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Abstract: The purpose of this paper is to study the circling-point curve and its degenerate cases at the initial position of motion
in Minkowski plane. The first part of the paper is devoted to the determination Bottema’s instantaneous invariants and trajec-
tory of origin with respect to these invariants in Minkowski plane. The intersection points of the circling-point curve and inflection
curve are called Ball points. Here the number and also the geometric location of Ball points in Minkowski plane have been deter-
mined. The fundamental geometric property of a trajectory of each point in a plane is its curvature function κ. Under consideration
κ = κ′ = κ′′ = 0, the existence conditions of Ball points in Minkowski plane have been given.
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1 Introduction

Oene Bottema (1901-1992), Dutch mathematician devised the method of instantaneous invariants in instantaneous kinematics. Various geomet-
ric and kinematic properties of Euclidean planar and spatial motions are introduced with respect to the instantaneous invariants. The concept
of instantaneous invariants is characterizing the trajectory of any point on a moving rigid body with arbitrary degrees [1–3]. In the meantime,
Veldkamp has called the aforementioned invariants as B-invariants [4] and has handled the application of B-invariants to Burmester theory [4–
6]. Burmester theory deals with the formulation of special locus curves as inflection circle, circling point curve, twice circling curve, and their
intersection points as Ball and Burmester point for planar or spatial motions. Although this analytical method is preferred in a great amount of
study of the kinematics, there have been few investigations on non-Euclidean planar kinematics [7, 8].

In consideration of these studies, we investigate the circling-point curve and its degenerate cases of the motion of Minkowski planes and
give the existence conditions of Ball points in Minkowski plane.

2 Preliminaries

The Minkowski plane L is the plane R2 endowed with the Lorentzian scalar product given by 〈u,w〉 = u1w1 − u2w2, where u = (u1, u2)
and w = (w1, w2). The norm of a vector U is defined by ‖u‖ =

√
|〈u, u〉|. Let Lm and Lf be two coincident Minkowski planes, Lm moving

with respect to Lf . The motion can be represented by

X (ϕ) = x coshϕ+ y sinhϕ+ a (ϕ)
Y (ϕ) = x sinhϕ+ y coshϕ+ b (ϕ)

such that Cartesian frames of reference xoy and XOY are located in Lm and Lf , respectively. The position corresponding to ϕ = 0 of Lm

will be named zero-position. The value for zero-position of the nth (n = 0, 1, 2, . . .) derivative of a function f of ϕ with respect to ϕ will be
denoted by fn.

The derivatives an, bn (n = 0, 1, 2, . . .) are known as Bottema’s instantaneous invariants of the motion [2, 3]. It is well-known that the
canonical relative system can be constructed by choose of

a = b = a1 = b1 = a2 = 0 and b2 = −1.

So, the instantaneous invariants ak (k = 3, 4, . . . , n) , bk (k = 2, 3, . . . , n) completely characterize the infinitesimal properties of motion of
Minkowski planes up to the n− th order as

X = x, X1 = y, X2 = x, X3 = y + a3,
Y = y, Y1 = x, Y2 = y − 1, Y3 = x+ b3,

(1)

at the zero-position [7, 8].
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The non-null trajectory of the points satisfying κ = 0 is the inflection circle where X ′ 6= ±Y ′ in the Minkowski plane. Then the equation
of the inflection circle can be obtained from X ′′ : Y ′′ = X ′ : Y ′ since the curvature function is

κ =
X ′Y ′′ −X ′′Y ′∣∣∣(X ′)2 − (Y ′)2

∣∣∣ 32 . (2)

If we substitute the equalities of (1) into (2) at zero position we get the equation of the inflection circle during planar motion of Lm with
respect to Lf as follows

x2 − y2 + y = 0. (3)

where (x, y) 6= (0, 0), x 6= ∓y or y 6= 0 [7, 8].

3 The Trajectory of Origin of Minkowski Plane

The trajectory of the point (0, 0) of the Minkowski plane Lm, which is coincident with the pole, can be given by

X =

∞∑
n=3

an
n!
ϕn, Y =

−1

2
ϕ2 +

∞∑
n=3

bn
n!
ϕn (4)

for sufficiently small values of |ϕ| at the zero-position with respect to canonical relative systems.

