2
(−
√
t) = −

∞∑
k=2

tk

k!
+

1√
π

∞∑
k=2

2ktk−
1
2

1 · 3 · 5 · 7 . . . (2k − 1)

= 1 + t−
∞∑
k=0

tk

k!
− 2√

π
t
1
2 +

1√
π

∞∑
k=1

2ktk−
1
2

1 · 3 · 5 · 7 . . . (2k − 1)

= 1 + t− et − 2√
π
t
1
2 +

2√
π

∞∑
k=1

2k−1tk−
1
2

1 · 3 · 5 · 7 . . . (2k − 1)
.

Changing the index of summation, we have

t
3
2E 1

2
, 5
2
(−
√
t) = 1 + t− et − 2√

π
t
1
2 +

2√
π

∞∑
n=0

2ntn+
1
2

1 · 3 · 5 · 7 . . . (2n+ 1)
.

Employing the series expansion

et
2

erf(t) =
2√
π

∞∑
n=0

2nt2n+1

1 · 3 · 5 · 7 . . . (2n+ 1)

found in [1, (7.1.6)], we see that

− 3t
3
2E 1

2
, 5
2
(−
√
t) = −3− 3t+ 3et +

6√
π
t
1
2 − 3et erf(

√
t). (7.19)
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Similar calculations yield the following:

t
1
2E 1

2
, 3
2
(−
√
t) = 1− et + et erf(

√
t), (7.20)

− 4t
5
2E 1

2
, 7
2
(−
√
t) = −4− 4t− 2t2 + 4et +

16

3
√
π
t
3
2 − 8√

π
t
1
2 − 4et erf(

√
t), (7.21)

and

6t
7
2E 1

2
, 9
2
(−
√
t) = 6 + 6t+ 3t2 + t3 − 6et − 16

5
√
π
t
5
2 − 8√

π
t
3
2

− 12√
π
t
1
2 + 6et erf(

√
t). (7.22)

Adding together the terms (7.19)–(7.22), we obtain (7.16).

As in Remark 7.5, let us compare the solution (7.16) of the fractional relaxation equation (7.15) with the
solution of the initial value problem

y′(t) = −y(t) + 1− 3t− 2t2 + t3, y(0) = 0. (7.23)

Applying the variation of parameters formula or simply multiplying the differential equation by the inte-
grating factor et and then integrating by parts and using the initial condition y(0) = 0, we obtain the
solution

y(t) = −6 + 7t− 5t2 + t3 + 6e−t. (7.24)

The graph of the solution y(t) (dashed curve) is shown in Figure 2. The solid curve is the graph of the
solution (7.16) of the fractional relaxation equation (7.15). The curve that begins at (0, 1) (dotted curve ) is
the graph of the polynomial (7.17).

Figure 2: Graphs of (7.16), (7.17), and (7.24).
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