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Abstract: A tractor gearbox test rig has been used to collect signals from different types of 
bearing faults. For vibration monitoring accelerometers have been used to obtain vibtation data. 
For fuel injectors a Bearing Checker has been used in order to collect acoustic data. Least squares 
support vector machines (LS-SVM) are used for detecting faults when exposed to actual data from 
the system representing a yet unknown state. Feature extraction was performed using seven 
features. The feature vectors are then fed to the LS-SVM for training. LS-SVM classification gave 
promising results (more than 95% correct classification). The fusion of features from both the 
vertical and the horizontal accelerometer resulted in more accurate separation of classes regarding 
fault position. In the case of the fuel injectors the feasibility of using one-class SVM has been 
tested in the detection of signal deviations indicating failure with high detection performance. 
Key words: Vibration, condition monitoring, SVM, bearing, fuel injector. 

 
 

INTRODUCTION 
The use of vibration signals is quite common in the 

field of condition monitoring of rotating machinery. By 
comparing the signals of a machine running in normal 
and faulty conditions, detection of faults like mass 
unbalance, rotor rub, shaft misalignment, gear failures 
and bearing defects is possible. These signals can also 
be used to detect the incipient failures of the machine 
components, through the on-line monitoring system, 
reducing the possibility of catastrophic damage and the 
down time. The procedure of fault diagnosis starts with 
data acquisition, followed by feature extraction, fault 

detection and identification. Feature extraction is critical 
for the success of the diagnostic procedure. Extended 
defects in the inner and outer races are common in 
rolling element bearings (see an example in Figure 1). 

The use of vibration signals is quite common in the 

field of condition monitoring and fault diagnosis of 

bearings (Xu et al., 2009). To inspect raw vibration 

signals, a wide variety of techniques have been 

introduced that may be categorized into two main 

groups: classic signal processing (McFadden and Smith, 

1984) and intelligent systems (Paya et al., 1997).  
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Figure 1. Example of an extended fault in the inner 

race 

 
In the current work vibration monitoring is applied in 

the health condition monitoring and fault detection of 
two tractor components, the tractor gear box and the 
fuel injectors. An approach from artificial intelligence, 
Support vector machines (SVM) are used in the form of 
two different implementations. One approach uses Least 
Squares Support Vector Machines (LSSVM) for identifying 
bearing faults belonging to two different categories and 
discriminating them form healthy bearings. The other 
approach uses One Class SVM for detecting deviations in 
the acoustic response of fuel injectors associated with 
malfunction due to wear. 
 
MATERIALS and METHOD 
Gear box test platform data acquisition 

A gearbox test rig has been used in order to 
collect signals from different types of bearing faults. A 
photograph of the rig showing the position of the 
accelerometers and the encoder at the output shaft is 
shown in Figure 2 (Sawalhi, 2007). Two types of 
faults (inner race and outer race crack) were tested 
under a 50 Nm load, while setting the output shaft 
speed to 10 Hz (600 rpm). Vibration signals were collected 
using two accelerometers positioned on the top of the 
gearbox casing above the defective bearing (vertical 
accelerometer) and sideways respectively (horizontal 
accelerometer). The 1.35 seconds (65536 samples) signals 
were sampled at 48 kHz. A photo-reflective switch 
was placed near the output shaft to measure its 
speed by providing a once per rev tacho signal. The 
torque for each case was measured at the input shaft. 

Fuel injector data acquisition 
The Bearing Checker (manufactured by SPM 

Instrument) was used for the injector measurements. 
Normally, this instrument is used to measure the level 
of impulse during operation of the machine via an 
embedded microprocessor impulse analyzer samples 

from different bearings and record the operational 
status. The Bearing Checker has a 1.5 mm headphone 
jack as shown in. The computer's sound card has a 
corresponding audio input. So the wire with nail jack 
1.5 mm was connecting the output of the Bearing 
Checker to the input of the computer sound card. In 
this the transfer of sound from the Bearing Checker to 
the computer. The registration and storage of sound 
was performed using the free program Audacity. The 
sound was saved in mp3 format with bit rate 
128kbps. To control the audio recording earphones 
were used which were connected to a computer. 

