Pamukkale Univ Muh Bilim Derg, 24(6), 960-966, 2018

Pamukkale Universitesi Miihendislik Bilimleri Dergisi

The effect of curvature on transient analysis of laminated composite
cylindrical shells on elastic foundation

Elastik zemin iizerine oturan tabakali1 kompozit silindirik kabuklarin
zorlanmis titresim analizi iizerine egriligin etkisi

Ali DOGAN?*

1Department of Civil Engineering, Faculty of Engineering and Natural Sciences, Iskenderun Technical University, Hatay, Turkey.
ali.dogan@iste.edu.tr

Received/Gelis Tarihi: 18.07.2017, Accepted/Kabul Tarihi: 16.10.2017

* Corresponding author/Yazisilan Yazar

doi: 10.5505/pajes.2017.60476
Research Article/Arastirma Makalesi

Abstract

This study presents the effect of curvature ratio on transient vibration
analysis of simply supported antisymmetric thick cross-ply laminated
composite shells (LCS) on elastic foundation. In the analysis, the
foundation is modeled with two parameters. These models are
Pasternak and Winkler models. The equation of motion for laminated
rectangular shells resting on elastic foundation is obtained through
Hamilton’s principle. The analysis is achieved in Laplace domain. By
using modified Durbin’s algorithm, calculations are transformed from
Laplace domain to the time domain. The numerical results are

presented in the form of graphics.

Keywords: Laminated composite, Transient vibration, Curvature
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0z

Bu ¢alismada, elastik zemin lizerine oturan basit mesnetli antisimetrik
capraz-kath dizilimli tabakali kompozit silindirik kalin kabuklarin
(LCS), zorlanmis titresim analizi lizerine egrilik oraninin etkisi
sunulmaktadir. Bu analizlerde, zemin iki parametre ile modellendi. Bu
modeller Pasternak ve Winkler modelleridir. Hamilton prensipleri ile
elastik zemin lizerindeki tabakali kompozit dikdértgen kabuklarin
hareket denklemleri elde edilmistir. Analizler, Laplace alaninda elde
edilmistir. Modifiye Durbin yéntemi ile ¢6ziimler Laplace alanindan
zaman alanina dontistirtlmistir. Sayisal sonuglar grafikler seklinde
sunulmustur.

Anahtar kelimeler: Tabakali kompozit, Zorlanmis titresim, Egrilik
etkisi, Elastik zemin, Kayma deformasyon kabuk teorisi

1 Introduction

Recently, due to the many paramount properties advanced
composite materials such as laminated shells are found an
application area in the engineering projects. Tremendous
researches have been performed on the LCS to clarify the
advantages of using these types of materials. One of the focused
topics in research subject is the transient vibration analysis of
composite shells on elastic foundation.

In this paper, effect of curvature ratio and Winkler-Pasternak
soil parameters on transient vibrations of anti-symmetrically
cross-ply LCS on elastic foundation are analyzed (Figure 1). The
equation of motion for laminated rectangular shells resting on
elastic foundation is obtained through Hamilton’s principle.
The closed form solutions are obtained by using Navier
technique. The analysis is achieved in Laplace domain. By using
modified Durbin’s algorithm [1], calculations are transformed
to Laplace domain to the time domain.

Reissner theory [2] is one of the theories which include the
shear deformation effect and many researchers have studied on
the dynamic analysis of LCP by using Reissner theory. Many
researchers have studies the free vibration of laminated
composite shells [3]-[5],[7]. Dogan and Arslan [6] investigated
the effect of dimension on mode-shapes of composite shells.
Sofiyev [8] studied the buckling of a cross-ply laminated non-
homogeneous orthotropic composite cylindrical thin shell
under time dependent external pressure.

Qatu [9] and Reddy [10] used energy function to develop
governing equations of LCS and presented studies including the
effect of shear deformation for composite shells. Toh, Gong and
Shim [11] investigated the transient stresses generated by low
velocity impact on orthotropic laminated cylindrical shells.
Temel and Sahan [12] studied on the Transient analysis of
orthotropic viscoelastic thick plates. Hui-Shen et al. [13]
investigated dynamic behaviour of LCP on elastic foundation
under thermomechanical loading. Pasternak [14] presented
new method calculation for flexible substructures and modeled
the foundation with two parameters. Akavci et al. [15]
examined dynamic behavior of LCP on elastic foundation by
using First-order Shear Deformation Theory (FSDT). Civalek
[16] studied nonlinear dynamic response of laminated plates
resting on nonlinear elastic foundations by the discrete singular
convolution-differential quadrature coupled approaches.

