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Abstract: In a lube base oil production, the feed heavy neutral distillate is originated from the fractionation 

of various crude oil blends. Because the changing feed properties affect both yield and quality of raffinate, 
the plant operating conditions need to be tuned accordingly. In this study, a predictive model for an existing 
industrial-scale extraction process dedicated to group-I production is constructed to determine the right 
operating parameters in advance, which minimizes off-spec production due to faster adaption of operation to 
a new feedstock. It is developed via the use of the phase equilibrium data published for heavy neutral 
distillate + Furfural system, laboratory measurements of physical properties and composition of distillate as 

well as the existing plant data. The accuracy of the corresponding process model is increased via determining 
stage efficiency from an empirical equation based on only selected operating conditions, namely solvent 

temperature and solvent-to-distillate ratio. 

 

Keywords: Lube base oil; Aromatic extraction; Furfural; Stage efficiency; Multistage column model 
 
Submitted: May 15, 2018. Accepted: November 18, 2018.  
 
Cite this: Yurdakul A, Kıran S, Sağlam O, Odabaş H, Avcı B. Determining Stage Efficiency from Operating 
Conditions for the Liquid-Liquid Extraction Column Model Dedicated to Heavy Neutral Distillate – Aromatic 
Extraction Process of a Group-I Lube Base Oil Plant. JOTCSB. 2018;2(1):13–36. 

 
*Corresponding author. E-mail: ahmetozguryur@yahoo.com.  
 
INTRODUCTION 
 
In the refining sector, different types of crude oils 

are blended and used as feed for their getting 

distilled, cracked, reformed and/or extracted into 
white products. On the other hand, the process 
units at a refinery are designed for a limited 
number of crude options. This sometimes causes 
asset loss due to capacity limitation or extended 
transient time for adapting the operation towards 

handling the crude mix to which the existing unit 
is unfamiliar. To eliminate, or at least, minimize 
the losses, it is important to have more 
information about the feed properties, and tools to 
predict the future response of the existing unit to 

the corresponding feed. 
 
The Lube Base Oil (LBO) refinery units dedicated 

to Group-I production are based on Aromatic 

Extraction Process to alter the LBO Viscosity Index 
(VI) to the desired level. The essential information 
about the feed is aromatic content. The VI 
improvement is directly related to how much of 
this content is extracted from the oil via the use of 
a suitable solvent (S). This process is performed in 

an extraction column. 
 
For a predictive model of column operation, the 
mathematical formulation of corresponding liquid-
liquid extraction process is needed. In literature, 
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there is already available information on that, 
more specifically, the binary interaction 

parameters of the selected thermodynamic model 
equations (1–6). In the case that an equilibrium-
based model is used, the stage efficiency (Ɛ) 

information is required beside the phase 
equilibrium data, in order to represent the non-
ideal stage behavior of a real column. 
 
There are numerous studies assigning certain 
values for Ɛ within the simulation process (7–10). 

In fact, it depends on certain parameters such as 
physico-chemical properties of corresponding 
liquid-liquid system, operating conditions such as 
temperature, pressure, flow rates, and mechanical 
design of column internals (11). Their effects on Ɛ 

are examined at some degree (12, 13), and it is 
reported that it is difficult to estimate Ɛ from these 

variables due to the complexity of the extraction 
process (14). 
 
In this study, a novel and practical way of 
determining Ɛ from only certain operating 

variables is defined. A predictive process model 
using the Ɛ value calculated from these operational 

data is constructed for an existing aromatic 
extraction column operation. It is supported by the 
test-runs at which the existing plant operational 
data, as well as the feed/product quality 
information, are made available so that it becomes 
possible to fit an empirical equation based on only 

operating variables. It is used for estimating the 
product yield and quality against changing feed 

properties.  The feed scope is kept to be Heavy 
Neutral Distillate (HND) for this model. The 
existing extraction column is simulated via use of 
Aspen Hysys. This Aspen model is supplemented 
with statistical models derived from the plant data 

and laboratory measurements. In this approach, 
data-driven models are integrated into first-
principle ones, which can provide higher accuracy 
of performance prediction for a LBO extractive 
process. 
 

MATERIALS AND EXPERIMENTAL METHODS 
 
Bulk physical property and compositional 
measurements are performed for the distillate (D) 
samples prepared at the laboratory environment. 

Additional measurements are made for the 
selected physical properties of the distillate, 

raffinate (R) and extract (E) samples taken at the 
predetermined operational times during test-runs. 
The experimental procedures for all sample 
preparations and measurements are explained in 
this section. 
 
Preparation of distillate samples 

The D samples are prepared by mixing the raw R 
and E samples at different ratios in the laboratory. 
Here, the corresponding samples are provided 

from the existing LBO Unit of Tupras Izmir 
Refinery. Prior to mixing, they are heated up to 70 

°C in a water bath till the samples get liquefied 
totally. It is followed by taking a portion of R 
sample into a beaker and weighed at a designated 
amount. The same procedure is applied to the E 
sample. Then, the R sample is poured into E, and 

stirred for a while to obtain a homogeneous 
mixture. 
 
Bulk physical property measurements 
Among the bulk physical properties of LBO, Total 
Sulfur, Carbon Residue, Density, Refractive Index 

and Kinematic Viscosity are measured for the D 
samples prepared in laboratory. Additionally, 
Density and Kinematic Viscosity measurements 
are performed for the D, R and E samples 
collected at the test-runs. 

 
Total Sulfur: Energy Dispersive X-Ray 

Fluorescence (ED-XRF) is used to determine the 
total sulfur content. The instrument used for 
measurement is LAB X 3500 Oxford Instrument. 
Total sulfur analyses are performed according to IP 
336 (15). Briefly, the sample is placed in the beam 
emitted from the X-Ray source, and the resultant 
excited characteristic X radiation is measured. The 

count (intensity) is compared with a calibration 
plot of counts against sulfur content as the 
percentage by mass. Series of calibration samples 
are prepared which cover the range of sulfur 
content of the sample. The concentration of sulfur 
in the sample from the calibration curve is 

measured by using the three average counts for 

each sample. The precision of the measurement is 
checked and approved according to the 
reproducibility limit given in IP 336. 
 