 
Figure 2. The spur gear rig 

 

 
Figure 3. Data acquisition setup for sounds emitted 
from malfunctioning injectors. The Bearing Checker 

(by SPM Instrument) is shown on the left. 

 
Data acquisition of injector sounds was performed 

on the injectors of a New Holland TN65N 
multipurpose tractor, three injectors controlled 
electronically, one healthy (injector1), one slightly 
damaged (injector2) and one audibly deviating from a 
healthy state (injector3). 

Additionally, data acquisition of injector sounds 
was performed on the injectors of a Zetor 7711, used 
for viticulture, four injectors controlled mechanically, 
injectors4-5-6-7 all deviating from healthy state. All 
malfunctioning injectors needed cleaning to restore 
their functionality. Additionally, a newly installed 
injector8 was added for testing the developed techniques. 
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Signal processing and feature determination 
acquisition 

To inspect raw vibration or sound signals, a wide 
variety of techniques have been introduced that may 
be categorized into two main groups: classic signal 
processing and intelligent systems. To make mention 
of a few, FFT, Wigner–Ville distribution, wavelets, 
blind source separation, statistical signal analysis, and 
their combinations are classic signal processing 
methods. Neural network based, genetic algorithm 
based, fuzzy logic based, various similar classifiers, 
expert systems, and hybrid algorithms can be 
classified as intelligent systems. Feature extraction 
was performed using seven features. The first six 
features were introduced in (Lei et al., 2009): 
Kurtosis, Skewness, Crest, Clearance, Shape and 
Impulse Indicators. A newly proposed feature 
consisting of the line integral of the acceleration or 
the sound signal is introduced in this work. All the 
used features provide statistical information about the 
nature of data, and were found to be reasonably good 
features for bearing fault detection. The Kurtosis is 
the fourth moment about the mean normalized with 
variance and for N points is given by Eq. 1. All other 
features are given from Eqs. 2-6. 
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In Eqs. 1-6 X  and X  refer to mean value and 

standard deviation. The new line integral feature for N 
sampling points is given by Eq. 7: 
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where N is the number of sample points (equal to 
500) in the window used to calculate Kurtosis and the 
other features and the newly proposed line integral 
feature and Ts is the sampling period. The presented 
features were used for both the case of vibration 
signals from the gearbox test rig and the sounds 
collected from the injectors. 
 
Support vector machines 

SVMs (Vapnik, 1998) correspond to a relatively 
new computational intelligence technique, related to 
the machine learning concept. SVMs are used in 
pattern recognition as well as in regression estimation 
and linear operator inversion. In contrast to many 
classical neural network training algorithms which 
exhibit many local minima, SVMs are always able to 
find a global minimum and they have a simple 
geometric interpretation. More specifically, in order to 
estimate a classification function such as: 

 : { 1}f  x  (8)

The most important is to select an estimate f  

from a well restricted so-called capacity of the 
learning machine. Small capacities may not be 
sufficient to approximate complex functions, while 
large capacities may fail to generalize, which is the 
effect of what is called “overfitting”. 

In the case of support vector machines, 
regularization is used to avoid overfitting. However, 
overfitting in SVMs is limited according to the 
statistical theory of learning from small samples 
(Vapnik, 1998). The simpler decision functions are the 
linear functions. In case of SVM, the implementation 
of linear functions corresponds to finding a large 
margin separating of separation between two classes. 
This margin corresponds to the minimum distance of 
the training data points to the separating surface. The 
procedure that is followed in order to find the 
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maximum margin of separation is formulated as a 
convex quadratic problem (Vapnik, 1999). An 
additional parameter enables the SVM to misclassify 
some outlying training data in exchange for obtaining 
a larger margin between the rest of the training data, 
without however affecting the optimization of the 
quadratic problem. The input data are projected into a 

feature space F  using a map such as: 

