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Abstract. Multipolarities of gamma rays and spins-parities of nuclear states are usually investigated by the 

angular distribution of gamma rays emitted from aligned states formed by nuclear reactions. For different 

multipolarities of the transitions, the distribution shows different characteristics. The distribution is obtained 

by using angular distribution formula which has literature tabulated coefficients for different spins and 

multipolarities.  However, these coefficients involve 𝑟-fold tensor products and they are highly nonlinear in 

nature. Furthermore, as the calculation of these coefficients implicitly involves highly complicated integral 

quantities, they are very difficult to handle explicitly for larger  𝑟 values. In this respect, as we theoretically 

proved in a previous paper, universal nonlinear function approximator layered feedforward neural network 

(LFNN) can be applied to construct consistent empirical physical formulas (EPFs) for nonlinear physical 

phenomena. In this paper, by concentrating on the integer spins of nuclear states and dipole and quadrupole 

type multipolarities of the transitions, we consistently estimated the coefficients by constructing suitable 

LFNNs. The LFNN-EPFs fitted the literature coefficient data very well. Moreover, magnificent LFNN test set 

forecastings over previously unseen data confirmed the consistent LFNN-EPFs for the determination of 

coefficients.  In this sense, we can conclude that the LFNN consistently infers nonlinear physical laws 

governing the angular distribution of gamma rays, which are otherwise difficult to obtain by conventional 

coefficient calculation methods.    

Keywords: Angular distribution, multipolarity, nuclear spin, layered feed-forward neural network. 

Katmanlı Beslemeli Sinir Ağı ile Gama Işını Açısal Dağılım Katsayıları 

için Tutarlı Ampirik Fiziksel Formül Eldesi 

Özet. Gama ışınlarının multipolariteleri ve nükleer durumların spinleri, genelliklle, nükleer reaksiyonlarla 

oluşturulan hizalanmış durumlardan yayılan gama ışınlarının açısal dağılımı ile incelenir. Geçişlerin farklı 

multipolarite değerleri için, dağılım farklı özellikler göstermektedir. Dağıtım, farklı spinler ve çok 

kutupluluklar için literatürdeki tablolanmış katsayılarve açısal dağılım formülü kullanılarak elde edilir. 

Bununla birlikte, bu katsayılar r katlı tensör çarpımları içerir ve yapıları oldukça doğrusal olmayan şekildedir. 

Dahası, bu katsayıların hesaplanması karmaşık integraller içerdiğinden, daha büyük r değerleri için açıkça ele 

alınması çok zordur. Bu bağlamda, daha önceki bir çalışmamızla teorik olarak ispatlandığımız gibi, doğrusal 

olmayan fiziksel fenomenler için, tutarlı, ampirik fiziksel formüller (EPF'ler) oluşturmak için, evrensel 

doğrusal olmayan bir katmanlı beslemeli sinir ağı (LFNN) kullanılabilir. Bu makalede, nükleer durumların 

tamsayı spinlerine ve geçişlerin dipol ve kuadrupol multipolaritelerine odaklanarak, uygun LFNN'leri inşa 

ederek katsayıları tutarlı bir şekilde tahmin ettik. LFNN-EPF'ler, literatür katsayısı verisini çok iyi bir şekilde 

fitledi. Ayrıca, daha önce görülmemiş veriler üzerinde yapılan LFNN test seti tahminleri, katsayıların 

belirlenmesi için tutarlı LFNN-EPF'leri doğrulamıştır. Bu bağlamda, LFNN'nin, gama ışınlarının açısal 
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dağılımını yöneten doğrusal olmayan fiziksel yasalara tutarlı bir şekilde uyduğu sonucuna varabiliriz. Bu da, 

geleneksel katsayı hesaplama yöntemleri ile elde edilmesi zor olan bir sonuçtur. 

Anahtar Kelimeler: Açısal dağılım, çok kutupluluk, nükleer spin, katmanlı iletimli sinir ağı. 

 

1. INTRODUCTION 

The angular distribution coefficients are used in 

the interpretation of measured gamma ray angular 

distributions. In heavy ion reactions excited states 

of nuclei are aligned relative to the beam axis. The 

gamma rays from these states exhibit 

characteristic angular distributions. The 

distributions depend on the multipolarities of the 

radiations emitted and the spins of the nuclear 

states. From oriented nuclei, the angular 

distribution of emitted gamma ray has no longer 

spherical symmetry. The type of the multipolarity 

of the transition is investigated by the distribution. 