Carbon Residue: The carbon residue content is 
determined according to ASTM D4530 (16), which 

provides an indication of the tendency to relative 
coke formation. Briefly, a weighed quantity of 
sample is placed in a glass vial and heated up to 
500 °C under nitrogen atmosphere. Keeping at 
this temperature for a while, coking reactions 
occur and volatiles are swept away by nitrogen, 
simultaneously, and then the remaining 

carbonaceous-type residue is recorded as a 
percent of the original sample. The mass of the 
sample is selected according to ASTM D4530. It is 

not needed to distill the sample because of the 
high carbon residue results. 1.5 g +/- 0.5 g 
sample is directly placed to the carbon residue 

analyzer that is manufactured by PAC-Alcor. Two 
parallel experiments are performed for each 
sample. Precision and standard deviation of the 
results are checked according to ASTM D4530. The 
validated values are used for the examination at 
the modelling step. 
 

Density: The density is measured according to EN 
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ISO 3675 (17) by using a glass hydrometer. The 
values are taken at the measurement 

temperatures and corrected to 15 °C (~60 °F) by 
means of a series of calculations and international 
standard tables. The sample is stirred via vertical 
and rotational motions to ensure uniform 
temperature and density through the hydrometer 

cylinder. The sufficient homogenate sample is 
transferred to the clean hydrometer cylinder to 
avoid the formation of air bubbles. The 
temperature of the sample is measured by a 
thermometer. It is recorded nearest 0.1 °C and 
the thermometer is removed, then the hydrometer 

is inserted for hydrometer scale reading. After 
reading, the hydrometer is carefully taken out of 
the fluid, and the thermometer is inserted again to 
read the temperature once more. The temperature 
value does not differ more than 0.05 °C from the 

previous reading. The quality of experimental data 
is checked according to the reproducibility 

calculation mentioned in EN ISO 3675. 
 
Refractive Index: The refractive index is measured 
according to ASTM D1218 (18) by using a high-
resolution refractometer of an automatic type with 
the prism temperature accurately controlled. The 
instrument used for measurement is KEM 

Refractometer RA-600. The sample is placed into 
the instrument, and the velocity of light passing 
through the sample fluid is measured. The 
refractive index is determined as the ratio of light 
velocity in the air to its velocity in the substance 
under examination. The precision for automatic 

digital refractive index procedure, as determined 

by the statistical examination, is checked for the 
quality of data. Accordingly, the values of RI 
analyses are at acceptable precision level. 
 
Kinematic viscosity: The kinematic viscosity is 
determined according to EN ISO 3104 (19). The 

instrument used for measurement is Herzog HVM 
472 viscometer. The time is measured for a fixed 
volume of sample fluid to flow down by gravity 
through a capillary tube. The kinematic viscosity is 
the product of measured flow time and the 
calibration constant of the viscometer. Two parallel 
measurements are made for the same sample, 

and the kinematic viscosity is taken as the 
average value of these two measurements as long 
as the values are within the reproducibility range.  

 
Pseudo - Components Analyses: 
The Clay-Gel absorption chromatographic method 

is used to determine the saturates (Satd), 
aromatics (Arom) and polar contents according to 
ASTM D2007 (20). The sample is percolated in n-
pentane through a two-compartment column filled 
with clay and silica gel. Polar compounds are 
retained on the adsorbent clay while Arom are 
adsorbed on silica gel. Satd are not adsorbed on 

either clay or silica gel and collected from the 
bottom of the column. 

 
As Polar compounds are retained in clay, this part 
is washed with 50% toluene-acetone mixture. 
Arom are recovered from silica gel via washing the 
corresponding part of column with toluene. The 

solvents (n-pentane, toluene, acetone) are 
completely removed away from the extracted 
fractions by using a rotary evaporator 
manufactured by IKA. The residuals are weighed 
and the pseudo-component contents are 
calculated accordingly. The quality of experimental 

data are checked against the reproducibility limits 
mentioned in ASTM D2007. 
 
PROCESS DESCRIPTION 
 

The solvent extraction unit (FEU) selectively 
extract the low viscosity aromatic components 

from the base oil stock by using furfural (furan-2-
carbaldehyde) as the solvent. The feedstock of the 
unit is originated from the Vacuum Distillation Unit 
(VDU) or the Propane Deasphalting Unit (PDU). 
FEU has different operating modes according to 
the feedstock type, namely Spindle Oil (SO), Light 
Neutral (LN), Heavy Neutral (HN) and Bright Stock 

(BS). The first three are originated from VDU, 
while the last one comes from PDU. The main 
objective of the unit is to improve the Viscosity 
Index (VI) of the base oil. In addition to VI, 
oxidation stability and color stability targets are 
also met via extraction of poor quality aromatic 

compounds. 

 
Solvent extraction unit can be divided into 4 
groups (see Figure 1): 

- Liquid-Liquid Extraction Section: It 
includes a Deaerator Tower and Rotating 
Disc Contactor (RDC). Deaerator tower 

strips Water and Air from the feed for 
further processing, since Water has an 
affinity to react with furfural. The 
deaerated feed enters from the bottom of 
the RDC while S enters from the top. S 
dissolves the aromatic components in the 
feed and the resultant extract is drawn 

from the bottom, while oil-rich R leaves 
from top of the column. Then, the 
products of RDC are sent to the related 

recovery sections. 
- Raffinate & Extract Recovery Sections: 

Both include a Vacuum Flash Tower and 

Stripping Tower with necessary heating 
equipment. 

- Furfural Drying Section: It includes a 
Fractionator and Dry Solvent Accumulator 
with necessary stripping units and heating 
equipment. 
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Figure 1: Solvent Extraction Unit Flowchart. 

 

The existing Base Oil Complex is designed for 

Arabian light or Basra light Atmospheric Residue. 
The experimental crude oil is different from these. 
 
MODEL DESCRIPTION 
 
In the existing operation, the feed conditions are 
changed in daily basis due to variance in the crude 

mixture at the upstream. Simulating the existing 
extraction unit, its response to the changes in the 
column operating conditions, and more 
importantly, the bulk physical properties of the 
charge stream Distillate (D) can be estimated in 
terms of the yield and quality of the product 
stream R. Here, the key quality parameter for the 

product is Viscosity Index (VI). In the end, this 

model helps the Refinery Process and Planning 
Teams to foresee the yield and quality against 
changing feed conditions, which will enable better 

profit estimates as well as reduced amount of off-

spec production during operation. 
 
The existing industrial-scale extraction column is 
simulated via use of Aspen’s multistage liquid-
liquid extractor model. In Figure 2, the 
corresponding flowsheet is given. There are 3 
user-defined pseudo-components representing the 

saturated, aromatic and polar contents of LBO. 
The component furfural, which corresponds to S, 
is also listed from the Aspen databank. The 
thermodynamic model is selected as NRTL for 
which the binary interaction coefficients published 
in the literature (Van Grieken et al., 2005) are 
used. This model is bounded to be valid for HND 

mode, as it is validated with the test-run data 

corresponding to HND. Besides NRTL parameters 
ae belong to Furfural extraction of HND. 

