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ANALYSIS AND OPTIMAL CONTROL OF AN HIV MODEL
WITH LOGISTIC GROWTH AND INFECTED CELLS IN

ECLIPSE PHASE

SANAA HARROUDI, JAOUAD DANANE, AND KARAM ALLALI

Abstract. A mathematical model of the human immunodeficiency virus in-
fection with logistic growth, infected cells in eclipse phase and therapy is in-
vestigated. The model includes four nonlinear differential equations describing
the evolution of uninfected CD4+ T cells, infected CD4+ T cells in latent stage,
productively infected CD4+ T cells and free virus. Two types of treatments
are incorporated into the model; the purpose of the first one consists to block
the viral proliferation while the role of the second is to prevent new infections.
The positivity and boundedness of solutions are established. The local stabil-
ity of the disease free steady state and the infection steady states are studied.
An optimal control problem is proposed and investigated. Numerical simula-
tions are performed, confirming stability of the free and endemic equilibria and
illustrating the effectiveness of the two incorporated treatments via an effi cient
optimal control.

1. Introduction

Human immunodeficiency virus (HIV) is a virus that progressively weakens the
immune system. It is known as the main cause of several deadly infections after
the resulting acquired immunodeficiency syndrome (AIDS) is reached. Without
treatment of the HIV infection, HIV advances in stages getting worse over time [1].
The most powerful antiretrovirals can not completely eliminate the virus because
it remains dormant in some cells [2]. Individuals infected with HIV who are under
treatment maintain their viral load below the detection limit [3, 4]. Currently,
there exist two main kinds of antiretroviral drugs; Reverse Transcriptase Inhibitors
(RTIs) and Protease Inhibitors (PIs) [5]. Many mathematical models have proved
their usefulness for describing and understanding the dynamics of HIV infection
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[6, 5, 7, 8, 9, 10, 11, 12]. The basic of them was suggested in [6]:
ẋ = λ− d1x(t)− k1x(t)v(t),
ṡ = k1x(t)v(t)− d3s(t),
v̇ = as(t)− d4v(t),

(1)

where x, s and v denote the concentration of uninfected CD4+ T cells, infected
CD4+ T cells and free virus, respectively. Susceptible host cells CD4+ T cells are
produced at a rate λ, die at a rate d1 and become infected by virus at a rate k1xv.
Infected cells die at a rate d3. Finally, the free virus is produced by infected cells at
a rate a and decays at a rate d4. In these last two decades, some HIV mathematical
models decompose the infect class into two classes that represent the infected cells
in latent stage and others in active stage. For example in [10], this scenario is
represented as follows:

ẋ = λ− d1x(t)− k1x(t)v(t) + py(t),
ẏ = k1x(t)v(t)− (d2 + k2 + p)y(t),
ṡ = k2y(t)− d3s(t),
v̇ = as(t)− d4v(t),

(2)

here y denotes the concentration of infected CD4+ T cells in latent stage. Latently
infected cells die at a rate d2, and become infected cells by a rate k2. The infected
cells become uninfected at rate p. More recently a modified model of (2) considering

a saturated infection rate
k1x(t)v(t)

x(t) + v(t)
was studied in [11]:



ẋ = λ− d1x(t)−
k1(1− η)x(t)v(t)

x(t) + v(t)
,

ẏ =
k1(1− η)x(t)v(t)

x(t) + v(t)
− d2y(t)− k2y(t),

ṡ = k2y(t)− d3s(t),
v̇ = a(1− ε)s(t)− d4v(t),

(3)

with the two constant η and ε stand for the effi ciency of treatment in blocking new
infection and in inhibiting viral production, respectively. Until now, there is no
effective treatment that eradicates HIV virus; However there are some therapies that
reduce HIV viral replication including reverse transcriptase inhibitors (RTIs) and
protease inhibitors (PIs) [13]. Different works extend the basic model by including
a logistic growth term that describes the growth rate of healty CD4+ T cells [14,
15, 16, 17]. In this paper, we include into the model (3) the logistic growth function
and the fraction of infection. To this end, we consider the following model
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

ẋ = rx(1− T

Tm
)− d1x−

(1− η)k1xv
x+ v

,

ẏ =
α(1− η)k1xv

x+ v
− (d2 + k2)y,

ṡ =
(1− α)(1− η)k1xv

x+ v
+ k2y − d3s,

v̇ = (1− ε)as− d4v,

(4)

With
T = x+ y + s.