 : F x  (9) 

Then a linear learning machine can be extended to 
a non-linear one. In SVMs the latter procedure is 
applied implicitly. What has to be supplied is a dot 

product of pairs of data points ( ) ( )i j F  x x  in 

the feature space. Thus, in order to compute these 
dot products, one has to supply the kernel functions 
that define the feature space via: 

 ( , ) ( ) ( )i j i jK   x x x x  (10) 

It is not necessary to know the mapping   since 

it is performed implicitly. SVMs can also learn which of 
the features implied by the kernel are distinctive for 
the two classes. The selection of an appropriate 
kernel function may boost the learning process. 
 
Least Squares Support vector machines 

LSSVM (Suykens and Vandewalle, 1999) builds a 
similar classification model as the SVM based on the 
function in Eq. 8 which uses basis functions  . 
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Figure 4. Interpretation of the LSSVM classifier 

Instead of inequality it is subject to equality 
constraints which lead to a formulation of Langrange 
multipliers. The support vectors can then be found by 
solving a linear system: 
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Resulting in the classifier: 
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This approach simplifies SVM due to linear system 
formulation can be solved efficiently with numerical 
methods. This implementation has been used for 
bearing fault classification in the current work. 
 
One Class Support vector machine 

In the case of the injectors there is no unique 
description of the faults but there are available a 
number of injectors that are either new or in different 
stages of malfunctioning behaviour which can not be 
quantified exactly. Therefore, contrary to the 
approach followed for the bearings where there are 
three classes clearly defined, in the case of backs only 
the healthy new injectors were used as target 
classification class and subsequently one-class 
classification methods were preferred. 

One-class classification has the following 
characteristics: 
 Only information of target class (not outlier class) 

are available;  
 Boundary between the two classes has to be 

estimated from data of only genuine class;  
 Task: to define a boundary around the target 

class (to accept as much of the target objects as 
possible, to minimize the chance of accepting 
outlier objects). 

As shown if Figure 5, given a target domain XT  

there are two errors that can be defined EI related to 
false rejected target objects and EII related to false 
accepted outlier objects. The circular area 
corresponds to the rough description of the target 
domain by the selected one class classifier.  

Using a uniform outlier distribution also means 
that when EII is minimized, the data description with 
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minimal volume is obtained. So instead of minimizing 
both EI and EII, a combination of EI and the volume of 
the description can be minimized to obtain a good 
data description. 

 
Figure 5. Domains of target dataset and one-class 

classifier 

 
The one-class SVM (OCSVM) builds a model from 

training on normal data and then classifies test data 
as either normal or outlier based on its geometrical 
deviation from the normal training data (Scholkopf et 
al., 2001). The effect of the spreading parameter of 

the RBF in 2 2( , ) exp{ / }x z x zK     can be 

interpreted based on the fact that a large spread 
denotes a rather linear class of target data while a 
large number of support vectors and a small spread 
denotes a highly nonlinear case. 

 
Figure 6. The effect of the spreading parameter of the 

RBF in the one class SVM behaviour 
 

RESULTS and DISCUSSION 
For the bearing fault recognition an LSSVM was 

used. A validation set was used to test the 
generalisation performance of the LSSVM. To test the 
effectiveness of LSSVM, the 75% have been used for 
training while the 25% have been used in order to 
test the generalisation of the LSSVM. The 
implementation used the LS-SVMlab Matlab toolbox 
(Pelckmans et al., 2002). The method that has been 
used for obtaining the multiclass LSSVM classifier was 
the “one-versus-one” which relies on building a set of 
one versus one classifiers and choosing the class that 
is selected by the most classifiers. Seven features of 

the same type from each accelerometer were used. 
The same order has been used for the horizontal 
accelerometer in order to build the fusion vector. The 
fusion (by direct concatenation) of 14 vibration 
features from both the vertical and the horizontal 
accelerometer, due to their complementary nature, 
results in more accurate separation of classes 
regarding fault position as one can deduce from the 
results presented in Table 1. The complementarity of 
features was expected because the vibration modes 
were measured in two orthogonal directions (vertical 
and horizontal) which carry projections of the 
vibration shapes on these independent axes. 
 