 

 
Figure 2: Aspen flowsheet of the extraction process. 

 
In the model, D enters the column from the 
bottom, while S is fed from the top, representing 

the counter-current extraction. The bottom 
circulation is also added as in the case of existing 
unit operation. Solvent mixed R (R_mix) is taken 

as the top product of the column of which the 
bottom product is Solvent mixed Extract (E_mix). 

At the downstream, S is simulated to be separated 
from R and E at an ideal component splitter 
model, as the product purification and solvent 
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recovery are not the core parts of the operation. R 
and E are taken from the top of splitters. 

 
As one of the inputs to the Aspen model, the 
compositional data is needed for HND, so a 
statistical model is developed via linear regression 
to predict the compositions from its bulk physical 

properties. The expressions for the saturated and 
aromatic content are given in Eqs. (1) and (2), 
respectively. 
 

  (Eq. 1) 

Where : Saturated content of HND in mass 
percentage 

  : Intercept term for saturated 
content estimation 

: The parameter of the jth physical 

property of HND for saturated content 

 : The jth physical property of HND 
 

  (Eq. 2) 

Where : Aromatic content of HND in mass 
percentage 

  : Intercept term for aromatic 
content estimation 

: The parameter of the jth physical 

property of HND for aromatic content 
 

Here, Pj corresponds to the density at 15C (d), 
sulfur content (SC), carbon residue (CR), 
refractive index (RI), the kinematic viscosity at 80 
°C (KV80), and the kinematic viscosity at 100 °C 
(KV100). 

 
To create a database for pseudo-component 

compositions as well as bulk physical properties, 
HND samples are prepared in the laboratory. It is 

done by mixing the raw raffinate and extract 
samples, which are collected from the existing 
operation, at different ratios. For each of them, 
pseudo-component compositions, as well as bulk 
physical properties, are measured. The 

measurement results are listed in Table 1. 
 
As the other input to the Aspen model, a suitable 
value for stage efficiency needs to be assigned. 
For that, an empirical equation is constructed via 
linear regression from the operational data of the 

existing unit, as shown in Eq. (3).  
 

     (Eq. 3) 
Where Ɛ: Stage efficiency 

 A0: Intercept term for estimation of stage 
efficiency 

Ak: The parameter of the kth operational 
data of the extraction process 
 Ok: The kth operational data of the 

extraction process 
 
Here, Ok corresponds to operational data, i.e. 
Distillate Temperature (TD), Solvent Temperature 
(TS), Flow rate of Distillate (FD), Flow rate of 
Solvent (FS) and Solvent-to-Distillate Flow Ratio 
(FS/D). 

 
Test-runs are performed at the existing unit to 
validate the complete model. The operational data 
of these runs, as listed in Table 2, are used for 

constructing the efficiency formulation. Here, the 
value of Ɛ for each run is found via data 

reconciliation, more specifically, iterating the FR 
value calculated by the Aspen model to the one 
realized in the corresponding run. 

 
Table 1: The lab measurements of bulk physical properties and compositions for HND samples 

Sample# dD SCD CRD RID KV80D KV100D SatdD AromD 

1 0.941 2.32 0.73 1.499 26.5 13.9 49.31 47.47 

2 0.936 2.44 0.66 1.500 24.8 13.2 47.20 37.30 

3 0.901 1.34 0.20 1.478 18.6 10.6 64.00 35.30 

4 0.960 3.70 1.03 1.518 32.9 16.3 36.66 58.81 

5 0.964 2.76 1.11 1.520 39.0 18.6 33.29 62.99 

6 0.942 2.69 0.70 1.504 28.6 14.7 45.93 51.62 

7 0.944 2.31 0.71 1.505 29.2 15.0 45.59 51.77 

8 0.912 1.33 0.32 1.484 21.0 11.6 35.10 54.40 

9 0.989 3.73 1.68 1.535 46.1 20.9 24.73 69.80 

10 0.917 2.04 0.30 1.487 21.6 11.9 57.25 38.89 

11 0.933 2.17 0.61 1.497 26.1 13.8 51.89 45.35 
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12 0.946 1.67 0.68 1.505 31.6 15.8 47.98 48.15 

13 0.948 1.81 0.74 1.503 32.4 16.0 33.80 59.50 

14 0.964 2.50 1.13 1.519 38.2 18.3 34.58 61.00 

15 0.951 2.25 0.92 1.511 33.2 16.5 40.49 55.66 

16 0.928 1.47 0.08 1.494 25.3 13.4 51.30 41.10 

17 0.987 3.66 1.64 1.535 45.4 20.6 26.85 69.67 

18 0.893 0.95 0.65 1.471 17.9 10.4 70.40 15.60 

19 0.942 2.33 0.86 1.503 28.3 14.6 49.65 45.49 

20 0.986 3.65 1.67 1.534 44.7 20.4 27.73 66.34 

21 0.964 2.95 1.15 1.516 31.9 15.9 39.67 56.36 

22 0.928 1.68 0.54 1.494 25.1 13.4 56.65 39.58 

23 0.932 2.14 0.58 1.497 25.9 13.7 52.01 44.04 

24 0.913 1.64 0.32 1.485 20.6 11.5 63.12 33.00 

25 0.915 1.53 0.26 1.485 21.8 12.0 56.54 40.70 

26 0.894 1.17 0.10 1.473 17.9 10.4 74.96 23.82 

27 0.904 2.20 0.19 1.478 19.2 11.0 63.22 34.89 

28 0.895 1.33 0.20 1.473 18.3 10.6 71.70 26.09 

29 0.891 0.94 0.13 1.470 17.5 10.2 74.69 23.52 

30 0.901 1.46 0.18 1.476 18.3 10.5 70.35 27.79 

31 0.899 1.32 0.10 1.475 18.7 10.8 67.10 30.88 

32 0.930 2.14 0.61 1.496 25.2 13.4 51.24 44.97 

 
Table 2: Operating conditions, reconciliation Ɛ, realized VI and composition data calculated by the Aspen 