2 Materials and Methods

A lamina is produced with the isotropic homogenous fibers and
matrix materials. Any point on a fiber and/or on matrix and/or
on matrix-fiber interface has crucial effect on the stiffness of the
lamina (Figure 2-3). Due to the big variation on the properties
of lamina from point to point, macro-mechanical properties.of
lamina are determined based on the statistical approach.
According to FSDT, the transverse normal do not remain
perpendicular to the mid-surface after deformation. It will be
assumed that the deformation of the plates and shells is
completely determined by the displacement of its middle
surface.
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Figure 1: Laminated composite plate on elastic foundation.

Figure 2: Laminated composite cylindrical shell [17].

Fiber material Matrix material

Figure 3: Fiber and matrix materials in laminated composite
shell.

Stress-strain equations for nth layer of laminated shell can be
expressed in the lamina coordinates as follow,
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The displacement based on shell theory can be written as

u(a, B, 2)=u, (0, B)+z @y (1, B)
v(a, B, 2)=v, (@, B)+zpy (o, B) (2)
w(a, B,2)=w, (o, B)
Where u, v, w, @ and g are displacements and rotations in a,

B, z direction, orderly. uo, vo and wo are mid-plane
displacements.
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Potential energy can define as
n=uv-w 5)
and Lagrangian funtion is
L=T-1 (6)

Lagrangian function is set to zero and the Hamilton principle is
applied to the Lagrange equation. Hamilton’s principle can be
used to find equation of motion for shell structures.

ty

5f(T+W—(U+UF)dt=0 7

ty

where T is the kinetic energy of the structure

P e o
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in which qq, qg, gz mq, mg are the external forces and moments,
respectively. U is the strain energy and UF is the spring strain Where,
energy defined as, -
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Where ko is the Winkler foundation parameter and ki is the Dij=Dij+c,E
Pasternak foundation parameter. Solving equation 2 gives set 212456
of equations called equations of motion for shell structures. L= L4,
This gives equation 12 in simplified form as, N
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Equation 12 is defined as equation of motion for thick shell. N
Here, A and B equal zero. The force and moment resultants are 1 (k)
q Dij=§z KiQii (i = hy—tr®)
Ny T k=1
Ng j=4,5
Nag . L
N k is Nth layer of the shell per unit midsurface area. Where the
1\5'1 parameter Ki and K; is the shear correction factor. Here, K is
M"‘ taken as 5/6. Co value and mass moment inertia terms are
B
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midsurface area. The Navier type solution might be
implemented to thick and thin shells. This type solution
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assumes that the displacement section of the shells can be
denoted as sine and cosine trigonometric functions.

Assume a shell with shear diaphragm boundaries on all edges.
For simply supported thick shells, boundary conditions can be
arranged as follows:

No=w =v, = M"‘:q’B =0

o a=0,a

(21)
Nﬁ=w0=u0 = Mﬁ=l|.la =0 a=0,b

The displacement functions of satisfied the boundary
conditions apply;
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Pp(apt)= i i Wi sin(ap @) cos(B,f) sin(wmnt)
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where am=mtt/a, fn=nm/b.

Substituting the above equations into the equation of motion in
matrix form,
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Ypmn (23)
K11 Kz Kiz Ko Kis][ Umn —Fy
K1 Kaz Kz Ky Kos|| Vinn _PB
+1K31 Kszz Ksz Kss Kss|| Won [ =[P,
Ky Kio Ky Kyy Kys Yamn mey

Ks1 Ksz Ksz3 Ky Kssll$pmn mg
Equation 23 can be arranged in a closed form as follows:
[an]{bmn}"'[Kmn]{Dmn}z{P} (24)

where [Mmn], [Kmn], {P} and {Dmn} are mass and stiffness
matrices, load and unknown displacement vectors,
respectively. By taking the Laplace transform with respect to
time, the above complex equation can be reduced as linear
relationship in Laplace domain as follows:

[ZZ [an]+[Kmn]]{5mn}={ﬁ} (25)

where () denotes parameters in Laplace domain and z is the

Laplace parameter. Initial conditions for the displacement and
velocity vectors are taken be zero. As a special application for
the current study, vibration analysis might be performed by
simply eliminating the loads and substituting the Laplace

“_n

parameter “z” with “iw”. Therefore, eigenvalues can present us

the natural frequencies. The calculations are transformed from
Laplace domain to time domain using the Durbin’s algorithm.

Differential equations can be solved with the help of the
numerical operation method which is Laplace transformation
method. In this approach it is possible to remove the time
parameter by wusing Laplace transformation. Non-time
dependent differential equations can easily be solved with
numerical methods. The solutions obtained in the Laplace
space can be transformed into time space using Durbin's
modified using inverse Laplace transform technique.

3 Numerical solutions and discussions

In current research, forced vibration analyses of symmetric and
anti-symmetric LCS on elastic foundation are investigated.
Navier solution procedure for dynamic response of LCS is
obtained. The computer programs have been prepared using
Mathematica [18] program separately for the solution of the
dynamic response of LCS on elastic foundation.