Case 1. Let a3 6= 0. If ε is a sufficiently small positive number, then the trajectory described through the time interval [−ε, ε] has a cusp at the
pole of zero-position since lim

ϕ→0
|κ| =∞ and the tangent of the trajectory is pole normal.

Case 2. Let a3 = 0, a4 6= 0. In this case a2b3 − a3b2 = 0 and a2b4 − a4b2 6= 0. So two branches of the trajectory stay at the same side of
the tangent. If ε is a sufficiently small positive number, then the trajectory described through the time interval [−ε, ε] has a ramphoid cusp at
the pole of the zero-position. In this case the curvature is obtained as

κ = a4
3 +

(
5a4b3
12 + a5

8

)
ϕ+

(
−a4 b3

2

8 + a4 b4
6 + 7a5 b3

48 + a6
30

)
ϕ2

+
(
7a4 b5
144 −

a4 b3
2

12 − a4 b3 b4
24 + a5 b4

18 −
a5 b3

2

16 + 3a6 b3
80 + a7

144

)
ϕ3 + ...

The successive curvatures of the trajectory at the pole are

κ0 = a4
3 , (5)

κ1 =
5a4b3

12
+
a5
8
, (6)

κ2 =
−a4b32

4
+
a4b4

3
+

7a5b3
24

+
a6
15
, (7)

κ3 =
7a4b5

24
− a4b3

2

2
− a4b3b4

4
+
a5b4

3
− 3a5b3

2

8
+

9a6b3
40

+
a7
24
.

Case 3. Let a3 = a4 = 0. For sufficiently small values of ε, the trajectory described through the time interval [−ε, ε] has cusp or ramphoid
cusp, provided that the smallest value of n, where an 6= 0, is odd or even, respectively. In this case the curvature is given by

κ = 0 + a5
8 ϕ+

(
7a5b3
48 + a6

30

)
ϕ2 +

(
a5b4
18 −

a5b3
2

16 + 3a6b3
80 + a7

144

)
ϕ3 + ...

that is, the successive curvatures at pole are

κ0 = 0,

κ1 =
a5
8
,

κ2 =
7a5b3

24
+
a6
15
,

κ3 =
a5b4

3
− 3a5b3

2

8
+

9a6b3
40

+
a7
24
.

4 Circling-Point Curve of Motions in Minkowski Plane

Definition 1. The locus of the points with constant non-null trajectory curvature at the zero-position of the Minkowski plane Lm is called
circling-point curve or cubic of stationary curvatures and denoted by cp.
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This means that the locus of the points satisfying κ′ = 0 where
(
X ′
)2 − (Y ′)2 6= 0 is the circling-point curve in Minkowski plane. The

differentiation of the equation (2) is

κ′ =

(
X ′Y ′′′ −X ′′′Y ′

) ((
X ′
)2 − (Y ′)2)− 3

(
X ′Y ′′ −X ′′Y ′

) (
X ′X ′′ − Y ′Y ′′

)
∣∣∣(X ′)2 − (Y ′)2

∣∣∣ 32 .

In this regard, if we consider the equations of (1) and the last equation together, one can prove the following theorem.

Theorem 1. In Minkowski plane the equation of the circling-point curve cp of the original motion Lm
/
Lf is(

x2 − y2
)

(a3x− b3y) + 3x
(
x2 − y2 + y

)
= 0 (8)

where (x, y) 6= (0, 0) or x 6= ∓y.

If we recall the equation (6) for the case of a3 = 0 and a4 6= 0, we can prove the following theorem.

Theorem 2. The trajectory of the points different from the origin is the circling-point curve if and only if is

10a4b3 + 3a5 = 0.

in case of a3 = 0 and a4 6= 0.

The graphics of the circling point curves for special cases in the Minkowski plane are drawn hereinafter and further detailed analysis of the
graphics enables us to compare them with each other.

x

y

Fig. 1: The circling point curve cp for a3 = 2 and b3 = 1.