The initial data are

x(0) = x0 ≥ 0, y(0) = y0 ≥ 0, s(0) = s0 ≥ 0, v(0) = v0 ≥ 0. (5)

In this model, x(t), y(t), s(t), v(t) represent the concentration of uninfected
CD4+ T cells, infected CD4+ T cells in latent stage, productively infected CD4+ T
cells and free virus (HIV), respectively. Susceptible host cells CD4+ cells grow at
a rate r, die at a rate d1x and become infectious by free virus a rate

(1−η)k1xv
x+v . Tm

is the carrying capacity of the T-cell population. Infected CD4+ T cells in latent
stage are produced at a rate α(1−η)k1xv

x+v , die at a rate d2y and become productively
infected cells at a rate k2y. Productively infected CD4+ T cells are produced at
a rate (1−α)(1−η)k1xv

x+v and die at a rate d3s. Free virus (HIV) is produced from
infected cells at a rate (1− ε)as and die a rate d4v. η and ε measure the effi cacy of
reverse transcriptase inhibitor and protease inhibitor, respectively. α is the fraction
of infection leading to proviral latency.
The paper is organized as follows. Section 2 is devoted to the proof of existence,

positivity and boundedness of solutions. The analysis of the model is described
in Section 3. Then, in Section 4, we perform an optimization analysis of the viral
infection model. Results obtained by numerical simulations are given in Section 5
and we conclude in the last section.

2. Positivity and Boundedness of solutions

For the problem deal with cell population evolution, the cell densities should re-
main non-negative and bounded. In this subsection, we will establish the positivity
and boundedness of solutions of the model (4). First of all, for biological reasons,
the parameters x0, y0, s0 and v0 must be larger than or equal to 0. Hence, we have
the following result

Proposition 1. The solutions of the problem (4) exist. Moreover, they are bounded
and nonnegative for all t > 0.

Proof. Notice that system (4) is locally lipschitzian at t = 0. Hence the solution of
this system exists and is unique on [0, b) for some b > 0. Observe that if x(0) = 0,
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then x ≡ 0 for all t > 0. Hence we assume below that x(0) > 0. We also have the
following:

ẏ |y=0=
α(1− η)k1xv

x+ v
≥ 0, ṡ |s=0=

(1− α)(1− η)k1xv
x+ v

+ k2y ≥ 0 and v̇ |v=0=
(1 − ε)as ≥ 0. This shows that x(0) = x0 > 0, y(0) = y0 ≥ 0, s(0) = s0 ≥
0 and v(0) = v0 ≥ 0 for all t ∈ [0, b).

On the other hand, for the boundedness of the solutions, we have the following:

dT (t)

dt
= rx(t)(1− T (t)

Tm
)− d1x(t)− d2y(t)− d3s(t),

since

T (t) ≤ Tm and x(t) ≤ T (t),
we obtain

dT (t)

dt
≤ rT (t)(1− T (t)

Tm
) ≤ rT (t),

thus

T (t) ≤ T0e−rt,
with T0 = x0 + y0 + s0.
We conclude that T is bounded, which means also that x, y and s are bounded.
From the last equation of (4), we have

v(t) ≤ v(0)e−d4t + (1− ε)a
∫ t

0

s(t)e(ξ−t)d4dξ,

therefore

v(t) ≤ v(0) + (1− ε)a
d4

‖s‖∞ (1− e
−d4t).