It is possible to have electric and magnetic 

transition mixture, if more than one 

multipolarities in the transition are allowed by the 

angular momentum and parity section rules. For 

instance, it is common as E2 transitions are 

enhanced and compete with M1 transitions. The 

contributions of the different multipolarities to the 

transition are found by the angular distribution 

function. In this function the coefficients (Ak) 

depend on the nuclear spins of the states, angular 

momentum of the gamma rays in the transition 

and multipole mixing ratios.  

Nevertheless, these coefficients involve 𝑟-fold 

tensor products and they are highly nonlinear in 

nature. Furthermore, as the calculation of these 

coefficients implicitly involves highly 

complicated integral quantities, they are very 

difficult to handle explicitly for larger  𝑟 values. 

In this respect, as we theoretically proved in a 

previous paper [1], universal nonlinear function 

approximator layered feedforward neural network 

(LFNN) can be applied to construct consistent 

empirical physical formulas (EPFs) for nonlinear 

physical phenomena. Before going further, note 

that in recent years, neural network (NN) method 

has been used in many fields of nuclear physics 

[2-8]. In this paper, by concentrating on the 

integer spins of nuclear states and dipole and 

quadrupole type multipolarities of the transitions, 

we consistently estimated the literature data 

coefficients by constructing suitable LFNNs. The 

estimation of angular distribution coefficients for 

the angular distribution of gamma rays is useful 

for the analysis of experimental results. The 

LFNN-EPFs fitted the literature coefficient data 

very well. Moreover, magnificent LFNN test set 

forecastings over previously unseen data 

confirmed the consistent LFNN-EPFs for the 

determination of coefficients.  In this sense, we 

can conclude that the LFNN consistently infers 

nonlinear physical laws governing the angular 

distribution of gamma rays, which are otherwise 

difficult to obtain by conventional coefficient 

calculation methods.    

2. BRIEF THEORY FOR ANGULAR 

DISTRIBUTION COEFFICIENTS 

Determination of angular distributions of gamma-

rays from nuclear levels is a useful tool for the 

assignment of multipolarities of emitted gamma-

rays and related spin and parity of nuclear levels. 

This method has been used in the nuclear 

spectroscopy for many years [9,10]. The 

distribution depends on the multipolarities and the 

spin sequences. In the angular distribution 

formula, table of coefficients are tabulated for the 

analyses of the experimental data in comparison 

with the theoretical one [10-12]. The angular 

distribution function for the transition from initial 

state (𝐽i) to final state (𝐽f) is given by Eq.(1) 

   𝑊(𝜃) = 1 + 𝐴2𝑃2(𝑐𝑜𝑠𝜃) + 𝐴4𝑃4(𝑐𝑜𝑠𝜃)       (1) 

Where 𝐴𝑘 and 𝑃𝑘 are angular distribution 

coefficients and Legendre polynomials, 

respectively. The sum in this equation involves 

only even values of 𝑘 (to conserve parity) and 

extends to twice the lowest multipolarities in the 

transition. The polar angle 𝜃 is measured with 

respect to the axis of alignment which, in the case 

of heavy ion reaction, is along the direction of an 
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incoming beam. For the complete alignment of the 

nuclear states, 𝐴𝑘 coefficients are given in Eq.(2) 

𝐴𝑘(𝐽𝑓𝐿1𝐿2𝐽𝑖) =
1

1+𝛿2 [𝐵𝑘(𝐽𝑖)𝐹𝑘(𝐽𝑓𝐿1𝐿1𝐽𝑖) +

2𝛿𝐵𝑘(𝐽𝑖)𝐹𝑘(𝐽𝑓𝐿1𝐿2𝐽𝑖) + 𝛿2𝐵𝑘(𝐽𝑖)𝐹𝑘(𝐽𝑓𝐿2𝐿2𝐽𝑖)]    (2) 

The 𝐵𝑘 and 𝐹𝑘 terms depend on 𝐽 values, Clebsh-

Gordan and Racah coefficients. The three parts in 

the expression correspond to first type (𝐿1𝐿1), 

mixed type (𝐿1𝐿2), and second type (𝐿2𝐿2) of 

multipolarity in transition.  𝐿1 and 𝐿2 are positive 

integers or zero. One can use experimental 𝐴𝑘 

values and calculated 𝐵2𝐹2 values in Eq.(2) in 

order to extract multipole mixing ratios in the 

transitions. Therefore, the estimation of 𝐵2𝐹2 

values is of the important issue in experimental 

nuclear structure studies. 

