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EXISTENCE OF SOLUTION TO A NONLOCAL CONFORMABLE
FRACTIONAL THERMISTOR PROBLEM

MOULAY RCHID SIDI AMMI AND DELFIM F. M. TORRES

Abstract. We study a nonlocal thermistor problem for fractional derivatives
in the conformable sense. Classical Schauder’s fixed point theorem is used to
derive the existence of a tube solution.

1. Introduction

The fractional calculus may be considered an old and yet novel topic. It has
started from some speculations of Leibniz, in 1695 and 1697, followed later by
Euler, in 1730, and has been strongly developed till present days [1, 2]. In recent
years, considerable interest in fractional calculus has been stimulated by its many
applications in several fields of science, including physics, chemistry, aerodynamics,
electrodynamics of complex media, signal processing, and optimal control [3, 4, 5].
Most fractional derivatives are defined through fractional integrals [5, 6, 7, 8]. Due
to this fact, those fractional derivatives inherit a nonlocal behavior, which leads
to many interesting applications, including memory effects and future dependence
[4, 9, 10, 11, 12, 13, 14].
In 2014, a new simpler and more effi cient definition of fractional derivative, de-

pending just on the basic limit definition of derivative, was introduced in [15]. See
also [16, 17, 18, 19, 20] for further developments on conformable differentiation.
The new notion is prominently compatible and conformable with the classical de-
rivative. In contrast with other fractional definitions, this new concept satisfies
more standard formulas for the derivative of the product and quotient of two func-
tions and has a simpler chain rule. In addition to the conformable derivative, the
conformable fractional integral has been also introduced, and Rolle and mean value
theorems for conformable fractional differentiable functions obtained. The subject
is nowadays under strong development [21, 22, 23, 24]. This is well explained by
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the fact that the new definition reflects a natural extension of the usual deriva-
tive to solve different types of fractional differential equations [25, 26, 27]. The
main advantages of the conformable calculus, among others, are: (i) the simple
nature of the conformable fractional derivative, which allows for many extensions
of classical theorems in calculus (e.g., product and chain rules) that are indispens-
able in applications but not valid for classical fractional differential models; (ii) the
conformable fractional derivative of a constant function is zero, which is not the
case for some fractional derivatives like the Riemann—Liouville; (iii) conformable
fractional derivatives, conformable chain rule, conformable integration by parts,
conformable Gronwall’s inequality, conformable exponential function, conformable
Laplace transform, all tend to the corresponding ones in usual calculus; (iv) while
in the standard calculus there exist functions that do not have Taylor power series
representations about certain points, in the theory of conformable calculus they
do have; (v) a nondifferentiable function can be differentiable in the conformable
sense.
The thermistor concept was first discovered in 1833 by Michael Faraday (1791—

1867), who noticed that the silver sulfides resistance decreases as the temperature
increases. This lead Samuel Ruben (1900—1988) to invent the first commercial
thermistor in the 1930s. Roughly speaking, a thermistor is a circuit device that
may be used either as a current limiting device or a temperature sensing device.
Typically, it is a small cylinder made from a ceramic material whose electrical con-
ductivity depends strongly on the temperature. The heat produced by an electrical
current, passing through a conductor device, is governed by the so-called thermis-
tor equations. Nowadays, thermistors can be found everywhere, in airplanes, air
conditioners, cars, computers, medical equipment, hair dryers, portable heaters,
incubators, electrical outlets, refrigerators, digital thermostats, ice sensors and air-
craft wings, ovens, stove tops and in all kinds of appliances. Knowing it, it is not
a surprise that a great deal of attention is currently paid, by many authors, to the
study of thermistor problems [28, 29, 30]. In [31], existence and uniqueness of a
positive solution to generalized nonlocal thermistor problems with fractional-order
derivatives were discussed. Recently, Sidi Ammi et al. studied global existence of
solutions for a fractional Caputo nonlocal thermistor problem [32]. Existence and
uniqueness results for a fractional Riemann—Liouville nonlocal thermistor problem
on arbitrary time scales are investigated in [33], while dynamics and stability re-
sults for Hilfer fractional-type thermistor problems are studied in [34]. The Hilfer
fractional derivative has been used to interpolate both the Riemann—Liouville and
the Caputo fractional derivative.
While previous works assume the electrical conductivity to be a smooth and

