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Abstract

This paper is devoted to the study of a Chebyshev-type method free of derivatives for solving nonlinear
equations in Banach spaces. Using the idea of restricted convergence domain, we extended the applicability
of the Chebyshev-type methods. Our convergence conditions are weaker than the conditions used in earlier
studies. Therefore the applicability of the method is extended. Numerical examples where earlier results
cannot apply to solve equations but our results can apply are also given in this study.
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1. Introduction

Let F : Ω ⊆ B1 −→ B2 be a Fréchet differentiable operator between the Banach spaces B1 and B2. Due
to the wide applications, finding a solution for equation

F (x) = 0 (1)

is an important problem in applied mathematics and computational sciences. Convergence analysis of itera-
tive methods require assumptions on the Fréchet derivatives of the operator F. That restricts the applicability
of these methods.
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In this paper we study the seventh convergence order Chebyshev-type method [13]:

yn = xn −A−1n F (xn),

zn = yn −BnF (yn), (2)
xn+1 = zn − CnF (zn),

where

An = [wn, xn;F ],

Bn = (3I −A−1n ([yn, xn;F ] + [yn, wn;F ]))A−1n ,

Cn = [zn, xn;F ]−1([wn, xn;F ] + [yn, xn;F ]− [zn, xn;F ])A−1n ,

wn = xn + γF (xn), γ ∈ R,

[., .;F ] denotes a divided difference of order one on Ω2 and x0 ∈ Ω is an initial point. Throughout this paper
L(B2,B1) denotes the set of bounded linear operators between B1 and B2.

The study of convergence of iterative algorithms is involving categories: semi-local and local convergence
analysis. The semi-local convergence is based on the information around an initial point, to derive conditions
ensuring the convergence of these algorithms, while the local convergence is based on the information around
a solution to get estimates of the computed radii of the convergence balls. Local results are important since
they tell us about the degree of difficulty in choosing initial points.

The above method was studied in [13]. Convergence analysis in [13] is based on the assumptions on
the Fréchet derivative F up to the order seven. In this study, we use only assumptions on the first Fréchet
derivative of the operator F in our convergence analysis, so the the method (2) can be applied to solve
equations but the earlier results cannot be applied [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] (see Example
3.2).

The rest of the paper is structured as follows. In Section 2 we present the local convergence analysis of
the method (2). We also provide a radius of convergence, computable error bounds and a uniqueness result.
Numerical examples are given in the last section.

2. Local convergence

We need a definition concerning the monotonicity of functions.

Definition 2.1. Let T : D ⊆ R × R −→ R be a function. We say T is nondecreasing on Ω, if for each
(a1, a2), (a3, a4) ∈ D with a1 ≤ a3, a2 ≤ a4,

T (a1, a2) ≤ T (a3, a4). (1)

Moreover, T is increasing on D, if a1 ≤ a3 and a2 < a4 or a1 < a3 and a2 ≤ a4 or a1 < a3 and a2 < a4
imply T (a1, a2) < T (a2, a4).

Let us introduce some parameters and scalar functions to be used in the local convergence of method (2)
that follows. Let γ ∈ R and δ ≥ 0 be parameters and let function ω0 : [0,+∞) × [0,+∞) −→ [0,+∞) be
continuous and nondecreasing with ω0(0, 0) = 0. Define parameter r0 by

r0 = sup{t ∈ [0,+∞) : ω0(δt, t) < 1}. (2)

Let v0 : [0, r0) −→ [0,+∞), ω1 : [0, r0) × [0, r0) −→ [0,+∞) be continuous and nondecreasing functions.
Define functions g1 and h1 on the interval [0, r0) by

g1(t) =
ω1(|γ|v0(t)t, t)
1− ω0(δt, t)
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and
h1(t) = g1(t)− 1.