The circling point curve cp has node point at the pole. At the same time, tangents of the circling point curve cp are pole tangent and pole
normal. Consequently, the cubic curve cp is a strophoid in Minkowski plane. Now let us investigate the degenerate cases of the circling point
curve cp.

i. If a3 6= −3 and b3 = 0 the equation of the circling-point curve cp in Minkowski plane is

x
(

(a3 + 3)
(
x2 − y2

)
+ 3y

)
= 0. (9)

This geometrically means that cp consists of the pole normal and the circle, which is donated by Γ, with the imaginary radius 3i
2(a3+3)

. The

center of Γ is
(

0, 3
2(a3+3)

)
at the pole normal, see Figure 2a.

In addition, if a3 = 0 when b3 = 0, then the equation (9) becomes x2 − y2 + y = 0, that is, the circling point curve cp coincides with the
inflection circle in the case of a3 = 0 and b3 = 0.

ii. If a3 = −3 and b3 6= 0 the equation of the circling-point curve cp in Minkowski plane is

y
(
b3

(
x2 − y2

)
− 3x

)
= 0.

Thus, the circling-point curve cp consists of pole tangent and the circle, which is donated by Γ0, with the real radius 3
2b3

. The center of Γ0

is
(

3
2b3

, 0
)

at the pole tangent, see Figure 2b.
iii. If a3 = −3 and b3 = 0, the equation of the circling-point curve cp is xy = 0. The curve consists of pole tangent and pole normal, see

Figure 2c.
The circles Γ and Γ0 are the circles of curvature of the circling-point curve cp at its node. From here the geometrical interpretation of the

invariants a3 and b3 can be given as in the following theorem.
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x

(a) a3 = 2, b3 = 0

x

(b) a3 = −3, b3 = 1

x

y

(c) a3 = −3, b3 = 0

Fig. 2: The circling-point curves in Minkowski plane

Theorem 3. a3 equals 3/2 times the curvature of that branch of cp that touches the pole tangent and similarly b3 equals 3/2 times the
curvature of that branch of cp that touches the pole normal.

The equation of the real asymptote of the circling-point curve cp is obtained as(
(a3 + 3)2 − b32

)
(b3y − (a3 + 3)x) + 3 (a3 + 3) b3 = 0. (10)

The real asymptotes of the circling-point curve cp drawn in the Figure 1 can be seen in the undermentioned figure.

-4 -2 2 4
x

-4

-2

2

4

y

Fig. 3: The real asymptotes of the circling point curve cp for a3 = 2 and b3 = 1.

Furthermore, we can obtain a parametric representation of and irreducible curve cp by putting y = ux. This parametric equation is

x =
3u

(u2 − 1) (−b3u+ a3 + 3)
, y =

3u2

(u2 − 1) (−b3u+ a3 + 3)
. (11)

If we substitute the equation (11) into the equation (10) we find parameter-value u =
(a3+3)

b3
. This parameter-value corresponds to the point of

intersection of cp with its asymptote.
In the case of a3 6= −3 and b3 = 0, the equation (11) takes the form

x =
3u

(u2 − 1) (a3 + 3)
, y =

3u2

(u2 − 1) (a3 + 3)
,

which is the parametric representation of the circle Γ.
In a similar vein, if a3 = −3 and b3 6= 0, under consideration the equation (11)the parametric representation of Γ0 is given by

x =
3

b3 (1− u2)
, y =

3u

b3 (1− u2)
.
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5 Ball Points in Minkowski Plane

Definition 2. The intersection points of the circling-point curve and inflection curve are called Ball points and denoted by Bl points.

From this definition and the equations (3) and (8) the coordinates of a Bl point in Minkowski Plane is found as(
a3b3
a23 − b23

,
a23

a23 − b23

)
. (12)

The pole is not a Bl point if a3 6= 0. Therefore we may draw the conclusion that in the case of a3 6= 0 and a3 6= ±b3 there is only one point
in the zero position given by (12).