model for the test-runs performed at the existing unit 

TR#* TD TS FD FS FS/D Ɛ SatdR AromR VIR 

1 96.36 131.06 85.34 170.16 1.99 0.684 78.90 21.09 116.0 

2 93.49 126.95 79.97 185.70 2.32 0.670 78.92 21.07 117.7 

3 92.00 127.19 80.05 192.63 2.41 0.668 78.89 21.11 118.9 

4 89.18 124.49 79.90 181.71 2.27 0.640 78.90 21.10 116.7 

5 100.05 123.48 79.94 189.97 2.38 0.660 78.73 21.27 118.0 

6 92.43 126.93 79.92 181.45 2.27 0.659 78.92 21.08 116.0 

7 94.51 126.20 80.04 182.86 2.28 0.669 78.82 21.18 118.3 

8 92.67 127.48 80.00 179.00 2.24 0.670 78.20 21.29 116.3 

9 92.48 127.28 80.07 172.99 2.16 0.653 78.76 21.24 113.6 

10 92.99 126.49 80.06 182.32 2.28 0.662 78.72 21.28 115.3 

11 95.50 127.01 80.00 183.44 2.29 0.680 78.89 21.11 114.9 

12 95.97 127.79 80.00 174.25 2.18 0.667 78.79 21.21 116.6 

13 95.14 128.52 79.93 179.62 2.25 0.686 78.73 21.27 115.7 

14 90.01 128.31 70.00 177.11 2.53 0.691 79.20 20.80 118.8 

15 90.99 128.08 69.98 175.33 2.51 0.696 78.96 21.03 117.2 

16 93.15 126.79 79.93 171.08 2.14 0.664 78.66 21.34 116.2 

17 94.90 127.25 79.97 171.02 2.14 0.664 78.74 21.25 118.1 

18 92.56 126.51 84.90 173.92 2.05 0.683 78.65 21.34 112.9 
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19 93.70 124.54 79.99 169.94 2.12 0.632 78.57 21.43 116.4 

20 94.74 124.16 80.02 165.31 2.07 0.613 78.45 21.55 113.5 

21 95.74 124.41 80.00 168.44 2.11 0.619 78.53 21.47 115.6 

22 97.36 122.77 79.97 179.75 2.25 0.627 78.41 21.58 112.9 

23 96.88 125.22 80.01 162.84 2.04 0.617 78.32 21.68 114.0 

24 96.07 125.90 79.97 165.34 2.07 0.627 78.64 21.36 114.7 

 * TR: Test-run 
 

There are 2 Aspen model outputs from which the 
yield and quality data can be derived: Flow rate 
and composition of R. The yield (YR) is calculated 
from Eq. (4). 
 

    (Eq. 4) 

 

As the key quality parameter is not the product 
composition but VI of R (VIR), the compositional 
data calculated for R is converted into VI 
information via linear regression. The empirical 

equation is in the form given in Eq. (5). 
 

 (Eq. 5) 

Where : Raffinate VI 

 : Intercept term for estimation of VIR 

 : The parameter of the saturated 
term for VIR 

 : The parameter of the aromatic term 
for VIR 

 

The compositional and VI data from the test-runs, 
as listed in Table 2, are used for constructing the 
model. Here, the compositions are found from the 
corresponding operational data and physical 
properties of feed stream via use of the Aspen 
model. Besides, VIR‘s are calculated from the 
kinematic viscosity values at 40⁰C (KV40) and 

KV100 according to ASTM D2270 (21). As the 
measured ones are indeed KV80 and KV100, the 
KV80 values need to be converted into KV40 

according to the method given in ASTM D341 
(22). For these transformations and calculations, 
the built-in software program of the viscometer is 
used. 
 
Selection of the predictor variables for these 3 
statistical models is discussed in the next section. 

Following the selection, the outliers are 
determined via Robust Regression. Eliminating the 
outliers, 75% of the operational data is used for 
training, and the model testing is done with the 
remaining 25%. 
 
RESULTS AND DISCUSSION 

 
Model for saturated content estimation of D 
Using the data in Table 1, the linear relationship is 
investigated between the saturated composition 
and bulk physical properties of D via scattering 
plots, as given in Figure 3. 

 
It is seen that the saturated content shows a 
smooth trend with the bulk physical properties d, 

RI, KV80 and KV100. As SC and CR data are 
rather scattered compared to the others, these are 
eliminated from the predictor variables. Besides, d 
and RI are highly correlated to each other (with 

Pearson product-moment correlation of 0.9970), 
so the only d is considered among these two to 
prevent bias. Together with d, the properties 
KV80, and KV100 are also selected as independent 
variables. In fact, these three selected properties 
require measurement time less than 1 hr, so it is 
also practical to use them for the prediction. 
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Figure 3: Scatterplots of predictor variable candidates for saturated content estimation. 

 
Fitting a linear model with the selected predictor 
variables, the corresponding p-values listed in 
Table 3 are checked for their significance. While dD 

shows its significance with a probability value 
lower than 0.05, KV80, and KV100 do not. It is 
possible that there are some outliers in the data 
causing this. Therefore, robust regression 
techniques, more specifically S estimation with 

0.975 of confidence level, are applied to determine 
the outliers. 
 

The outliers are found to be the 2nd, 3rd, 8th and 
13th Rows. Eliminating these outliers, and using 
the 75% of remaining data for training, the fitting 
parameters are found as listed in Table 3. 
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Table 3: p-values for the selected bulk physical properties as predictor variables for Satd content (Values 
given for both complete dataset and training dataset without outliers) 

  For complete dataset For dataset without outliers 

Term Estimate Std.Er. t Ratio Prob>|t| Estimate Std.Er. t Ratio Prob>|t| 

Intercept 500.92 155.1 3.23 0.0032 414.62 83.59 4.96 0.0001 

dD -485.56 205.2 -2.37 0.0251 -336.71 111.1 -3.03 0.0075 

KV80D -0.0750 2.973 -0.03 0.9800 2.9142 1.482 1.97 0.0658 

KV100D 0.3210 8.833 0.04 0.9713 -9.0741 4.478 -2.03 0.0587 

 
Comparing the p-values given in Table 3, all three 
parameter estimates are improved after 
disregarding the outliers. Though the ones for 
KV80 and KV100 are still higher than 0.05, they 
are kept as the predictor variables due to the fact 
that the adjusted R2 increases from 0.972 to 

0.975 in this case, which shows that these 
variables improve the model more than that would 

be expected by chance. Besides, one unit change 
of KV80 or KV100 while holding the others 
constant represents a non-negligible change in 
response. The corresponding model equation for 
saturated content estimation is given in Eq. (6) 
together with the summary of fit and ANOVA table 

below: 

 

  (Eq. 6) 
 

RSquare 0.979 
RSquare Adj 0.975 
Root Mean Square Error 2.34 

Mean of Response 54.39 
Observations (or Sum Wgts) 21 

 

Source DF Sum of Squares Mean Square F Ratio 

Model 3 4244.7821 1414.93 258.5350 

Source DF Sum of Squares Mean Square F Ratio 

Error 17 93.0387 5.47 Prob > F 

C. Total 20 4337.8209  <.0001* 

 
The model is tested with the remaining data. 
Putting the predicted and actual data, as well as 
the residual information in graphs, results in 
Figure 4. 
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Figure 4: Plots of predicted vs. actual data (LHS) and the residual information (RHS) for saturated content 
estimation. 