Since (1− e−d4t) ≤ 1, we conclude that v is bounded. �

3. Analysis of the model

A straightforward calculation by using the next generation matrix method [18]
gives the following expression for the basic reproductive number of the model (4):

R0 =
ak1(d2 + k2)(1− α)(1− θ) + αak1k2(1− θ)

d3d4(d2 + k2)
.

For simplicity, let’s denote by θ = η+ ε− ηε the effi cacy combination of the two
drugs. Then 1− θ = (1− η)(1− ε) which means that each drug acts independently.
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3.1. Steady states. There exist two steady states: the infection-free equilibrium
Ef = (

Tm(r−d1)
r , 0, 0, 0) which represent the disease free equilibrium that correspond

to the maximal level of healthy CD4+ T cells and E∗ = (x∗, y∗, s∗, v∗) is a state of
persistent, chronic HIV infection. Explicitly, E∗ requires

x∗ =
Tmak1k2(1− θ)(R0 − 1)(R2 − 1)

r[ak2R0(1− ε) + d4k2R0(R0 − 1) + ak1(1− α)(1− θ)(R0 − 1)(R3 − 1)]
,

y∗ =
Tmak

2
1(1− α)(1− η)(1− θ)(R0 − 1)2(R2 − 1)(R3 − 1)

rR0[ak2R0(1− ε) + d4k2R0(R0 − 1) + ak1(1− α)(1− θ)(R0 − 1)(R3 − 1)]
,

s∗ =
Tmd4k1k2(1− η)(R0 − 1)2(R2 − 1)

r[ak2R0(1− ε) + d4k2R0(R0 − 1) + ak1(1− α)(1− θ)(R0 − 1)(R3 − 1)]
,

v∗ =
Tmak1k2(1− θ)(R0 − 1)2(R2 − 1)

r[ak2R0(1− ε) + d4k2R0(R0 − 1) + ak1(1− α)(1− θ)(R0 − 1)(R3 − 1)]
,

This equilibrium exits only if R0 > 1 and R2 > 1 with

R2 =
R0(r − d1)

k1(1− η)(R0 − 1)
,

R3 = 1 +
aαk1k2(1− θ)
d3d4(d2 + k2)

.

3.2. The stability analysis. First, the jacobian matrix of the system (4) is given
by

J =


r(1− 2x+y+s

Tm
)− k1(1−η)v2

(x+v)2 − d1 − rx
Tm

− rx
Tm

−k1(1−η)x
2

(x+v)2

αk1(1−η)v2
(x+v)2 −(d2 + k2) 0 αk1(1−η)x2

(x+v)2

k1(1−α)(1−η)v2
(x+v)2 k2 −d3 k1(1−α)(1−η)x2

(x+v)2

0 0 (1− ε)a −d4


(6)
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3.2.1. Stability of the infection-free equilibrium point Ef . Here, we will analyze
locally asymptotical stability of the disease-free equilibrium Ef .

Proposition 2. The free equilibrium point Ef is locally asymptotically stable when
R0 < 1 and unstable if R0 > 1.

Proof. The Jacobian matrix at Ef is given by

JEf =


−(r − d1) −(r − d1) −(r − d1) −k1(1− η)

0 −(d2 + k2) 0 αk1(1− η)
0 k2 −d3 k1(1− α)(1− η)
0 0 a −d4


The characteristic polynomial of JEf is

PEf (ξ) = (ξ + (r − d1))[ξ3 + a1ξ2 + a2ξ + a3],
Where

a1 = d2 + d3 + d4 + k2,

a2 = (d3 + d4)(d2 + k2) + d3d4(1−R1),
a3 = d3d4(d2 + k2)(1−R0).

and

R1 =
ak1(1− α)(1− θ)

d3d4
.

While ξ1 = −(r − d1) is a negative eigenvalue, the other three eigenvalues are
given by the solution of the following cubic equation,

ξ3 + a1ξ
2 + a2ξ + a3 = 0.

