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1 Introduction

By ω, we denote the space of all real sequences. Any subset of ω is called a sequence space. Let Ψ, `∞, c and c0 denote the sets of all finite,
bounded, convergent and null sequences, respectively and `p = {u = (un) ∈ ω :

∑
n |un|

p <∞} for 1 ≤ p <∞. Throughout the study, we
assume that p, q ≥ 1 and 1

p + 1
q = 1.

A B-space is a complete normed space. A topological sequence space in which all coordinate functionals πk, πk(u) = uk, are continuous
is called a K-space. A BK-space is defined as a K-space which is also a B-space, that is, a BK-space is a Banach space with continuous
coordinates. A BK-space λ ⊃ ψ is said to have AK if every sequence u = (uk) ∈ λ has a unique representation u =

∑
k uke

(k), where e(k)

is the sequence whose only non-zero term is 1 in the nth place for each k ∈ N. For example, the space `p (1 ≤ p <∞) is a BK-space with the
norm ‖u‖p = (

∑
k |uk|

p)1/p and c0 and `∞ is a BK-space with the norm ‖u‖∞ = supk |uk|. Also, the BK-spaces c0 and `p have AK but c
and `∞ do not have AK.

The β-dual of a sequence space λ is defined by

λβ = {z = (zk) ∈ ω : zu = (zkuk) ∈ cs for all u = (uk) ∈ λ}.

Let A be the sequence of nth row of an infinite matrix A = (ank) with real numbers ank for each n ∈ N. For a sequence u = (uk) ∈ ω,
the A-transform of u is the sequence Au = (An(u)), where

An(u) =

∞∑
n=0

ankuk

provided that the series is convergent for each n ∈ N.
(λ, µ) stands for the class of all infinite matrices from a sequence space λ into another sequence space µ. Hence, A ∈ (λ, µ) if and only if

An ∈ λβ for all n ∈ N.
Let λ be a normed space and Sλ be the unit sphere in λ. For a BK-space λ ⊃ ψ and z = (zk) ∈ ω, we use the notation

‖z‖∗λ = sup
u∈Sλ

∣∣∣∣∣∑
k

zkuk

∣∣∣∣∣
under the assumption that the supremum is finite. In this case observe that z ∈ λβ .

Lemma 1. [1, Theorem 1.29] `β1 = `∞, `βp = `q and `β∞ = `1, where 1 < p <∞. If λ ∈ {`1, `p, `∞}, then ‖z‖∗λ = ‖z‖λβ holds for all
z ∈ λβ , where ‖.‖λβ is the natural norm on λβ .

By B(λ, µ), we denote the set of all bounded (continuous) linear operators from λ to µ.

Lemma 2. [1, Theorem 1.23 (a)] Let λ and µ be BK-spaces. Then, for every A ∈ (λ, µ), there exists a linear operator LA ∈ B(λ, µ) such
that LA(u) = Au for all u ∈ λ.
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Lemma 3. [1] Let λ ⊃ ψ be a BK-space and µ ∈ {c0, c, `∞}. If A ∈ (λ, µ), then

‖LA‖ = ‖A‖(λ,µ) = sup
n
‖An‖∗λ <∞.

The Hausdorff measure of noncompactness of a bounded set Q in a metric space λ is defined by

χ(Q) = inf{ε > 0 : Q ⊂ ∪ni=1B(xi, ri), xi ∈ λ, ri < ε, n ∈ N},

where B(xi, ri) is the open ball centered at xi and radius ε for each i = 1, 2, ..., n.
The following theorem is useful to compute the Hausdorff measure of non-compactness in `p for 1 ≤ p <∞.

Theorem 1. [2] Let Q be a bounded subset in `p for 1 ≤ p <∞ and Pr : `p → `p be the operator defined by Pr(u) =
(u0, u1, u2, ..., ur, 0, 0, ...) for all u = (uk) ∈ `p and each r ∈ N. Then, we have

χ(Q) = lim
r

(
sup
u∈Q
‖(I − Pr)(u)‖`p

)
,

where I is the identity operator on `p.

Let λ and µ be Banach spaces. Then, a linear operator L : λ→ µ is is said to be compact if the domain of L is all of λ and L(Q) is a totally
bounded subset of µ for every bounded subset Q in λ. Equivalently, we say that L is compact if its domain is all of λ and for every bounded
sequence u = (un) in λ, the sequence (L(un)) has a convergent subsequence in µ.

The idea of compact operators between Banach spaces is closely related to the Hausdorff measure of non-compactness. For L ∈ B(λ, µ),
the Hausdorff measure of non-compactness of L denoted by ‖L‖χ is given by

‖L‖χ = χ(L(Sλ))

and we have
L is compact if and only if ‖L‖χ = 0.