Suppose that
ω1(0, 0) < 1. (3)

Suppose that
h1(t) −→ a positive number or +∞ as t −→ r−0 . (4)

We have by (3) that

h1(0) =
ω1(0, 0)

1− ω0(0, 0)
− 1 < 0. (5)

Then, by (4), (5) and the intermediate value theorem equation h1(t) = 0 has solutions in the interval
(0, r0). Denote by r1 the smallest such zero. Let v : [0, r0) −→ [0,+∞), ω2 : [0, r0) −→ [0,+∞) and
ω3 : [0, r0) × [0, r0) −→ [0,+∞) be continuous and nondecreasing functions. Define functions β, g2, h2 on
[0, r0) by

β(t) =
1 + ω0(δt, t) + ω2((δ + g1(t)t)t) + ω3((δ + g1(t))t, |γ|v0(t)t)v(g1(t)t)

(1− ω0(δt, t))2

g2(t) = (1 + β(t)v(g1(t)t))g1(t)

and
h2(t) = g2(t)− 1.

Suppose that
(1 + β(0)v(0))ω1(0, 0) < 1 (6)

and
h2(t) −→ a positive number or +∞ as t −→ r−0 (7)

We get by (6) that h2(0) < 0. So, by the intermediate value theorem equation h2(t) = 0 has solutions in the
interval (0, r0). Denote by r2 the smallest solution of h2(t) = 0 in the interval (0, r0). Define functions p1 and
hp1 on the interval [0, r0) by

p1(t) = ω0(g2(t)t, g1(t)t)

and
hp1(t) = p1(t)− 1.

We have by the definition of function w0 that hp1(0) < 0. Suppose that

hp1(t) −→ a positive number or +∞ as t −→ r−0 . (8)

Denote by rp1 the smallest solution of equation hp1(t) = 0 on the interval (0, r0). Define functions ϕ, g3, h3
on the interval [0, rp1) by

ϕ(t) =
1 + ω2((δ + g2(t)t) + ω0(g2(t)t, t)

(1− p1(t))(1− ω0(δt, t))

g3(t) = (1 + ϕ(t)v(g2(t)t))g2(t)

and
h3(t) = g3(t)− 1.

Suppose that
(1 + (1 + ω2(0))v(0)) (1 + β(0)v(0))ω1(0, 0) < 1, (9)

and
h3(t) −→ a positive number or +∞ as t −→ r−p1 . (10)
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We have that h3(0) < 0. Denote by r3 the smallest solution of equation h3(t) = 0 in the interval (0, r0).
Define the radius of convergence r by

r = min{ri} i = 1, 2, 3. (11)

Then, for each t ∈ [0, r)
0 ≤ gi(t) < 1 (12)

0 ≤ p(t) < 1 (13)

and
0 ≤ p1(t) < 1. (14)

Finally, define R∗ by
R∗ = max{r, δr}. (15)

Some alternatives to the aforementioned conditions are:
Equation

w0(δt, t) = 1

has positive solutions. Denoted by r0 the smallest such solution. Functions v0, ω1, v, ω2 and ω3 defined on
the same intervals as before are increasing. Then, clearly conditions (4), (7), (8) and (10) hold.

We can show the local convergence analysis of method (2).

Theorem 2.2. Let F : Ω ⊂ B1 → B2 be a continuously Fréchet differentiable operator and let [., .;F ] :
Ω × Ω −→ L(B1,B2)be a divided difference of order one on Ω × Ω for F. Suppose: there exists x∗ ∈ Ω and
function ω0 : [0,+∞) × [0,+∞) → [0,+∞) continuous and nondecreasing with ω0(0, 0) = 0 such that for
each x, y ∈ Ω,

F (x∗) = 0, F ′(x∗)−1 ∈ L(B2,B1); (16)

and
‖F ′(x∗)−1([x, y;F ]− F ′(x∗))‖ ≤ ω0(‖x− x∗‖, ‖y − x∗‖). (17)

Let Ω0 = Ω ∩ B(x∗, r0). There exist γ ∈ R, δ ≥ 0, functions v0, v, ω2 : [0, r0) → [0,+∞), ω1, ω3 : [0, r0) ×
[0, r0)→ [0,+∞) such that for each x, y, z ∈ Ω0

‖I + γ[x, x∗;F ]‖ ≤ δ, (18)

‖[x, x∗;F ]‖ ≤ v0(‖x− x∗‖), (19)