First we remark that

R0 = R1 +
αak1k2(1− θ)
d3d4(d2 + k2)

,

since R0 < 1 then R1 < 1.
It is clear that, a1 > 0. a2 > 0 and a1a2 − a3 = (d3 + d4)[(d2 + k2)(d2 + d3 +

d4 + k2) + d3d4(1 − R1)] > 0 when R0 < 1. If R0 < 1, then a3 > 0. From the
Routh-Hurwitz Theorem given in [16], all roots of this equation have negative real
parts. Then Ef is locally asymptotically stable when R0 < 1. �

3.2.2. Stability of the endemic equilibrium point E∗. In this part, we discuss the
local stability of the endemic infection equilibrium point E∗.

Proposition 3. (1) If R0 < 1 or R2 < 1 then the point E∗ does not exist.
(2) If R0 = 1, then E∗ = Ef .
(3) The endemic equilibrium point E∗ is locally asymptotically stable when

R0 > 1 and R2 > 1.
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Proof. From the expression of E∗ we observe that this point exists when R0 > 1
and R2 > 1, it becomes Ef when R0 = 1.
We assume that R0 > 1 and R2 > 1.
The Jacobian matrix at the endemic equilibrium point E∗ is given by

J =


r(1− 2x∗+y∗+s∗

Tm
)− k1(1−η)v∗2

(x∗+v∗)2 − d1 − rx∗Tm − rx∗Tm −k1(1−η)x
∗2

(x∗+v∗)2

αk1(1−η)v∗2
(x∗+v∗)2 −(d2 + k2) 0 αk1(1−η)x∗2

(x∗+v∗)2

k1(1−α)(1−η)v∗2
(x∗+v∗)2 k2 −d3 k1(1−α)(1−η)x∗2

(x∗+v∗)2

0 0 (1− ε)a −d4


(7)

The characteristic polynomial of JE∗ is

PE∗(ξ) = ξ4 + b1ξ
3 + b2ξ

2 + b3ξ + b4,

Where

b1 = d1 + d2 + d3 + d4 + k2 +
k1(1− η)v∗2
(x∗ + v∗)2

+
r(2x∗ + y∗ + s∗)

Tm
− r,

b2 = (d2 + d3 + d4 + k2)(
r(2x∗ + y∗ + s∗)

Tm
+
k1(1− η)v∗2
(x∗ + v∗)2

+ d1 − r) + d3d4

+ (d2 + k2)(d3 + d4) +
k1(1− η)rx∗v∗2
Tm(x∗ + v∗)2

− ak1(1− α)(1− θ)x∗2
(x∗ + v∗)2

,

b3 = (d3(d2 + k2) + d4(d2 + k2) + d3d4)(
k1(1− η)v∗2
(x∗ + v∗)2

+
r(2x∗ + y∗ + s∗)

Tm
+ d1

− r) + αrk1(1− η)x∗v∗2
Tm(x∗ + v∗)2

(d4 + d3 + k2) +
rk1(1− α)(1− η)x∗v∗2

Tm(x∗ + v∗)2
(d4 + d2 + k2)

+ (d2 + k2)d3d4 −
ark1(1− α)(1− θ)x∗3

Tm(x∗ + v∗)2
− αak1k2(1− θ)x∗2

(x∗ + v∗)2

− ak1(1− α)(1− θ)x∗2
(x∗ + v∗)2

(d1 + d2 + k2),

b4 = d3d4(d2 + k2)(
r(2x∗ + y∗ + s∗)

Tm
+
k1(1− η)v∗2
(x∗ + v∗)2

+ d1 − r)

+
rαk1(1− η)x∗v∗2(d3d4 + d4k2)

Tm(x∗ + v∗)2
− ((d2 + k2)(1− α) + αk2)(

ak1d1(1− θ)x∗2
(x∗ + v∗)2

+
ark1(1− θ)x∗3
Tm(x∗ + v∗)2

) +
rk1d4(d2 + k2)(1− α)(1− η)x∗v∗2

Tm(x∗ + v∗)2
.