bounded function from above and below, or a Lipschitz continuous function de-
pending strongly in both time and temperature, in contrast, here we only use the
hypothesis of continuity on the electrical conductivity. Motivated by the results of
[35], we establish existence of a tube solution for a conformable fractional nonlocal
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thermistor problem by means of Schauder’s fixed point theorem. More precisely,
we are concerned with heat conduction in a thermistor used as a current surge
regulator governed by the following equations:

u(α)(t) =
λf(t, u(t))(∫ T

a
f(x, u(x)) dx

)2 = g(t, u(t)) , t ∈ [a, T ] ,

u(a) = ua,

(1)

where u describes the temperature of the conductor and u(α)(t) denotes the con-
formable fractional derivative of u at t of order α, α ∈ (0, 1). We assume that a,
T and λ are fixed positive reals. Moreover, as already mentioned, we assume the
following hypothesis:

(H1) f : [a, T ]× R+ → R+∗ is a continuous function.
The rest of the article is arranged as follows. In Section 2, we give preliminary

definitions and set the basic concepts and necessary results from the simple and
interesting conformable fractional calculus. Then, in Section 3, we prove existence
of a tube solution via Schauder’s fixed point theorem.

2. Preliminaries

We first recall the definition of conformable fractional derivative as given in [15].

Definition 1 (Conformable fractional derivative [15]). Let α ∈ (0, 1) and f :
[0,∞)→ R. The conformable fractional derivative of f of order α is defined by

Tα(f)(t) := lim
ε→0

f(t+ εt1−α)− f(t)
ε

for all t > 0. Often, we write f (α) instead of Tα(f) to denote the conformable
fractional derivative of f of order α. In addition, if the conformable fractional
derivative of f of order α exists, then we simply say that f is α-differentiable. If
f is α-differentiable in some t ∈ (0, a), a > 0, and limt→0+ f (α)(t) exists, then we
define f (α)(0) := limt→0+ f (α)(t).

If f is differentiable at a point t > 0, then Tα(f)(t) = t1−α dfdt (t).

Remark 2. If f ∈ C1, then one has
lim
α→1

Tα(f)(t) = f ′(t), lim
α→0

Tα(f)(t) = tf ′(t).

Definition 3 (Conformable fractional integral [15]). Let α ∈ (0, 1), f : [a,∞)→ R.
The conformable fractional integral of f of order α from a to t, denoted by Iaα(f)(t),
is defined by

Iaα(f)(t) :=

∫ t

a

f(τ)

τ1−α
dτ,

where the above integral is the usual improper Riemann integral.
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Theorem 4 (See [15]). If f is a continuous function in the domain of Iaα, then
Tα (I

a
α(f)) (t) = f(t) for all t ≥ a.

Notation 5. Let 0 < a < b. We denote by αJ
b
a[f ] the value of the integral

∫ b
a
f(t)
t1−α dt,

that is, αJ
b
a[f ] := Iaα(f)(b). We also denote by C

(α)([a, b],R), 0 < a < b, α > 0, the
set of all real-valued functions f : [a, b]→ R that are α-differentiable and for which
the α-derivative is continuous. We often abbreviate C(α)([a, b],R) by C(α)([a, b]).

Lemma 6 (See [35]). Let r ∈ C(α)([a, b]), 0 < a < b, be such that r(α)(t) < 0 on
the set {t ∈ [a, b] : r(t) > 0}. If r(a) ≤ 0, then r(t) ≤ 0 for every t ∈ [a, b].

Theorem 7 (See [35]). If g ∈ L1([a, b]), then function x : [a, b]→ R defined by

x(t) := e−
1
α (

t
a )
α
(
e
1
αx0 + αJ

t
a

[
g(s)

e−
1
α (

s
a )
α

])
is solution to problem{

x(α)(t) + 1
aαx(t) = g(t), t ∈ [a, b], a > 0,

x(a) = x0.

Proposition 8 (See [35]). If x : (0,∞)→ R is α-differentiable at t ∈ [a, b], then

|x(t)|(α) = x(t)xα(t)

|x(t)| .

For proving our main results, we make use of the following auxiliary definition
and lemmas.

Definition 9 (See p. 112 of [36]). Let X, Y be topological spaces. A map f : X → Y
is called compact if f(X) is contained in a compact subset of Y .

Lemma 10 (See [37]). Let M be a subset of C([0, T ]). Then M is precompact if
and only if the following conditions hold:

(1) {u(t) : u ∈M} is uniformly bounded,
(2) {u(t) : u ∈M} is equicontinuous on [0, T ].