 
Comparing the predicted and actual data, there is 
a good agreement with each other. The residuals 
between actual data and the predicted one are 

varying from around -3.5 to +1 for this testing 
data. 
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Model for aromatic content estimation of D 
Using the data in Table 1, the linear relationship is 

investigated between aromatic composition and 
bulk physical properties via scatter plots as given 
in Figure 5. 
 
Similar to saturated one, the aromatic content 

shows a dependence of bulk physical properties d, 
RI, KV80 and KV100. As SC and CR data are 
rather scattered compared to the others, these are 
eliminated from the predictor variables. Besides, 

the only d is considered again among d and RI. 
Together with d, the properties KV80, and KV100 

are selected as independent variables. 
 
Fitting a linear model with the selected predictor 
variables, the corresponding p-values listed in 
Table 4 are checked for their significance. As those 

for KV80 and KV100 are far higher than 0.05, S 
estimation with 0.975 of confidence level is 
applied to determine the outliers. 
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Figure 5: Scatterplots of predictor variable candidates for aromatic content estimation. 

 
The outliers are found to be the 2nd, 3rd, 8th, 13th and 18th rows (18th row is an addition 
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compared to saturated case). Eliminating these 
outliers, and using the 75% of remaining data for 

training, the fitting parameters are found as listed 

in Table 4. 
 

 
Table 4: p-values for the selected bulk physical properties as predictor variables for Arom content (Values 

given for both complete dataset and training dataset without outliers) 

   For complete dataset For dataset without outliers 

Term Estimate Std.Er. t Ratio Prob>|t| Estimate Std.Er. t Ratio Prob>|t| 

Intercept -310.00 142.8 -2.17 0.0386 -273.06 89.10 -3.06 0.0074 

dD 355.83 188.9 1.88 0.0701 294.26 117.6 2.50 0.0235 

KV80D -0.9649 2.738 -0.35 0.7272 -2.1756 1.554 -1.40 0.1805 

KV100D 3.5157 8.135 0.43 0.6689 7.2443 4.679 1.55 0.1411 

 
Comparing the p-values given in Table 4, all three 
parameter estimates are improved by disregarding 

the outliers. Though the ones for KV80 and KV100 
are still higher than 0.05, they are kept as the 
predictor variables to value their relatively small 
contribution to the estimation beside the density 

term (R2 is improved from 0.969 to 0.973 when 
viscosity terms are added into the equation.). The 

corresponding model equation for Aromatic 
content estimation is given in Eq. (7) together 
with the summary of fit and ANOVA table below: 
 

  (Eq. 7) 

 

RSquare 0.973226 
RSquare Adj 0.968206 
Root Mean Square Error 2.440678 
Mean of Response 42.92 

Observations (or Sum Wgts) 20 

 

Source DF Sum of Squares Mean Square F Ratio 

Model 3 3464.4766 1154.83 193.8632 
Error 16 95.3106 5.96 Prob > F 

C. Total 19 3559.7872  <.0001* 

 
The model is tested with the remaining data. 

Putting the predicted and actual data, as well as 
the residual information in graphs, results in 
Figure 6. 
 

Comparing the predicted and actual data, there is 
a good agreement with each other. The residuals 

between actual data and the predicted one are 
varying from around +0.5 to +3.5 for this testing 
data. In other words, the prediction slightly 
underestimates the testing data. 
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Figure 6: Plots of predicted vs. actual data supplemented (LHS) and the residual information (RHS) for 
aromatic content estimation. 
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Model for stage efficiency estimation 

Using the data in Table 2, the linear relationship is 
investigated between stage efficiency and selected 
operational data via scatter plots as given in 
Figure 7. 
 

Stage efficiency shows the dependence of the 
operational information TS and FS/D with less 
scattered data compared to the other three 
variables. FD can be treated as categorical rather 
than continuous data. As most of FD is 
concentrated into one value for a large range of 

efficiency, it would not be a significant predictor. 
Looking at TD and FS, they are rather scattered. 
Therefore, TS and FS/D are selected as significant 
variables. 
 

Fitting a linear model with the selected predictor 

variables, the corresponding p-values listed in 
Table 5 are checked for their significance. As they 
are less than 0.05 for both variables, it is 
approved that they are significant for efficiency 
estimation. In spite of this, the calculated R2 is 

0.78, which means that only 78% of the efficiency 
variable is explained by the selected operational 
variables. It is indeed not sufficient to have results 
with higher accuracy from the Aspen model. 
Therefore, S estimation with 0.975 of confidence 
level is applied to determine the outliers. 

 
The outliers are found to be the 3rd, 14th, 15th and 
18th Rows. Eliminating these outliers, and using 
the 75% of remaining data for training, the fitting 
parameters are found as listed in Table 5. 
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Figure 7: Scatterplots of predictor variable candidates for stage efficiency estimation. 
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Table 5: p-values for the selected operational data as predictor variables for efficiency (Values given for both 
complete dataset and the training dataset without outliers) 

  For complete dataset For dataset without outliers 

Term Estimate Std.Er. t Ratio Prob>|t| Estimate Std.Er. t Ratio Prob>|t| 

Intercept -0.7336 0.175 -4.19 0.0004 -0.9867 0.123 -8.03 <.0001 

TS 0.0097 0.001 7.01 <.0001 0.0104 0.001 10.1 <.0001 

FS/D 0.0771 0.018 4.34 0.0003 0.1486 0.019 7.74 <.0001 

 
Comparing the p-values given in Table 5, 

disregarding the outliers makes all parameters to 
be much lower than 0.05. More importantly, R2 is 
improved to 0.953). The corresponding model 
equation for stage efficiency estimation is given in 

Eq. (8) together with the summary of fit and 

ANOVA table below: 
 

 (Eq. 8) 

RSquare 0.952703 
RSquare Adj 0.944821 

Root Mean Square Error 0.005819 

Mean of Response 0.65 
Observations (or Sum Wgts) 15 

 

Source DF Sum of Squares Mean Square F Ratio 

Model 2 0.00818563 0.004093 120.8589 
Error 12 0.00040637 0.000034 Prob > F 

C. Total 14 0.00859200  <.0001* 

 
The model is tested with the remaining data. 
Putting the predicted and actual data, as well as 

the residual information in graphs, results in 
Figure 8. 
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Figure 8: Plots of predicted vs. actual data (LHS) and the residual information (RHS) for stage efficiency 
estimation. 