From the Routh-Hurwitz theorem applied to the fourth order polynomial, the
eigenvalues of the jacobian matrix (7) have negative real parts since we have b1b2 >
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b3 and b1b2b3 > b23 + b21b4. Consequently, we obtain the asymptotic local stability
of the endemic point E∗. �

4. Optimal control

In this section, we study an optimal control problem by introducing drug therapy
into the model (4) and we assume that treatment reduces the viral replication. Our
purpose is to find a treatment strategy u(t) = (u1(t), u2(t)) that maximizes the
number of CD4+ T cells, keeping the cost, measured in terms of chemotherapy
strength and a combination of duration and intensity, as low as possible.

4.1. The optimization problem. To study the optimal control problem, we sug-
gest the following control system with two control variables:

dx

dt
= rx(t)(1− T (t)

Tm
)− d1x(t)−

k1(1− u1(t))x(t)v(t)
x(t) + v(t)

,

dy

dt
=
αk1(1− u1(t))x(t)v(t)

x(t) + v(t)
− (d2 + k2)y(t),

ds

dt
=
k1(1− α)(1− u1(t))x(t)v(t)

x(t) + v(t)
+ k2y(t)− d3s(t),

dv

dt
= a(1− u2(t))s(t)− d4v(t),

(8)

Here, u1 represents the effi ciency of drug therapy in blocking new infection, so
that infection rate in the presence of drug is (1 − u1); while u2 stands for the
effi ciency of drug therapy in inhibiting viral production, such that the virion pro-
duction rate under therapy is (1− u2).
The optimization problem under consideration is to maximize the following ob-

jective functional

J(u1, u2) =

∫ tf

0

{
x(t)−

[A1
2
u21(t) +

A2
2
u22(t)

]}
dt, (9)

where tf is the time period of treatment and the positive constants A1 and
A2 stand for the benefits and costs of the introduced treatment. The two control
functions, u1(t) and u2(t) are assumed to be bounded and Lebesgue integrable.

J(u∗1, u
∗
2) = max{J(u1, u2) : (u1, u2) ∈ U}, (10)

where U is the control set defined by

U = {(u1(t), u2(t)) : ui(t) measurable, 0 ≤ ui(t) ≤ 1, t ∈ [0, tf ], i = 1, 2}.
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4.2. Existence of an optimal control pair. The existence of the optimal control
pair can be directly obtained using the results in [19, 20]. More precisely, we have
the following theorem.

Theorem 4. There exists an optimal control pair (u∗1, u
∗
2) ∈ U solution of (10).

Proof. To use the existence result in [19], we first need to check the following
properties:

(P1) the set of controls and corresponding state variables is nonempty;
(P2) the control set U is convex and closed;
(P3) the right-hand side of the state system is bounded by a linear function in

the state and control variables;
(P4) the integrand of the objective functional is concave on U ;
(P5) there exist constants c1, c2 > 0 and β > 1 such that the integrand

L(x, u1, u2) = x−
(
A1
2
u21 +

A2
2
u22

)
of the objective functional (9) satisfies

L(x, u1, u2) ≤ c2 − c1(| u1 |2 + | u2 |2)
β
2 .

Using the result in [20], we obtain existence of solutions of system (8), which
gives condition (P1). The control set is convex and closed by definition, which gives
condition (P2). Since our state system is bilinear in u1 and u2, the right-hand side
of system (8) satisfies condition (P3), using the boundedness of solutions. Note that
the integrand of our objective functional is concave. Also, we have the last needed
condition:

L(x, u1, u2) ≤ c2 − c1
(
| u1 |2 + | u2 |2

)
,

where c2 depends on the upper bound on x, and c1 > 0 since A1 > 0 and A2 > 0.
We conclude that there exists an optimal control pair (u∗1, u

∗
2) ∈ U such that

J(u∗1, u
∗
2) = max

(u1,u2)∈U
J (u1, u2).