Lemma 11 (Schauder fixed point theorem [37]). Let U be a closed bounded convex
subset of a Banach space X. If T : U → U is completely continuous, then T has a
fixed point in U .

3. Main Results

We begin by introducing the notion of tube solution for problem (1).

Definition 12. Let (v,M) ∈ C(α)([a, T ],R) × C(α)([a, T ], [0,∞)). We say that
(v,M) is a tube solution to problem (1) if

(i) (y − v(t))
(
g(t, y)− v(α)

)
≤ M(t)M (α)(t) for every t ∈ [a, b] and every real

number y such that |y − v(t)| =M(t);
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(ii) v(α)(t) = g(t, v(t)) and M (α)(t) = 0 for all t ∈ [a, b] such that M(t) = 0;
(iii) |ua − v(a)| ≤M(a).

Notation 13. We introduce the following notation:

T(v,M) :=
{
u ∈ C(α)([a, T ],R) : |u(t)− v(t)| ≤M(t), t ∈ [a, T ]

}
.

Consider the following problem:{
u(α) + 1

aαu(t) = g(t, ũ(t)) + 1
aα ũ(t), t ∈ [a, T ], a > 0,

u(a) = ua,
(2)

where

ũ(t) :=

{
M(t)
|u−v(t)| (u(t)− v(t)) + v(t) if |u− v(t)| > M(t),

u(t) otherwise.
(3)

In order to apply Schauder’s fixed point theorem, let us define the operator K :
C([a, T ])→ C([a, T ]) by

K(u)(t) := e−
1
α (

t
a )
α

(
e
1
αua + αJ

t
a

[
g(s, ũ(s)) + 1

aα ũ(s)

e−
1
α (

s
a )
α

])
.

Proposition 14. If (v,M) ∈ C(α)([a, T ],R) × C(α)([a, T ], [0,∞)) is a tube solu-
tion to (1), then K : C([a, T ]) → C([a, T ]) is compact and problem (2)—(3) has a
solution.

Proof. Let ε > 0 and {un}n∈N be a sequence of C([a, T ],R) that converges to
u ∈ C([a, T ],R). Remark that L(t) = e−

1
α (

t
a )
α

is a decreasing function on [a, T ].
Then, L(T ) ≤ L(t) ≤ L(a) for all t ∈ [a, T ]. It results that

|K(un(t))−K(u(t))| =
∣∣∣∣∣e− 1

α (
t
a )
α

(
e
1
αua + αJ

t
a

[
g(s, ũn(s)) +

1
aα ũn(s)

e−
1
α (

s
a )
α

])

− e− 1
α (

t
a )
α
(
e
1
αua + αJ

t
a

[
g(s, ũ(s)) + 1

aα ũ(s)

e−
1
α (

s
a )
α

]) ∣∣∣∣∣
≤ L(a)

L(T )
αJ

t
a

[∣∣∣∣(g(s, ũn(s)) + 1

aα
ũn(s)

)
−
(
g(s, ũ(s)) +

1

aα
ũ(s)

)∣∣∣∣]
≤ L(a)

L(T )

(
αJ

t
a [|g(s, ũn(s))− g(s, ũ(s))|] +

1

aα
αJ

t
a [|ũn(s)− ũ(s)|]

)
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or

g(s, ũn(s))− g(s, ũ(s)) =
λf(s, ũn(s))(∫ T

a
f(x, ũn(x)) dx

)2 − λf(s, ũ(s))(∫ T
a
f(x, ũ(x)) dx

)2
=

λ(∫ T
a
f(x, ũn) dx

)2 (f(s, ũn(s))− f(s, ũ(s)))
+ λf(s, ũ(s))

 1(∫ T
a
f(x, ũn) dx

)2 − 1(∫ T
a
f(x, ũ) dx

)2


= I1 + I2.

Since there is a constant R > 0 such that ‖ũ‖C([a,T ],R) < R, there exists an index
N such that ‖ũn‖C([a,T ],R) ≤ R for all n > N . Thus, f is uniformly continuous
and, consequently, uniformly bounded on [a, T ]×BR(0). Then, there exist positive
constants A and B such that A ≤ f(s, v) ≤ B for all (s, v) ∈ [a, T ]×BR(0). Thus,
for a well chosen D, which will be given below, one has

∃η > 0, |ũn − ũ| < η, ∀x ∈ [a, T ], |f(x, ũn) − f(x, ũ)| < D

and

|I1| ≤
λ

A2(T − a)2 |f(s, ũn(s))− f(s, ũ(s))|

≤ λD

A2(T − a)2 .