‖F ′(x∗)−1[x, x∗;F ]‖ ≤ v(‖x− x∗‖), (20)

‖F ′(x∗)−1([x, y;F ]− [y, x∗;F ])‖ ≤ ω1(‖x− y‖, ‖y − x∗‖), (21)

‖F ′(x∗)−1([x, y;F ]− [z, y;F ])‖ ≤ ω2(‖x− z‖), (22)

‖F ′(x∗)−1([x, y;F ]− [z, x;F ])‖ ≤ ω3(‖x− z‖, ‖y − x‖), (23)

B̄(x∗, R∗) ⊆ Ω, (24)

(4), (7), (8) and (9) hold. Then, the sequence {xn} generated for x0 ∈ U(x∗, r)−{x∗} by method (2) is well
defined, remains in U(x∗, r) for each n = 0, 1, 2, . . . and converges to x∗. Moreover, the following estimates
hold

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r, (25)

‖zn − x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ (26)

and
‖xn+1 − x∗‖ ≤ g3(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (27)

where the functions gi, i = 1, 2, 3 are defined previously. Furthermore, if there exists for R1 ≥ r such that

ω0(R1, 0) < 1 or ω0(0, R1) < 1, (28)

then the limit point x∗ is the only solution of equation F (x) = 0 in Ω1 := Ω ∩B(x∗, R1).
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Proof. The proof is induction based. By hypothesis x0 ∈ U(x∗, r)− {x∗}, the definition of w0, A0, r the
fact that ω0 is nondecreasing, we have that

‖F ′(x∗)−1(A0 − F ′(x∗))‖
≤ (by (17))ω0(‖w0 − x∗‖, ‖x0 − x∗‖)
≤ (by (2))ω0(‖x0 − x∗ + γ[x0, x

∗;F ](x0 − x∗)‖, ‖x0 − x∗‖)
≤ ω0(‖(I + γ[x0, x

∗;F ])(x0 − x∗)‖, ‖x0 − x∗‖)
≤ (by (1) and (2))ω0(δr, r) < 1. (29)

In view of (29) and the Banach perturbation lemma [2, 3], we get that A0 is invertible and

‖A−10 F ′(x∗)‖ ≤ 1

1− ω0(δ‖x0 − x∗‖, ‖x0 − x∗‖)
. (30)

We also have that y0 is well defined by the first substep of method (2) for n = 0. We can write by method
(2) and (16) that

y0 − x∗ = (by (2))x0 − x∗ −A−10 F (x0)

= (by (10))A−10 (A0(x0 − x∗)− [x0, x
∗;F ](x0 − x∗))

= A−10 F ′(x∗)[F ′(x∗)−1([u0, x0;F ]− [x0, x
∗;F ])](x0 − x∗).

(31)

By the first substep of method (2) for n = 0, the definition of r, g1, the fact that w1 is nondecreasing, we
obtain in turn that

‖y0 − x∗‖
≤ (by (2)) ‖A−10 F ′(x∗)‖‖F ′(x∗)−1([w0, x0;F ]− [x0, x

∗;F ])‖‖x0 − x∗‖

≤ (by (21) and (30))
ω1(‖w0 − x0‖, ‖x0 − x∗‖)‖x0 − x∗‖

1− ω0(δ‖x0 − x∗‖, ‖x0 − x∗‖)

≤ (by (2) and (19))
ω1(|γ|v0(‖x0 − x0‖)‖x0 − x∗‖
1− ω0(δ‖x0 − x∗‖, ‖x0 − x∗‖)

‖x0 − x∗‖

= g1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ (by (7) for i = 1) ‖x0 − x∗‖ < r, (32)

which shows (25) for n = 0 and y0 ∈ B(x∗, r). We need an estimate on ‖B0F
′(x∗)‖. By the definition of B0,

β and the fact that functions ω0, ω2, ω3 are nondecreasing, we have in turn that

‖B0F
′(x∗)‖

= ‖A−10 (3A0 − [y0, x0;F ]− [y0, w0;F ])A−10 ‖
≤ ‖A−10 F ′(x∗)‖2[‖F ′(x∗)−1F ′(x∗)‖