 
Comparing the predicted and actual data, there is 
a good agreement with each other. The residuals 
between actual data and the predicted one are 

varying from around -0.015 to +0.01 for this 
testing data. 
 

Model for raffinate VI estimation 
Using the data in Table 2, the linear relationship 
between VIR and compositional data calculated for 

R by Aspen model is investigated via scatter plots, 
as given in Figure 9. 
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Figure 9: Scatterplots of predictor variable candidates (SatdR & AromR) for VIR estimation. 

 

Looking through the available data, the 
component values have a range of 1%, while VIR 
changes in a range of 6%. Besides, the 
dependency is somewhat scattered. 
 
Fitting a linear model with both saturated and 
aromatic contents as predictor variables, the 

corresponding p-values are given in Table 6. 
Among them, the one for aromatic content is less 
than 0.05, so it is kept as a predictor, while 

saturated content is disregarded. Here it is 
important to note that the calculated R2 is only 
0.44. There is also some difference between R2 
and adjusted R2 (=0.39). 
 
S estimation with 0.975 of confidence level is 
applied, but no outliers are detected with this 

confidence level. Using the 75% of the whole data 
for training, the fitting parameters are found as 
listed in Table 6. 

 
Table 6: p-values for the compositional data as predictor variables for VIR (Values given for both complete 

and training datasets) 

 
For complete dataset For dataset without outliers 

Term Estimate Std.Er. t Ratio Prob>|t| Estimate Std.Er. t Ratio Prob>|t| 

Intercept 344.72 284.7 1.21 0.2395 240.98 33.15 7.27 <.0001 

 

-1.0152 2.820 -0.36 0.7225 0 - - - 

 

-7.0000 3.227 -2.17 0.0417 -5.8882 1.560 -3.77 0.0017 

 
Comparing the p-values given in Table 6, taking 

only the aromatic content as predictor improves 
the p-values. The corresponding model equation 
for VIR estimation is given in Eq. (9) along with 
the summary of fit and ANOVA table below: 
 

 (Eq. 9) 

 

RSquare 0.470954 
RSquare Adj 0.437889 
Root Mean Square Error 1.264623 
Mean of Response 115.8776 
Observations (or Sum Wgts) 18 

 

Source DF Sum of Squares Mean Square F Ratio 

Model 1 22.778615 22.7786 14.2431 
Error 16 25.588351 1.5993 Prob > F 

C. Total 17 48.366966  0.0017* 

 
Here, R2 is improved a bit from 0.44 to 0.47 by 
using only aromatic content as predictor, but it is 

not enough to treat this model as a reliable one. 
This low accuracy could be originated even from 

the lab measurements for VIR calculation. 
According to the corresponding viscosity 
measurement standard EN ISO 3104, the 

reproducibility tolerates an error of 0.65%. In the 
case that one viscosity value is with -0.65% error 
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in measurement while the other one is with 
+0.65% error, the calculated VI (according to 

ASTM D2270 standard) would have an error of 
about 10%. For example, the VIR calculated from 
the measured KV80 and KV100 for the 20. test-
run is around 113, and this can be changed from 
104 to 124 by taking the error tolerance into 

account. Indeed, this 10% error covers the VIR 
range specific to the test-run. Therefore, the 
equation is used as indicative, but not for decision 
making in operation. 
 
In spite of low prediction power, the model is 

tested with the remaining data. Putting the 
predicted and actual data, as well as the residual 
information in graphs, results in Figure 10: 
Comparing the predicted and actual data, they are 
in line with each other. The residuals between 

actual data and the predicted one are varying 
from around -2.5 to +2.5 for this testing data. 

 
Results of Yield and VI estimations via using 
complete model 
The input and output data used for estimating YR 
and VIR values via the complete model are given 
in Table 7. The measured bulk physical properties 
(d, KV80 and KV100) are used to calculate the 

composition of D, which is the input to the Aspen 
model. From the operational data (TS and FS/D), Ɛ 

is found and it is again used in the Aspen model. 
The composition and flow rate information of R 

taken from the Aspen model are compared with 
the realized VIR (via the lab measurements) and 
yield data (via the measured plant data). It is 

seen that data 1 & 18 for VIR and YR are rather 
deviated from the corresponding realized ones, 
while the others are more in line with the real 
data. 

 

Then, the predicted RF appears to have deviated 
from the realized RF at a value of -35.1%. 

Reminding that data 18 is determined as an outlier 
and disregarded during model construction for 
stage efficiency, such deviation in the predicted 
values corresponding to this data is reasonable. 
Comparing the data for row 18 with 17, the 

physical properties of HND (dD, KV80D and 
KV100D) are quite close to each other. It is an 
expected result for feed properties, as 18. Run is 
indeed subsequent to 17 within the same 
operational day. The operational data used for Ɛ 

prediction are slightly different which causes a 
difference in the value of Ɛ. However, these 

differences would not cause such deviation in the 

prediction power of i.e. YR for run 18 compared to 
17. In fact, it is the result of fluctuation in the 
realized raffinate flow of run 18, as seen from 

Figure 11. The interquartile of FR is wider for run 
18. With whisker length being 1.0 times the 
interquartile range, there are 3 outliers for run 18, 
while there is only one for run 17. This results in 

higher average RF and so higher reconciliation 
efficiency value than it should be for data 18. 
 