Furthermore, we have

|I2| ≤
λB

∣∣∣∣(∫ Ta f(x, ũn) dx
)2
−
(∫ T

a
f(x, ũ) dx

)2∣∣∣∣(∫ T
a
f(x, ũn) dx

)2 (∫ T
a
f(x, ũ) dx

)2
≤ λB

A4(T − a)4

∣∣∣∣∣
(∫ T

a

f(x, ũn) − f(x, ũ)dτ
)(∫ T

a

f(x, ũn) + f(x, ũ)dτ

)∣∣∣∣∣
≤ 2λB2

A4(T − a)3

(∫ T

a

|f(x, ũn) − f(x, ũ)| dτ
)

≤ 2λB2D

A4(T − a)2 .

Then,

|I1 + I2| ≤ λD
(

1

A2(T − a)2 +
2B2

A4(T − a)2

)
:= E
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and it follows that

|K(un(t))−K(u(t))| ≤
L(a)

L(T )

(
αJ

T
a (E) +

1

aα
αJ

T
a (η)

)
.

On the other hand, we can estimate the right hand side of the above inequality by

L(a)

L(T )
αJ

T
a (E) ≤

L(a)

L(T )
EαJ

T
a (1)

≤ L(a)

L(T )
E
Tα − aα

α
=
ε

2

and

L(a)

L(T )

1

aα
αJ

T
a (η) ≤

L(a)

L(T )

η

aα
αJ

T
a (1)

≤ L(a)

L(T )

η

aα
Tα − aα

α
=
ε

2
.

If we set

E =
ε

2

L(T )

L(a)

α

Tα − aα =
αεL(T )

2L(a)Tα − aα

and choose

D =
E

λ

(
1

A2(T − a)2 +
2B2

A4(T − a)2

)−1
and

η =
αεaαL(T )

2L(a)(Tα − aα) ,

then

|K(un(t))−K(u(t))| ≤ ε.

This proves the continuity of K. To finish the proof of Proposition 14, we prove
three technical lemmas.

Lemma 15. If f is locally Lipschitzian, then the operator K is continuous.

Proof. It is a direct consequence of the inequality

|K(un(t))−K(u(t))| ≤ c‖un(t)− u(t)‖,

which tends to zero as n goes to +∞. �

Lemma 16. The set K(C([a, T ])) is uniformly bounded.
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Proof. Let un ∈ C([a, b]). We have

|K(un)(t)| =
∣∣∣∣e− 1

α (
t
a )
α

(
e
1
αua + αJ

t
a

[
g(s, ũn(s)) +

1
aα ũn(s)

e−
1
α (

s
a )
α

])∣∣∣∣
≤ L(a)

(
e
1
α |ua|+

1

K(T )
αJ

T
a

[∣∣∣∣g(s, ũn(s)) + 1

aα
ũn(s)

∣∣∣∣])
≤ L(a)

(
e
1
α |ua|+

1

L(T )
αJ

T
a [|g (s, ũn(s))|] +

1

L(T )aα
αJ

T
a [|ũn(s)|]

)
.

Similarly to above, there is an R > 0 such that |ũn(s)| ≤ R for all s ∈ [a, T ] and
all n ∈ N. Since function f is compact on [a, T ] × BR(0), it is uniformly bounded
and, as a consequence, g is also uniformly bounded. We deduce that

|g(s, ũn)| ≤
λ |f(s, ũn(s))|(∫ T
a
f(s, ũn(s))ds

)2
≤ λB

A2(T − a)2 = G.

This ends the proof of Lemma 16. �

Lemma 17. The set K((C([a, T ])) is equicontinuous.

Proof. For t1, t2 ∈ [a, T ], we have
|K(un)(t2)−K(un)(t1)|

=

∣∣∣∣e− 1
α (

t2
a )

α

(
e
1
αua + αJ

t2
a

[
g(s, ũn(s)) +

1
aα ũn(s)

e−
1
α (

s
a )
α

])
− e−

1
α (

t1
a )

α

(
e
1
αua + αJ

t1
a

[
g(s, ũn(s)) +

1
aα ũn(s)

e−
1
α (

s
a )
α

])∣∣∣∣
≤ e 1

α |ua|
∣∣∣e− 1

α (
t1
a )

α

− e− 1
α (

t2
a )