Several authors have studied compact operators on the sequence spaces and given very important results related to the Hausdorff measure of
non-compactness of a linear operator. For example [3]-[9].

The main purpose of this study is to obtain necessary and sufficient conditions for some matrix operators to be compact. For this purpose,
we use the Banach spaces `p(T ) and `∞(T ) introduced in [10] as

`p(T ) =

{
u = (un) ∈ ω :

∑
n

∣∣∣∣tnun − 1

tn
un−1

∣∣∣∣p <∞
}

(1 ≤ p <∞)

and

`∞(T ) =

{
u = (un) ∈ ω : sup

n

∣∣∣∣tnun − 1

tn
un−1

∣∣∣∣ <∞} .
Here, the difference matrix matrix T = (tnk) is defined by

tnk =


tn , k = n
− 1
tn

, k = n− 1
0 , k > n or 0 ≤ k < n− 1,

where tn > 0 for all n ∈ N and t = (tn) ∈ c\c0.
Note that we use the sequence v = (vn) for the T -transform of a sequence u = (un), that is,

vn = Tn(u) =

{
t0u0 , n = 0

tnun − 1
tn
un−1 , n ≥ 1

(n ∈ N).

2 Compact Operators on the Spaces `p(T ) and `∞(T )

For a sequence a = (ak) ∈ ω, we define a sequence ã = (ãk) as ãk =
∑∞
j=k tk

∏j
i=k

1
t2i
aj for all k ∈ N.

We need the following results in the sequel.

Lemma 4. Let a = (ak) ∈ (`p(T ))β , where 1 ≤ p ≤ ∞. Then ã = (ãk) ∈ `q and∑
k

akuk =
∑
k

ãkvk (1)

for all u = (uk) ∈ `p(T ).

Lemma 5. The following statements hold.

12 c© CPOST 2018



(a) ‖a‖∗`1(T ) = supk |ãk| <∞ for all a = (ak) ∈ (`1(T ))β .

(b) ‖a‖∗`p(T ) =
(∑

k |ãk|
q)1/q <∞ for all a = (ak) ∈ (`p(T ))β , where 1 ≤ p ≤ ∞.

(c) ‖a‖∗`∞(T ) =
∑
k |ãk| <∞ for all a = (ak) ∈ (`∞(T ))β .

Proof: We only prove part (a) and the others can be proved analogously. Choose a = (ak) ∈ (`1(T ))β . Then, by Lemma 4, we have ã =
(ãk) ∈ `∞ and (1) holds. Since ‖u‖`1(T ) = ‖v‖`1 holds, we obtain that u ∈ S`1(T ) if and only if v ∈ S`1 . Hence, we deduce that ‖a‖∗`1(T ) =

supu∈S`1(T )
|
∑
k akuk| = supv∈S`1

|
∑
k ãkvk| = ‖ã‖

∗
`1

. From Lemma 1, it follows that ‖a‖∗`1(T ) = ‖ã‖∗`1 = ‖ã‖`∞ = supk |ãk|. �

Throughout this section, we use the matrix Ã = (ãnk) defined by an infinite matrix A = (ank) via

ãnk =

∞∑
j=k

tk

j∏
i=k

1

t2i
anj

for all n, k ∈ N under the assumption that the series is convergent.

Lemma 6. Let λ be a sequence space. If A ∈ (`p(T ), λ), then Ã ∈ (`p, λ) and Au = Ãv for all u ∈ `p(T ), where 1 ≤ p ≤ ∞.

Lemma 7. If A ∈ (`1(T ), `p), then we have

‖LA‖ = ‖A‖(`1(T ),`p) = sup
k

(∑
n

|ãnk|p
)1/p

<∞,

where 1 ≤ p ≤ ∞.

Lemma 8. [11, Theorem 3.7] Let λ ⊃ ψ be a BK-space. Then, the following statements hold.
(a) A ∈ (λ, `∞), then 0 ≤ ‖LA‖χ ≤ lim supn ‖An‖∗λ.
(b) A ∈ (λ, c0), then ‖AS‖χ ≤ lim supn ‖An‖∗λ.
(c) If λ has AK or λ = `∞ and A ∈ (λ, c), then

1

2
lim sup

n
‖An − α‖∗λ ≤ ‖LA‖χ ≤ lim sup

n
‖An − α‖∗λ,

where α = (αk) and αk = limn ank for all k ∈ N.

Theorem 2.