�

4.3. The optimality system. Pontryagin’s minimum principle provides the nec-
essary conditions for such optimal control problem [21]. This principle transforms
(8), (9) and (10) into a problem of maximizing an Hamiltonian, H, point wisely
with respect to u1 and u2:

H(t, x, y, s, v, u1, u2, λ) =
A1

2 u
2
1 +

A2

2 u
2
2 − x+

4∑
i=0

λifi,
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with 

f1 = rx(1− T

Tm
)− d1x−

k1(1− u1)xv
x+ v

,

f2 =
αk1(1− u1)xv

x+ v
− (d2 + k2)y,

f3 =
k1(1− α)(1− u1)xv

x+ v
+ k2y − d3s,

f4 = a(1− u2)s− d4v.

By applying Pontryagin’s minimum principle [21], we obtain the following result.

Theorem 5. Given optimal controls u∗1, u
∗
2 and solutions x

∗, y∗, s∗ and v∗ of the
corresponding state system (8), there exists adjoint variables λ1, λ2, λ3 and λ4 sat-
isfying the equations



λ′1(t) = 1− λ1(t)
[
− r + r

( 2x∗(t)+y∗(t)+s∗(t)
Tm

)
+ d1 +

k1(1−u∗1(t))v
∗2(t)

(x∗(t)+v∗(t))2

]
−λ2(t)αk1(1−u

∗
1(t))v

∗2(t)
(x∗(t)+v∗(t))2 − λ3(t)k1(1−α)(1−u

∗
1(t))v

∗2(t)
(x∗(t)+v∗(t))2 ,

λ′2(t) = λ1(t)
rx∗(t)
Tm

+ λ2(t)(d2 + k2)− λ3(t)k2,
λ′3(t) = λ1(t)

rx∗(t)
Tm

+ λ3(t)d3 − λ4(t)a(1− u∗2(t)),
λ′4(t) = λ1(t)

k1(1−u∗1(t))x
∗2(t)

(x∗(t)+v∗(t))2 − λ2(t)αk1(1−u
∗
1(t))x

∗2(t)
(x∗(t)+v∗(t))2 − λ3(t)k1(1−α)(1−u

∗
1(t))x

∗2(t)
(x∗(t)+v∗(t))2

+λ4(t)d4

with transversality conditions

λi(tf ) = 0, i = 1, . . . , 4.

Moreover, the optimal controls satisfy

u∗1(t) =min

(
1,max

(
0,
1

A1

[
λ2(t)

αk1x
∗(t)v∗(t)

x∗(t) + v∗(t)
− λ1(t)

k1x
∗(t)v∗(t)

x∗(t) + v∗(t)

+ λ3(t)
k1(1− α)x∗(t)v∗(t)

x∗(t) + v∗(t)

]))
,

u∗2(t) =min

(
1,max

(
0,
1

A2
λ4(t)as

∗(t)

))
.

(11)

Proof. The proof of positivity and boundedness of solutions is similar to the one of
Proposition 1. It is enough to use the fact that ui(t) ∈ U , i = 1, 2, which means that
‖ui(t)‖L∞ ≤ 1. For the rest of the proof, we remark that the adjoint equations and
transversality conditions are obtained by using the Pontryagin minimum principle
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with delays of [21], from which


λ′1(t) = −∂H∂x (t) λ1(tf ) = 0,

λ′2(t) = −∂H∂y (t), λ2(tf ) = 0,

λ′3(t) = −∂H∂s (t) λ3(tf ) = 0,

λ′4(t) = −∂H∂v (t), λ4(tf ) = 0.

From the optimality conditions,

∂H

∂u1
(t) = 0,

∂H

∂u2
(t) = 0,

that is,

A1u1(t) + λ1(t)
k1x
∗(t)v∗(t)

x∗(t) + v∗(t)
− λ2(t)

αk1x
∗(t)v∗(t)

x∗(t) + v∗(t)

−λ3(t)
k1(1− α)x∗(t)v∗(t)

x∗(t) + v∗(t)
= 0,

A2u2(t)− as∗(t)λ3(t) = 0.