α
∣∣∣+ ∣∣∣∣αJt2t1 [g(s, ũn(s)) + 1

aα ũn(s)

e−
1
α (

s
a )
α

]∣∣∣∣
≤ e 1

α |ua|
∣∣∣e− 1

α (
t1
a )

α

− e− 1
α (

t2
a )

α
∣∣∣+ 1

L(T )

∣∣∣∣αJt2t1(G+ R

aα
)

∣∣∣∣
≤ e 1

α |ua|
∣∣∣e− 1

α (
t1
a )

α

− e− 1
α (

t2
a )

α
∣∣∣+ 1

L(T )
(G+

R

aα
)
∣∣
αJ

t2
t1(1)

∣∣
≤ e 1

α |ua|
∣∣∣e− 1

α (
t1
a )

α

− e− 1
α (

t2
a )

α
∣∣∣+ 1

L(T )
(G+

R

aα
) |tα1 − tα2 | .

The right hand of the above inequality does not depend on u and tends to zero as
t2 → t1. This proves that the sequence (K(un))n∈N is equicontinuous. �

By the Arzelà—Ascoli theorem, which asserts that a subset is relatively compact
if and only if it is bounded and equicontinuous [36, p. 607], K(C([a, b])) is relatively
compact and therefore K is compact. Consequently, by the Schauder fixed point
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theorem, it has a fixed point (see [36]), which is a solution to problem (2)—(3). We
have just proved Proposition 14. �

We are now ready to state the main result of the paper.

Theorem 18. If (v,M) ∈ C(α)([a, T ],R)×C(α)([a, T ], [0,∞)) is a tube solution to
(1), then problem (1) has a solution u ∈ C(α)([a, T ],R) ∩ T(v,M).

Proof. It remains to show that for every solution u to problem (2)—(3), u ∈ T(v,M).
We argue as in [35]. Consider the set A := {t ∈ [a, T ] : |u(t)− v(t)| > M(t)}. If
t ∈ A, then by Proposition 8 one has

(|u(t)− v(t)| −M(t))(α) =
(u(t)− v(t))

(
u(α)(t)− v(α)(t)

)
|u(t)− v(t)| −M (α)(t).

Thus, since (v,M) is a tube solution to problem (1), we have on {t ∈ A :M(t) > 0}
that

(|u(t)− v(t)| −M(t))(α)

=
(u(t)− v(t))

(
u(α)(t)− v(α)(t)

)
|u(t)− v(t)| −M (α)(t)

=
(u(t)− v(t))

(
g(t, ũ(t)) +

(
1
aα ũ(t)−

1
aαu(t)

)
− v(α)(t)

)
|u(t)− v(t)| −M (α)(t)

=
(ũ(t)− v(t))

(
g(t, ũ(t))− v(α)(t)

)
M(t)

+
(ũ(t)− v(t)) (ũ(t)− u(t))

aαM(t)
−M (α)(t)

=
(ũ(t)− v(t))

(
g(t, ũ(t))− v(α)(t)

)
M(t)

+

[
M(t)

|u(t)− v(t)| − 1
]
|u(t)− v(t)|2
aα |u(t)− v(t)| −M

(α)(t)

=
(ũ(t)− v(t))

(
g(t, x̃(t))− v(α)(t)

)
M(t)

+

[
M(t)

aα
− |u(t)− v(t)|

aα

]
−M (α)(t)

≤ M(t)Mα(t)

M(t)
+
1

aα
[M(t)− |u(t)− v(t)|]−M (α)(t)

< 0.
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On the other hand, by Definition 12, we have on t ∈ {τ ∈ A :M(τ) = 0} that

(|u(t)−v(t)| −M(t))(α)

=
(u(t)− v(t))

(
g(t, ũ(t)) +

(
1
aα ũ(t)−

1
aαu(t)

)
− v(α)(t)

)
|u(t)− v(t)| −M (α)(t)

=
(u(t)− v(t))

(
g(t, ũ(t))− v(α)(t)

)
|u(t)− v(t)| − 1

aα
|u(t)− v(t)| −M (α)(t)

< −M (α)(t)

= 0.

If we set r(t) := |u(t)− v(t)| −M(t), then r(α) < 0 on A := {t ∈ [a, T ] : r(t) > 0}.
Moreover, r(a) ≤ 0 since u satisfies |ua − v(a)| ≤ M(a). It follows from Lemma 6
that A = ∅. Therefore, u ∈ T(v,M) and the proof of the theorem is complete. �
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