+‖F ′(x∗)−1([w0, w0;F ]− F ′(x∗))‖
+‖F ′(x∗)−1([w0, x0;F ]− [y0, x0;F ])‖
+‖F ′(x∗)−1([w0, x0;F ]− [y0, w0;F ])‖]

≤ (by (22), (23, (32))
1 + ω0(‖x0 − x∗‖, ‖x0 − x∗‖) + ω2(‖w0 − y0‖) + ω3(‖w0 − y0‖, ‖x0 − w0‖)

(1− ω0(δ‖x0 − x∗‖, ‖x0 − x∗‖))2
≤ β(‖x0 − x∗‖). (33)

By the second substep of method (2), the fact that function v is nondecreasing , β is nonnegative and the
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definition of g2 we get in turn that

‖z0 − x∗‖
≤ (by the triangle inequality) ‖y0 − x∗‖+ ‖B0F

′(x∗)‖‖F ′(x∗)−1F (y0)‖
≤ (by (33)) (1 + β(‖y0 − x∗‖)v(‖y0 − x∗‖)) ‖y0 − x∗‖
≤ (by (32) and (33))

(1 + β(‖x0 − x∗‖)v(g1(‖x0 − x∗‖‖x0 − x∗‖)) g1(‖x0 − x∗‖)‖x0 − x∗‖
= (by the definition of function g2) g2(‖x0 − x∗‖)‖x0 − x∗‖
≤ (by (12) (for i=2)) ‖x0 − x∗‖ < r, (34)

which shows (26) for n = 0 and z0 ∈ B(x∗, r). We must show [z0, y0;F ]−1 ∈ L(B2,B1). We get that

‖F ′(x∗)−1([z0, y0;F ]− F ′(x∗))‖
≤ (by (17) )ω0(‖z0 − x∗‖, ‖y0 − x∗‖)
≤ (by (32) and (34) )ω0(g2(‖x0 − x∗‖)‖x0 − x∗‖, g1(‖x0 − x∗‖)‖x0 − x∗‖)
= (by the definition of function p1) p1(‖x0 − x∗‖) (35)
≤ (by (14) ) p1(r) < 1,

so
‖[z0, y0;F ]−1F ′(x∗)‖ ≤ 1

1− p1(‖x0 − x∗‖)
. (36)

To obtain an estimate on ‖C0F
′(x∗)‖,

‖F ′(x∗)−1(([w0, x0;F ]− [z0, x0;F ]) + (]y0, x0;F ]− F ′(x∗)) + F ′(x∗))‖
≤ (by (17) and (22) ) 1 + ω2(‖w0 − z0‖) + ω0(‖y0 − x∗‖, ‖x0 − x∗‖)
≤ (by the triangle inequality )

1 + ω2(‖w0 − x∗‖+ ‖z0 − x∗‖) + ω0(‖y0 − x∗‖, ‖x0 − x∗‖),

so by the definition of ϕ

‖C0F
′(x∗)‖ ≤ (by (31) and (36))

1 + ω2(‖w0 − x∗‖, ‖z0 − x∗‖) + ω0(‖y0 − x∗‖, ‖x0 − x∗‖)
(1− p1(‖x0 − x∗‖))(1− ω0δ(‖x0 − x∗‖, ‖x0 − x∗‖))

≤ ϕ(‖x0 − x∗‖) (37)

leading by the third substep of method (2) (by (11), (12) (for i = 2), and (37)) to the estimate

‖x1 − x∗‖
≤ (by the triangle inequality) ‖z0 − x∗‖+ ‖C0F

′(x∗)‖‖F ′(x∗)−1F (z0)‖
≤ (by (20) and (37) ) (1 + ϕ(‖x0 − x∗‖)v(‖z0 − x∗‖))‖z0 − x∗‖
≤ (by (34)) (1 + ϕ(‖x0 − x∗‖)v(g2(‖x0 − x∗‖)‖x0 − x∗‖)
×g2(‖x0 − x∗‖)‖x0 − x∗‖