For the partial alignment, the functions given 

above are multiplied by the attenuation 

coefficients which depend on 𝐽 and 𝑚 substates 

distributions [11]. For detail information about the 

formulation, we refer readers to [10,11]. 

3. SHORT LFNN FUNDAMENTALS AND 

EPF FORMATİON BY A LFNN  

Both Clebsh-Gordan and Racah coefficients 

involve r-fold tensor products, and these 

coefficients are very difficult to compute even for 

small r values, and such formulas are not even 

known for larger values of 𝑟. They are highly 

nonlinear in nature. Furthermore, as the 

calculation of these coefficients implicitly 

involves highly complicated integral quantities, 

they are very difficult to handle explicitly.  To 

overcome this obstacle, we built up definitive 

LFNN-EPFs to estimate the 𝐵2𝐹2 functions of 

Eq.(2). As usual, the LFNN-EPFs found good 

agreements with both the actually trained 

literature data and also test data points. More 

details about LFNN-EPF formations can be found 

in our previous novel comprehensive papers [1,2]. 

Still, we reproduce the brief details of a LFNN-

EPFs here.  

3.1 Artificial neural networks (ANNs) and LFNN-

EPFs in brief 

Artificial neural network (ANN) [13] mimics the 

brain functionality. It consists of artificial neurons 

which have adaptive synaptic weights. By a 

proper modification of the weights, ANN finally 

learns the information embedded in data.  LFNN 

is a particular kind of ANN with one input, many 

intermediate (hidden) and one output layer device. 

All layers are connected to each other by 

adaptable weights (Fig. 1). Theoretically 

speaking, a single hidden layer LFNN is sufficient 

for excellent nonlinear function approximation 

[14]. With enough sample train data, the ultimate 

aim of the LFNN is to find a set of final weights 

to minimize the error metric ‖𝑓 − 𝑔‖   via a 

suitable weight adaptation algorithm. Here, 𝑓: 𝑅𝑝

→ 𝑅𝑟 is the LFNN transformation function and 

𝑔: 𝑅𝑝 → 𝑅𝑟 is the function to be approximated by 

the LFNN. In this paper, as clearly shown in 

Fig.1, 𝑝 being the number input layer neurons 

and 𝑟  number of output layer neurons (𝑝 = 4, 𝑟 =

1) ,  𝑔: 𝑅𝑝 → 𝑅𝑟  is the 𝐵2𝐹2 function of 𝐽 values.  

By using the final weights after the train stage of 

LFNN, the performance of the network is tested 

over a previously unseen test data set. If test data 

predictions are good enough, the LFNN is 

considered to have consistently learned the 

functional relationship between input and output 

data. Let 𝑤∗ be vector of final weights 

(25 adaptable weights in Fig.1), 𝑓(𝑤∗) can be 

taken the desired EPF for the physical data which 

has been trained and tested by the LFNN. 

Therefore, we say that we have a consistent 

LFNN-EPF, consistency simply being the 

accurate estimations of previously unseen test set 

data by the final LFNN.  

 

Figure 1. The LFNN used with (4, 5, 1) topology. There are 

4𝑥5 + 5𝑥1 = 25 adaptable weights. 
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3.2 Materials and methods: the details of LFNN 

application to EPFs 

The literature data to produce LFNN-EPFs, the 

gamma angular distribution coefficient 𝐵2𝐹2 (the 

output of the LFNN) versus initial and final spins 

of the nuclei (𝐽𝑖  and 𝐽𝑓) and first and second type 

of multipolarities 𝐿1 and 𝐿2 [the input of the 

LFNN] belonging to the transitions, was borrowed 

from [11]. The neural network software used was 

NeuroSolutions V5.06.  The LFNN was the single 

hidden layer (with optimally 5 hidden neurons), 

four input layer neuron (𝑝 = 4)  and with varying 

hidden layer neuron numbers (ℎ = 5, 7 and 9) and 

one output layer neuron (𝑟 = 1).  Although, in 

Fig.1, only 25 adaptable weights are shown, 

actually there were 25, 33 and 41 adaptable 

weights for hidden layer neuron number ℎ values 

of 5, 7 and 9, respectively.  The activation 

functions in Fig.1, were, respectively, hyperbolic 

tangent tanh ( ) /( )x x x xe e e e     for hidden 

and linear for output layer. The LFNN weight 

adapting algorithm was back-propagation with 

Levenberg-Marquardt. For all LFNN processing 

cases, the angular distribution coefficients data 

were uniformly partitioned into two separate sets  

(80% and 20%) to use as LFNN training set for 

fitting and test set for prediction, respectively. The 

error function measuring the difference between 

desired and neural network outputs was the mean 

square error (MSE). The best final LFNN 

approximation errors for ℎ=5, 7, 9 were 

0.01, 0.002, 0.06 (for train data) and 0.01, 0.04, 

0.05 (for test data). 