Taking into account the bounds in U for the two controls, one obtains u∗1 and u
∗
2

in form (11).
The optimality system consists of the state system coupled with the adjoint

equations, the initial conditions, transversality conditions, and the characterization
of optimal controls (11). Precisely, if we substitute the expressions of u∗1 and u

∗
2 in

(8), then we obtain the following optimality system:



dx∗(t)

dt
= rx∗(t)(1− T ∗(t)

Tm
)− d1x∗(t)−

k1(1− u∗1(t))x∗(t)v∗(t)
x∗(t) + v∗(t)

,

dy∗(t)

dt
=
αk1(1− u∗1(t))x∗(t)v∗(t)

x∗(t) + v∗(t)
− (d2 + k2)y∗(t),

ds∗(t)

dt
=
k1(1− α)(1− u∗1(t))x∗(t)v∗(t)

x∗(t) + v∗(t)
+ k2y

∗(t)− d3s∗(t),

dv∗(t)

dt
= a(1− u∗2(t))s∗(t)− d4v∗(t),
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dλ1(t)

dt
= 1− λ1(t)

[
− r + r

(2x∗(t) + y∗(t) + s∗(t)
Tm

)
+ d1 +

k1(1− u∗1(t))v∗2(t)
(x∗(t) + v∗(t))2

]
−λ2(t)αk1(1−u

∗
1(t))v

∗2(t)
(x∗(t)+v∗(t))2 − λ3(t)k1(1−α)(1−u

∗
1(t))v

∗2(t)
(x∗(t)+v∗(t))2 ,

dλ2(t)

dt
= λ1(t)

rx∗(t)

Tm
+ λ2(t)(d2 + k2)− λ3(t)k2,

dλ3(t)

dt
= λ1(t)

rx∗(t)

Tm
+ λ3(t)d3 − λ4(t)a(1− u∗2(t)),

dλ4(t)

dt
= λ1(t)

k1(1− u∗1(t))x∗2(t)
(x∗(t) + v∗(t))2

− λ2(t)
αk1(1− u∗1(t))x∗2(t)
(x∗(t) + v∗(t))2

−λ3(t)k1(1−α)(1−u
∗
1(t))x

∗2(t)
(x∗(t)+v∗(t))2 + λ4(t)d4,

λi(tf ) = 0, i = 1, . . . , 4


u∗1 = min

(
1,max

(
0, 1

A1

[
λ2(t)

αk1x
∗(t)v∗(t)

x∗(t)+v∗(t) − λ1(t)
k1x
∗(t)v∗(t)

x∗(t)+v∗(t) + λ3(t)
k1(1−α)x∗(t)v∗(t)

x∗(t)+v∗(t)

]))
,

u∗2 = min

(
1,max

(
0, 1

A2
λ4(t)as

∗(t)

))
.

�

5. Numerical Simulations

In order to solve numerically our optimization system, we will use a numerical
scheme based on forward and backward finite difference approximation. Thus, we
will have the following numerical algorithm
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Step 1:
Initial conditions: x0, y0, s0, T0 = x0 + y0 + s0, v0, u01 = 0, u

0
2 = 0.