Table 1. Results of LSSVM based classification of 
bearing faults 

Real  Estimated percentage 
 

Healthy Inner race 
fault 

Outer 
race 
fault 

 Vertical    
Healthy   99.61 0.00 0.39 
Inner 
race fault 

 0 96.08 3.92 

Outer 
race fault 

 0.39 0.39 99.22 

 Horizontal    
Healthy   90.59 9.41 0.00 
Inner 
race fault 

 9.02 90.59 0.39 

Outer 
race fault 

 0.78 0.00 99.22 

 Fusion    
Healthy   100.00 0.00 0.00 
Inner 
race fault 

 0.00 100.00 0.00 

Outer 
race fault 

 0.00 0.00 100.00 

 

The OCSVM was used to classify the injectors to a 
target class corresponding to healthy injectors and 
detect outliers indicating injectors that are 
malfunctioning. As target class, features belonging to 
injector1 have been used. All other injectors have 
been used for testing the performance of the OCSVM. 
The OCSVM was calibrated by splitting the data to 
75% training and 25% testing sets has resulted in 
99.82% correct classification for the target class of 
injector1 and 100% when using injector7 as outlier 
class for testing. These were results for a spread 
parameter of 1.97 which gave the best reslts by 
testing different spreads between 0 and 10. Further 
testing of the obtained OCSVM classifier was 
performed using all available injectors. Results are 



Tractor Engine Fault Detection System Based on Vibration and Acoustic Monitoring 

6 

shown in Table 2. It is evident that all injectors have 
been identified correctly based on their respective 
condition. The slightly damaged second injector has 
also been identified as midway to damage which is 
accurate according to the expert opinion based on the 
sound emission from that injector. 

Table 2. Results of OCSVM based classification of 
injector condition 

Injector 
no. # 

Actual 
condition 

OCSVM classifies 
as healthy 
(percentage) 

OCSVM 
classifies 
as outlier 

1 Healthy 99.74 0.26 

2 Slight 
damage 

48.95 51.05 

3 Damaged 1.32 98.68 

4 Damaged 8.16 91.84 

5 Damaged 10.09 89.91 

6 Damaged 2.63 97.37 

7 Damaged 1.75 98.25 

8 Healthy 96.75 3.25 

 
CONCLUSIONS 

It has been shown that the LSSVM can perform 
data fusion from accelerometer sensors through 
combining vibration features. These features can be 
used to detect faults in roller bearings and discover 
the position of the faults, and can therefore prove to 
be a powerful tool for bearing health monitoring. 
Different bearing faults can be detected with high 
accuracy by using the collective response of several 

features and the fusion of different sensors, which 
may not be obvious by just looking at the data using 
other diagnostic techniques. The use of several 
features and a newly introduced feature, the line 
integral of the acceleration signal has given promising 
results in detecting the position of bearing faults. The 
feature based fusion of the vertical and horizontal 
accelerometer signals has increased the accuracy of 
fault detection to 100% for different fault types. This 
result represented a substantial increase in 
discrimination performance of at least 10% for certain 
types of fault. In the case of injector malfunctioning 
detection, the same set of features has been used.  

Due to the nature of the problem, relying only on 

acoustic signatures from healthy injectors, one-class 

classification has been used. An one-class SVM has 

been used and has given very promising results. 

Further it was possible to detect correctly the 

condition of all the injectors that were presented to 

the one-class SVM. This result indicates that OCSVM is 

a robust classifier and can be used for detecting 

injector malfunction with high confidence. It is 

planned that this work be extended to include more 

real data, different features and fault types for 

bearings and gear boxes and also different types of 

injectors. 
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