 

 

 

 

 

 

 

4. RESULTS AND DISCUSSION 

 

Many of the transitions between nuclear states 

have mixed character of different multipoles. In 

this study, we concentrated on dipole and 

quadrupole radiations and integer spin values of 

nuclear states only. As already noted both in the 

text and also in Fig.1, we estimated the output 

𝐵2𝐹2 terms in Eq.(2) for 𝑘 = 2, with the inputs 𝐽𝑖 ,

𝐽𝑓 ,  𝐿1 and 𝐿2  values.  Input of initial spin 𝐽𝑖 was 

taken from 1 to 20 in the train set. From 𝐽𝑖  to 

final spin 𝐽𝑓, only dipole and quadrupole 

transitions have been considered in this study. 

Therefore for  𝐽𝑖 = 1 ,  𝐽𝑓 was taken only as 0, 1, 2 

and 3 in the calculations. For illustration, the 

transition to 0 is pure dipole and the transitions to 

1, 2 and 3 are dipole-quadrupole mixture. In other 

illustration for  𝐽𝑖 = 2 , the 𝐽𝑓 was taken only as 

0, 1, 2, 3 and 4. The transitions to 0 and 4 are pure 

quadrupole and the transitions to 1, 2 and 3 are 

dipole-quadrupole mixture and so on.    

In Figs. 2 and 3, literature data and LFNN output 

values for 𝐵2𝐹2 against the 𝐽𝑖  values up to 20 were 

shown. The minimum absolute value errors for 

ℎ = 5, 7 and 9 were 3.8𝑥10−5,  9.4𝑥10−6, and 

1.5𝑥10−4, respectively. The maximum absolute 

errors were 0.91, 0.28 and 0.50. All the error 

levels were taken as acceptable for the 

estimations. The results are consistent with the 

tabulated values [10] . The best estimation result 

was obtained with hidden neuron number  ℎ = 7 . 
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Figure 2. Calculated and LFNN 𝐵2𝐹2 values in train set versus the initial spin values of transitions a) for pure dipole, b) dipole-

quadrupole mixture and c) pure quadrupole transition.  

In the test set, initial spin  𝐽𝑖 input had varying 

values from 20 to 26. We again note that only 

dipole and quadrupole transitions were estimated 

in test set. In Fig. 3, we showed the literature and 

neural network output values for 𝐵2𝐹2 values 

versus the Ji values up to 20. The minimum 

absolute errors for ℎ = 5, 7 and 9 were, 

respectively, 1.9𝑥10-4, 5.3𝑥10-4 and 2.6𝑥10-4, 

while the maximums were, respectively, 

0.32, 0.20 and 0.88. All the error values were 

accepted as reasonable estimations. The results are 

consistent with the tabulated values [10]. 

 
Figure 3. Calculated and LFNN 𝐵2𝐹2 values in test set versus the initial spin values of transitions a) for pure dipole, b) dipole-

quadrupole mixture and c) pure quadrupole (middle) transition. 
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5. CONCLUSION 

Gamma ray angular distribution coefficients are 

useful to determine the nuclear spins and 

multipolarities of transitions between states. These 

coefficients are very difficult to compute even for 

small 𝑟 values, and such formulas are not even 

known for larger values of 𝑟. Moreover, they are 

highly nonlinear in nature. To overcome these 

obstacles, as a novel approach, in this paper we 

used suitable LFFNs with train sets to obtain 

consistent LFNN-EPFs with test sets. The results 

are in agreement with the literature values. The 

major conclusions of this paper are as follows.  

1. The LFNN can be safely used to determine 

spins of nuclear states and multipolarities of the 

gamma ray transitions.  

2. The coefficients in the gamma ray angular 

distribution function which are not tabulated in 

the literature can also be accurately estimated by 

the LFNN.  
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