The other deviated one, data 1, is indeed not used 
in model construction at all. It remained in the 
testing part, so its deviation is detected at this 

later stage. Looking through the details from Table 
7, the physical properties and composition data 
are in line with each other. However, as it is seen 
from Figure 12, there is a fluctuation especially in 
FS and TS at the time span between 40 and 60. 
This causes deviation in the average values of FS 

and TS which are used in Ɛ prediction. Eventually, 

it brings the corresponding error in the predicted 
YR value. 
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Figure 10: Plots of Predicted vs. actual data (LHS) and the residual information (RHS) for VIR estimation. 
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Table 9: The realized operational & experimental data and model results for the additional test-runs 

Lab measurements Model Op. data Ɛ Model VIR YR 

dD KV80D KV100D SatdD AromD TS FS/D Model SatdR AromR ASTM Model Error% Op. Model Error% 

0.936 25.40 13.40 51.99 44.09 122.69 2.16 0.612 78.12 21.88 108.7 112.1 3.2 0.51 0.47 -7.7 

0.935 25.24 13.33 52.49 43.64 126.03 2.16 0.647 78.28 21.71 110.5 113.1 2.4 0.48 0.47 -3.8 

0.935 25.40 13.41 52.20 43.90 126.70 2.13 0.650 78.30 21.70 110.3 113.2 2.6 0.46 0.47 2.8 

0.938 25.98 13.60 50.95 45.07 124.62 2.21 0.639 78.42 21.58 108.9 113.9 4.6 0.42 0.46 8.0 

0.939 25.99 13.57 51.15 44.93 125.63 2.19 0.647 78.27 21.73 112.4 113.0 0.5 0.43 0.48 11.9 

0.940 26.23 13.68 50.32 45.67 125.70 2.22 0.653 78.72 21.28 115.1 115.7 0.5 0.40 0.42 4.9 

0.940 26.14 13.63 50.71 45.33 125.94 2.24 0.658 78.51 21.49 110.7 114.4 3.4 0.41 0.42 4.6 

0.940 26.23 13.67 50.41 45.60 127.12 2.28 0.676 78.85 21.15 113.0 116.4 3.0 0.37 0.42 12.0 

0.940 26.10 13.62 50.48 45.52 127.13 2.31 0.681 78.68 21.32 114.0 115.4 1.3 0.37 0.43 16.6 
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Figure 11: Plots of FR profiles in a timespan (LHS) and Box & Whisker (RHS) corresponding to Run 17 & 18. 
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Table 7: Input and output data for model estimation of VIR and YR  

  Lab measurements Model Op. data Ɛ Model VIR YR 

TR# dD KV80D KV100D SatdD AromD TS FS/D Model SatdR AromR ASTM* Model Error% Op. Model Error% 

1 0.936 25.55 13.37 52.53 43.70 131.06 1.99 0.675 78.90 21.09 116.0 119.7 3.2 0.33 0.23 -31.3 

2 0.938 25.72 13.52 51.06 44.94 126.95 2.32 0.681 78.92 21.07 117.7 117.3 -0.4 0.37 0.41 9.4 

3 0.938 25.58 13.42 51.49 44.58 127.19 2.41 0.696 78.89 21.11 118.9 116.4 -2.1 0.37 0.43 18.6 

4 0.939 25.74 13.55 50.61 45.32 124.49 2.27 0.648 78.90 21.10 116.7 116.1 -0.5 0.38 0.41 6.2 

5 0.939 25.54 13.39 51.48 44.60 123.48 2.38 0.653 78.73 21.27 118.0 115.7 -1.9 0.44 0.43 -2.6 

6 0.939 25.81 13.50 51.06 44.98 126.93 2.27 0.673 78.92 21.08 116.0 115.6 -0.3 0.40 0.43 9.9 

7 0.939 25.86 13.52 51.03 45.02 126.20 2.28 0.667 78.82 21.18 118.3 116.9 -1.2 0.41 0.40 -1.4 

8 0.940 26.08 13.61 50.78 45.25 127.48 2.24 0.674 78.20 21.29 116.3 115.9 -0.3 0.38 0.40 4.0 

9 0.940 26.15 13.64 50.68 45.35 127.28 2.16 0.660 78.76 21.24 113.6 114.6 0.8 0.40 0.42 5.6 

10 0.938 26.21 13.67 50.99 45.08 126.49 2.28 0.669 78.72 21.28 115.3 115.6 0.3 0.39 0.41 5.1 

11 0.939 26.12 13.66 50.62 45.38 127.01 2.29 0.677 78.89 21.11 114.9 116.6 1.4 0.40 0.40 -1.2 

12 0.939 26.20 13.67 50.66 45.37 127.79 2.18 0.668 78.79 21.21 116.6 117.2 0.5 0.37 0.37 1.9 

13 0.939 26.15 13.65 50.69 45.33 128.52 2.25 0.686 78.73 21.27 115.7 115.7 0.0 0.40 0.40 0.4 

14 0.940 26.15 13.68 50.12 45.81 128.31 2.53 0.726 79.20 20.80 118.8 116.2 -2.2 0.39 0.45 16.0 

15 0.940 26.22 13.69 50.20 45.76 128.08 2.51 0.720 78.96 21.03 117.2 115.7 -1.2 0.41 0.45 10.2 

16 0.938 25.66 13.50 51.23 44.78 126.79 2.14 0.652 78.66 21.34 116.2 117.6 1.2 0.39 0.33 -16.1 

17 0.937 25.72 13.51 51.52 44.55 127.25 2.14 0.656 78.74 21.25 118.1 118.4 0.3 0.38 0.34 -10.3 

18 0.937 25.75 13.67 50.19 45.61 126.51 2.05 0.635 78.65 21.34 112.9 117.6 4.1 0.41 0.26 -35.1 

19 0.938 25.55 13.44 51.29 44.73 124.54 2.12 0.626 78.57 21.43 116.4 114.3 -1.8 0.42 0.40 -4.4 

20 0.938 25.60 13.46 51.18 44.83 124.16 2.07 0.613 78.45 21.55 113.5 114.1 0.5 0.41 0.40 -0.1 

21 0.936 25.04 13.22 52.44 43.69 124.41 2.11 0.622 78.53 21.47 115.6 113.9 -1.5 0.42 0.43 2.0 

22 0.936 25.04 13.22 52.37 43.75 122.77 2.25 0.626 78.41 21.58 112.9 114.0 0.9 0.45 0.45 -0.5 

23 0.936 24.97 13.18 52.53 43.61 125.22 2.04 0.620 78.32 21.68 114.0 113.7 -0.3 0.42 0.43 2.9 

24 0.937 25.12 13.24 52.32 43.81 125.90 2.07 0.632 78.64 21.36 114.7 114.4 -0.3 0.40 0.42 4.4 

* According to ASTM D2270 
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Figure 12: Operational profiles in a timespan corresponding to Data 1. 

 
Along with data 1 and 18, RMSE is calculated to be 
1.7 and 0.047 for VIR and YR, respectively. 

Extracting these 2 outliers, the RMSE decreases to 
1.3 and 0.031, respectively. These values are at 
acceptable levels, so the model can be used for 
prediction of VIR and YR via using only the 
measured bulk physical properties of distillate 
together with the operational data already 

available in the plant historian. In addition to that, 

YR prediction can be used for decisive actions, 
such as tuning of operating conditions and profit 
maximization. 
 