In this part, different numerical problems are given about
dynamic analysis of LCS. Firstly, prepared computer program
was validated and this problem is investigated under an
impulsive load. The effects of the R/a ratios and foundation
parameters on dynamic response are also investigated.

In the analysis, following parameters are studied for Winkler
and Pasternak foundation as;

K0a4 K1a2
ko= N kg = NE (26)
As a first example, a simply supported anti-symmetric [0°/90°]
laminated composite plate subjected to uniformly distributed
step impulsive load is considered (Figure 4). The results
obtained have been compared in Figure 5. In numerical
calculations for forced vibration of LCP, the material and
geometrical properties are defined as: a=1m, a/b =1, a/h =10,
p =2000 kg/m3, E1 = 25x103 MPa, E1/E2=25, G12/E2 = G13/Ez2 =
0.5, Gz23/E2 = 0.2, v = 0.25. A uniformly distributed step
impulsive load, qo= 1000 N/m?, is applied on the plate. Laplace
transform parameter (N=512) and time increment value of
(dt=0.00064) have been used.

q(t) 4
Jo

* {(s.)
Step Load

Figure 4: Dynamic load.
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Figure 5: Vertical displacement versus time for [0/90].

It can be seen from Figure 5 that the results between current
study and other studies for the vertical displacement values are
very close to each other.
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In second example, the material and geometrical properties are
defined as:a=1m, a/b =1;a/h = 10; R/a=c0 (plate), 10, 1, 0.5,
0.382(cylinder), p = 2000 kg/m3, E1 = 25x103 MPa, E1/E2 =25,
G12/E2 = Gi3/Ez2 = 0.6, G23/E2 = 0.5, v = 0.25. The number of
terms that taken into account in the m and n cycle is seven (i.e.
m=7 and n=7).

A uniformly distributed step impulsive load, qo= 2000 N/m?, is
applied on the shell. The influences of R/a and foundation
parameters on the forced vibration of the anti-symmetrically
LCS under time-dependent load are investigated. In this part,
Laplace transform parameter (N=512) and time increment
value of (dt=0.0001) have been used.

Forced vibration analysis for anti-symmetrically thick LCS on
elastic foundation under time-dependent load with different
values of R/a and foundation parameters when the E1/Ez is

0/90/0/90 a/b=1, a/h=10, E1/E2=25, R/a==

Displacement (m)

-1.50E-06
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ispl

D

0/90/0/90 a/b=1, a/h=10, E1/E2=25, R/a=0.318 (cylinder)

kept constant at 25 are given in Figs. 6-7. It might be observed
in figures that rises in foundation parameters cause to a
decrease on the displacement and stress amplitude for anti-
symmetrically laminated thick shells on elastic foundation.
Also, decrease of R/a ratio disappeared the effect of Winkler
parameter on the displacement amplitude. When the vertical
displacement values corresponding to the maximum points on
the curves are compared to each other, it can be seen from
Figure 5 that the vertical displacements values on maximum
points of curves decrease when the foundation parameters
change from (ko=0, ki=0) to (ko=100, ki=0). The curve
decreases a little more when the foundation parameters change
from (ko=0, k1=0) to (ko=100, k1=10). Influence of Pasternak
parameter on dynamic response is more prominent than
Winkler parameter for the anti-symmetric laminated scheme.
—a/b=10, kO=0,k1

=0
= a/h=10, kO=100,k1=0
-a/h=10, KO=100,k1=1

—a/b=10,
- - a/h=10,
-——-a/h=10,

0.03 0.04 0.05
Time (s)

—a/b=10, kO=0,k1=0
- - a/h=10, KO=100,k1=0
===-a/h=10, kO=100,k1=10

0.04

—a/b=10, kO=0,k1=0
- - a/h=10, kO=100,k1=0
----a/h=10, kO=100,k1=10

Time (s) 0.03 0.04

—a/b=10, k0=0,k1=0
- - a/h=10, kO=100,k1=0
--—-a/h=10, kO=100.k1=10

Time (s)

Figure 6: Effect of curvature on vertical displacement values of anti-symmetric [0/90/0/90] laminated composite shells on elastic
foundation.
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Figure 7: Effect of curvature on stress values of anti-symmetric [0/90/0/90] laminated composite shells on elastic foundation.

4 Results

In this study, forced vibration analyses of anti-symmetrically
cross-ply laminated composite shells based on elastic
foundation are investigated. The most important observations
and results are summarized as follows:

Curvature ratio (R/a) is an effective parameter on the
foundation stiffness, increase of R/a ratios increased the
displacement and stress values.

For the cross-ply laminated composite shells, increase of
foundation parameters (ko and k1) decreased the displacement
and stresses values.

Results also showed that ki1 is more effective than that of the ko.

Not only the Winkler parameter is sufficient in the in the
evaluation of the laminated shells on elastic foundation, but
also Pasternak parameter have to taken into account.
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