= (by the definition of g3) g3(‖x0 − x∗‖)‖x0 − x∗‖ (38)
≤ (by (12) for i = 3) ‖x0 − x∗‖ < r,

which shows (27) and x1 ∈ U(x∗, r). The induction for (25)– (27) is completed in an analogous way, if we
replace x0, y0, z0, u0, x1 by xk, yk, zk, uk, xk+1, respectively, in the previous estimates. Then, it follows from
the estimate

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖ < r, (39)
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where c = g3(‖x0−x∗‖) ∈ [0, 1), that lim
k→∞

xk = x∗ and xk+1 ∈ U(x∗, r). Let y∗ ∈ Ω1 with F (y∗) = 0. Define

Q by Q = [y∗, x∗; f ]. Then, we get that

‖F ′(x∗)−1(Q− F ′(x∗))‖ ≤ (by (17))ω0(0, ‖y∗ − x∗‖)
≤ (by (28))ω0(0, R1) < 1, (40)

so Q is invertible. Then, from the identity 0 = F (y∗)− F (x∗) = Q(y∗ − x∗), we conclude that x∗ = y∗.
2

Remark 2.3. Method (2) is not changing if we use the new instead of the old conditions [13]. Moreover,
for the error bounds in practice we can use the computational order of convergence (COC) [14]

ξ =
ln‖xn+2−x∗‖
‖xn+1−x∗‖

ln‖xn+1−x∗‖
‖xn−x∗‖

, for each n = 1, 2, . . .

or the approximate computational order of convergence (ACOC)

ξ∗ =
ln‖xn+2−xn+1‖
‖xn+1−xn‖

ln ‖xn+1−xn‖
‖xn−xn−1‖

, for each n = 0, 1, 2, . . .

instead of the error bounds obtained in Theorem 2.2.

3. Numerical Examples

The numerical examples are presented in this section. We choose

[x, y;F ] =

∫ 1

0
F ′(y + θ(x− y))dθ.

Example 3.1. Let X = R3,Ω = Ū(0, 1), x∗ = (0, 0, 0)T . Define function F on Ω for q = (x, y, z)T by

F (q) = (ex − 1,
e− 1

2
y2 + y, z)T .

Then, the Fréchet-derivative is given by

F ′(q) =

 ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .
Notice that using the (18)-(23) conditions, we get ω0(s, t) = L0

2 (s+t), ω1(s, t) = Ls+L0t
2 , ω2(t) = 1

2e
1
L0 t, ω3(s, t) =

L
2 (s+ t), v0(t) = v(t) = 1

2(1 + e
1
L0 ), r0 = 1

L0
, δ = 1 + 1

2 |γ|(1 + e
1
L0 ), L0 = e− 1 and L = e. The parameters are

r1 = 0.2010, r2 = 0.0830, r3 = 0.0639 = r.

Example 3.2. Let X = C[0, 1],Ω = B̄(x∗, 1) and consider the nonlinear integral equation of the mixed
Hammerstein-type [7, 11] defined by

x(s) =

∫ 1

0
K(s, t)

x(t)2

2
dt,

where the kernel K is the Green’s function defined on the interval [0, 1]× [0, 1] by

K(s, t) =

{
(1− s)t, t ≤ s
s(1− t), s ≤ t.
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The solution x∗(s) = 0 is the same as the solution of equation (1), where F : C[0, 1] −→ C[0, 1]) is defined
by

F (x)(s) = x(s)−
∫ 1

0
K(s, t)

x(t)2

2
dt.

Notice that [5, 7, 8]

‖
∫ 1

0
K(s, t)dt‖ ≤ 1

8
.

Then, we have that

F ′(x)y(s) = y(s)−
∫ 1

0
K(s, t)x(t)dt,

so since F ′(x∗(s)) = I,

‖F ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ 1

8
‖x− y‖.

We can choose ω0(t, s) = ω1(t, s) = ω3(s, t) = t+s
16 , ω2(t) = 1

16 t, v(t) = 9
16 and δ = 1 + |γ| 916 . The parameters

are
r1 = 0.5805, r2 = 0.2623, r3 = 0.1463 = r.
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