Estimating Ɛ from the selected inlet operating 

conditions gives higher accuracy of model 

compared to use of a constant value for all 
operating conditions. The results are given for 
comparison in Table 8. Here, the constant value of 
Ɛ is taken as the average of reconciliations from 

Table 2. The rows belonging to Run 1 and 18 are 
extracted from this table. Calculating the RMSE 
values for both the model predicted FR‘s and those 
found by keeping Ɛ constant at 0.658, they are 

found as 2.4 and 6.0, respectively. This shows that 
the power of prediction increases when the 

hydraulic changes are taken into account at each 

run. 
 

Table 8: The realized and model predicted FR values beside the calculated FR with constant Ɛ    

TR# FR (realized) FR (model) Error%* FR (Ɛ=0.658) Error%** 

2 29.64 32.43 9.4 25.91 -12.6 

3 29.24 34.69 18.6 26.27 -10.2 

4 30.47 32.36 6.2 34.36 12.8 

5 35.12 34.22 -2.6 34.85 -0.8 

6 31.57 34.68 9.9 31.53 -0.1 

7 32.58 32.11 -1.4 30.10 -7.6 

8 30.72 31.93 4.0 27.13 -11.7 

9 32.01 33.79 5.6 33.22 3.8 

10 31.44 33.05 5.1 30.46 -3.1 

11 32.04 31.65 -1.2 26.04 -18.7 

12 29.34 29.91 1.9 26.52 -9.6 

13 31.97 32.09 0.4 23.04 -27.9 

14 27.22 31.56 16.0 19.89 -26.9 
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15 28.60 31.51 10.2 21.00 -26.6 

16 31.35 26.30 -16.1 29.34 -6.4 

17 30.09 27.00 -10.3 27.75 -7.8 

19 33.65 32.15 -4.4 38.47 14.3 

20 32.41 32.38 -0.1 40.45 24.8 

21 33.83 34.50 2.0 40.64 20.1 

22 36.19 36.03 -0.5 40.71 12.5 

23 33.31 34.27 2.9 41.45 24.5 

24 32.03 33.43 4.4 38.88 21.4 

  * Corresponding to the model calculated efficiency 
  ** Corresponding to the constant value of efficiency 
 
A second validation is performed for the model by 
conducting an additional series of test-runs at the 
existing unit. The realized operational and 

experimental data together with the model results 
are given in Table 9. Accordingly, the percent 

errors for YR vary between -7.7 and 16.6, while 
those for VIR are up to 14%. The plots of predicted 
vs. realized data and the residuals are also given 

in Figures 13 & 14. 
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Figure 13: Plots of predicted vs. realized data (LHS) and the residuals (RHS) for VIR prediction. 
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Figure 14: Plots of predicted vs. realized data (LHS) and the residuals (RHS) for YR prediction. 

 
The model overpredicts VIR values for this dataset. 
The RMSE for VIR values is calculated as 3. 
Referring to the previously stated uncertainty in VI 

values originated from the lab measurements, 
these results prove that VIR prediction should be 
kept as the indication only. For YR, RMSE is 0.04, 
which is an acceptable level. 
 

CONCLUSION 
 

The test-runs conducted in the existing lube base 
oil unit validate that Aspen process model 
supported with a regression model for stage 
efficiency has a higher accuracy compared to the 

one for which the efficiency is a constant value. 
This shows that the prediction power can be 
increased by taking the hydraulic changes into 
account at each run. 
 
The published phase equilibrium data for Heavy 
Neutral Distillate + Furfural system is used for 

constructing the industrial-scale extraction process 
model in Aspen Hysys. Here, the distillate is 
composed of three pseudo-components; namely 
saturated, aromatic and polar. The compositional 
data (as an input of feed stream in the process 

model) is determined from the bulk physical 

properties of distillate. Applying multiple 
regression techniques to the laboratory data, 
density as well as kinematic viscosity at 80 and 
100 °C are found to be significant predictors for 
saturated and aromatic compositions. Refractive 
index shows significance but it is highly correlated 
with density as well. Sulfur content and carbon 

residue values are rather scattered considering the 
measured values of compositions. 
 

As another input for Aspen model, the stage 
efficiency is calculated from the operating 
conditions. Analyzing the corresponding test-run 

data, the solvent temperature and solvent-to-
distillate ratio have significance for predicting the 
efficiency value. 
 
Raffinate yield and VI are the key performance 
parameters for the extraction process. Raffinate 
flow rate and composition data is available as 

Aspen model output. Yield is calculated as 
raffinate-to-distillate flow ratio. To obtain VI value, 
the composition data from Aspen model is 
converted into VI via a statistical model which is 
constructed by using test-run data from the 
existing plant. As the composition data used for 

model construction has a narrow range (1%), the 
VI prediction can be used for only indication. On 
the other hand, yield prediction has a fair accuracy 
with relative error changing between -16 to 
+19%, and it can be used for decision making by 
the corresponding process and planning teams of 
the refinery. 
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NOMENCLATURE 
 
A0: Intercept term for estimation of stage 
efficiency 

: Intercept term for aromatic content 
estimation 
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: Intercept term for saturated content 

estimation 

: The parameter of the jth physical 
property of HND for aromatic content 

: The parameter corresponding to the jth 
physical property of HND 
Ak : The parameter of the kth operational data of 

extraction process 
Arom: Aromatic content 
BLO: Base Lube Oil 
BS: Bright Stock 
CR: Carbon Residue 
d: Density@15C 

D: Distillate 
Ɛ: Stage efficiency 

E_mix: Extract mixed with Solvent 

F: Operational flowrate 

FEU: Solvent (Furfural) Extraction Unit 
HN: Heavy Neautral 
HND: Heavy Neutral Distillate 
KV40: Kinematic viscosity at 40C 
KV80: Kinematic viscosity at 80C 
KV100: Kinematic viscosity at 100C 
LN: Light Neutral 

Ok: The kth operational data of extraction process 

: The jth physical property of HND 
PDU: Propane Deasphalting Unit 
R: Raffinate 
R_mix: Raffinate mixed with Solvent 
RDC: Rotating Disc Column 

RI: Refractive Index 

RMSE: Root Mean Square Error 
S: Aromatic extracting solvent 
Satd: saturated content 
SC: Sulfur content 
SO: Spindle Oil 
T: Operational temperature  

VDU: Vacuum Distillation Unit 
VI: Viscosity Index 

: Aromatic content of HND in mass 
percentage 

: Saturated content of HND in mass 
percentage 
Y: Yield 
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