From the equation (12), if a3 = 0, b3 6= 0 we cannot directly say that the origin is Bl point. Therefore in the case of a3 = 0, b3 6= 0, if
a4 = a5 = 0 we know that κ0 = κ1 = 0 is satisfied from the equations (5) and (6). From here if a3 = a4 = a5 = 0 the origin is Bl point.
Providing that a3 = 0, b3 6= 0, there is no Bl point if and only if a4 6= 0 or a5 6= 0 (because of κ0 6= 0 or κ1 6= 0 ). Finally, we can say that
there is no Bl point if a3 = 0, b3 6= 0, a24 + a25 6= 0. On the other hand if a3 = b3 = 0 the circling point curve splits up into the inflection
circle and the pole normal. In the case of a24 + a25 6= 0 any point on the inflection circle with the possible exception of the origin is a Bl point
of the zero position, the origin being a Bl point too, if a4 = a5 = 0 at the same time.

The aforementioned analysis of Bl points in Minkowski plane is outlined in the following table.

Conditions Bl point(s)

a3 6= 0, a3 6= ±b3
(

a3b3
a2
3−b23

,
a2
3

a2
3−b23

)
a3 = a4 = a5 = 0, b3 6= 0 the origin
a3 = 0, b3 6= 0, a24 + a25 6= 0 none
a3 = b3 = 0, a24 + a25 6= 0 the points on the inflection circle

with the exception of the origin
a3 = a4 = a5 = b3 = 0 all points of the inflection circle

As a consequence, if a3 6= 0 and a3 6= ±b3 the Bl point of the zero position is in the parametric representation (11) of cp indicated by the
parameter value u = a3/b3.

6 Ball Points with Excess in Minkowski Plane

Definition 3. If we have for a Ball point of a given position

κ = κ′ = ... = κ(r+1) = 0, κ(r+2) 6= 0

this point is called a Ball point with excess r and denoted by Blr point.
In the case of a3 6= 0, the zero position has a Bl point. Under this consideration the following theorem can be given.

Theorem 4. In the case a3 6= 0, the Bl point is a Bl1 point if and only if

a4b3 − a3b4 = a3.

Proof: From the equation (2), κ = κ′ = κ′′ = 0 if and only if X1Y4 −X4Y1 = 0. If we substitute the equation (1) into X1Y4 −X4Y1 = 0
we get

x2 − y2 + a4x− b4y = 0.

If the Bl1 point has the coordinates (x0, y0) this last equation takes form of

x20 − y20 + a4x0 − b4y0 = 0. (13)

In virtue of Bl1 point is also on the inflection circle, the common solution of x20 − y20 + y0 = 0 and the equation (4) gives us

a4x0 + (−b4 − 1) y0 = 0. (14)

Substituting the equation (12) into the equation (14) completes the proof. �

This relation represents a necessary and sufficient condition for the Bl point of the zero position to be a Bl1 point for the case of a3 6= 0.
In the zero position if a3 = a4 = a5 = 0, b3 6= 0 the origin is the only Bl point. From the equation (7) this point is a Bl1 point if and only
if a6 = 0. In the case of a3 = b3 = 0, a24 + a25 6= 0 any point of the inflection circle with the exception of the origin is a Bl point of the zero
position. From the equation (13) and the equation (14) it follows that all these points are Bl1 points if and only if a4 = 0, b4 = −1 whereas in
the case a4 6= 0 the only Bl1 point of the zero position is given by:(

(b4 + 1) a4

a42 − (b4 + 1)2
,

a4
2

a42 − (b4 + 1)2

)
.

In the case a3 = a4 = a5 = b3 = 0 any point of the inflection circle is a Bl point of the zero point.
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If b4 = −1 at the same time, all these points with exception of the origin are Bl1 points, the origin being in this case is a Bl1 point if
moreover a6 = 0. If, however, b4 6= −1 there is no Bl1 point unless a6 = 0 in which case the origin is the only Bl1 point of the zero position.
From here, we give conditions of being a Bl1 point in Minkowski plane in the following table.

Condition(s) Bl1 point(s)

a3 = a4b3 − a3b4 6= 0, a3 6= ±b3
(

a3b3
a2
3−b23

,
a2
3

a2
3−b23

)
a3 = b3 = 0, a4 6= 0

(
a4(b4+1)

a2
4−(b4+1)2

,
a2
4

a2
4−(b4+1)2

)
a3 = a4 = a5 = a6 = 0,

a24 − (b4 + 1)2 6= 0
Origin
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