1. For A ∈ (`1(T ), `∞),

0 ≤ ‖LA‖χ ≤ lim sup
n

(
sup
k
|ãnk|

)
holds.
2. For A ∈ (`1(T ), c),

1

2
lim sup

n

(
sup
k
|ãnk − α̃k|

)
≤ ‖LA‖χ ≤ lim sup

n

(
sup
k
|ãnk − α̃k|

)
holds.
3. For A ∈ (`1(T ), c0),

‖LA‖χ = lim sup
n

(
sup
k
|ãnk|

)
holds.
4. For A ∈ (`1(T ), `1),

‖LA‖χ = lim
m

(
sup
k

∞∑
n=m

|ãnk|

)
holds.

Corollary 1.

1. LA is compact for A ∈ (`1(T ), `∞) if

lim
n

(
sup
k
|ãnk|

)
= 0.

2. LA is compact for A ∈ (`1(T ), c), if and only if

lim
n

(
sup
k
|ãnk − α̃k|

)
= 0.
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3. LA is compact for A ∈ (`1(T ), c0) if and only if

lim
n

(
sup
k
|ãnk|

)
= 0.

4. LA is compact for A ∈ (`1(T ), `1) if and only if

lim
m

(
sup
k

∞∑
n=m

|ãnk|

)
= 0.

Lemma 9. Let λ ⊃ ψ be a BK-space. If A ∈ (λ, `1), then

lim
r

 sup
N∈Kr

∥∥∥∥∥∥
∑
n∈N

An

∥∥∥∥∥∥
∗

λ

 ≤ ‖LA‖χ ≤ 4 lim
r

 sup
N∈Kr

∥∥∥∥∥∥
∑
n∈N

An

∥∥∥∥∥∥
∗

λ


and LA is compact if and only if limr

(
supN∈Kr ‖

∑
n∈N An‖

∗
λ

)
= 0, where Kr is the subcollection of K consisting of subsets of N with

elements that are greater than r.

Theorem 3. Let 1 < p <∞.

1. For A ∈ (`p(T ), `∞),

0 ≤ ‖LA‖χ ≤ lim sup
n

(∑
k

|ãnk|q
)1/q

holds.
2. For A ∈ (`p(T ), c),

1

2
lim sup

n

(∑
k

|ãnk − α̃k|q
)1/q

≤ ‖LA‖χ ≤ lim sup
n

(∑
k

|ãnk − α̃k|q
)1/q

holds.
3. For A ∈ (`p(T ), c0),

‖LA‖χ = lim sup
n

(∑
k

|ãnk|q
)1/q

holds.
4. For A ∈ (`p(T ), `1),

lim
m
‖A‖(m)

(`p(T ),`1)
≤ ‖LA‖χ ≤ 4 lim

m
‖A‖(m)

(`p(T ),`1)

holds, where ‖A‖(m)
(`p(T ),`1)

= supN∈Km
(∑

k |
∑
n∈N ãnk|q

)1/q .

Corollary 2. Let 1 < p <∞.

1. LA is compact for A ∈ (`p(T ), `∞) if

lim
n

(∑
k

|ãnk|q
)1/q

= 0.

2. LA is compact for A ∈ (`p(T ), c) if and only if

lim
n

(∑
k

|ãnk − α̃k|q
)1/q

= 0.

3. LA is compact for A ∈ (`p(T ), c0) if and only if

lim
n

(∑
k

|ãnk|q
)1/q

= 0.

4. LA is compact for A ∈ (`p(T ), `1) if and only if

lim
m
‖A‖(m)

(`p(T ),`1)
= 0,

where ‖A‖(m)
(`p(T ),`1)

= supN∈Km
(∑

k |
∑
n∈N ãnk|q

)1/q .

Theorem 4.
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1. For A ∈ (`∞(T ), `∞),

0 ≤ ‖LA‖χ ≤ lim sup
n

∑
k

|ãnk|

holds.
2. For A ∈ (`∞(T ), c),

1

2
lim sup

n

∑
k

|ãnk − α̃k| ≤ ‖LA‖χ ≤ lim sup
n

∑
k

|ãnk − α̃k|

holds.
3. For A ∈ (`∞(T ), c0),

‖LA‖χ = lim sup
n

∑
k

|ãnk|

holds.

Corollary 3.

1. LA is compact for A ∈ (`∞(T ), `∞) if

lim
n

∑
k

|ãnk| = 0.

2. LA is compact for A ∈ (`∞(T ), c), if and only if

lim
n

∑
k

|ãnk − α̃k| = 0.

3. LA is compact for A ∈ (`∞(T ), c0) if and only if

lim
n

∑
k

|ãnk| = 0.
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