λn1 = 0, λ
n
2 = 0, λ

n
3 = 0, λ

n
4 = 0.

end for
Step 2:
for i = 0, ... , n-1, do:

xi+1 = xi + h[rxi(1− Ti
Tm
)− d1xi − k1(1−ui1)xivi

xi+vi
],

yi+1 = yi + h[
αk1(1−ui1)xivi

xi+vi
− (d2 + k2)yi],

si+1 = si + h[
k1(1−α)(1−ui1)xivi

xi+vi
− k2yi − d3si],

vi+1 = vi + h[a(1− ui2)si − d4vi],

λn−i−11 = λn−i1 − h[1 + λn−i1 [−r + r( 2xi+1+yi+1+si+1Tm
) + d1

+
k1(1−ui1)v

2
i+1

(xi+1+vi+1)2
]− λn−i2

αk1(1−ui1)v
2
i+1

(xi+1+vi+1)2
− λn−i3

(1−α)k1(1−ui1)v
2
i+1

(xi+1+vi+1)2
],

λn−i−12 = λn−i2 − h[λn−i1
rxi+1
Tm

+ λn−i2 (d2 + k2)− λn−i3 k2],

λn−i−13 = λn−i3 − h
[
λn−i1

rxi+1
Tm

+ λn−i3 d3 − λn−i4 a(1− ui2)],

λn−i−14 = λn−i4 − h[λn−i1
k1(1−ui1)x

2
i+1

(xi+1+vi+1)2
− λn−i2

αk1(1−ui1)x
2
i+1

(xi+1+vi+1)2

−λn−i3
k1(1−α)(1−ui1)x

2
i+1

(xi+1+vi+1)2
+ λn−i4 d4],

Ri+11 = (1/A1)(λ
n−i−1
2

αk1xi+1vi+1
(xi+1+vi+1)2

− λn−i−11
k1xi+1vi+1
(xi+1+vi+1)2

−
λn−i−13

k1(1−α)xi+1vi+1
(xi+1+vi+1)2

)

Ri+12 = (1/A2)λ
n−i−1
4 asi+1,

ui+11 = min(1,max(Ri+11 , 0)),

ui+12 = min(1,max(Ri+12 , 0)),
end for
Step 3:
for i = 0, ... , n, write
x∗(ti) = xi, y

∗(ti) = yi, s
∗(ti) = si, v

∗(ti) = vi, u
∗
1(ti) = ui1, u

∗
2(ti) = ui2.

end for
The numerical algorithm.

The parameters of our numerical simulations are inspired from [11, 22, 23] i.e.
r = 0.1, Tm = 1000, d1 = 0.0139, k1 = 0.04, d2 = 0.0495, k2 = 1.1, d3 =
0.5776 , a = 100, d4 = 0.6 and α = 10−3. We chose as in [24] the two last
parameters A1 = 5000 and A2 = 5000. The role of the positive constants A1
and A2 is to balance the terms size in the equations. Figure 1 shows that with
control the amount of the uninfected cells population is higher than those observed
for without control case. From Fig. 2, we observe that the latently infected cells
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Figure 1. The uninfected cells as function of time.

under control converges towards 1.31, while without control it converges towards
47.69, which means that administrating the good therapy amounts can help the
patient by significant reduction the exposed cells number. We notice that with
control we observe a dumping oscillating regime and a significant reduce of the
exposed cells. Figure 3 shows that with control the number of infected cells are

Figure 2. The exposed cells as function of time.

significantly reduced after the first days of therapy. However, without control this
number remains much higher.
The goal of therapy control is also observed in Fig. 4. It was observed that with

control, the number of HIV virus dies are reduced during the first days of therapy,
while without control it stays equal to 7.94× 103. This indicates the impact of the
administrated therapy in controlling viral replication.
The two optimal controls u1 and u2 corresponding to blocking new infections

and inhibiting viral production are represented in Fig. 5. The two curves present
the drug administration schedule during the period of treatment. Both controls
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Figure 3. The infected cells as function of time.

Figure 4. The virus as function of time.

start from zero and oscillate during the period of treatment. This figure shows that
we should give more importance to the first drug (RTIs) than to the second one
(PIs).

6. Conclusion

In this work, we have investigated a mathematical model describing the human
immunodeficiency virus infection with logistic growth, infected cells in eclipse phase
and therapy. Two types of treatments were incorporated into the model; the pur-
pose of first one consists to block the viral proliferation while the role of the second
is to prevent new infections. The positivity and boundedness of solutions were es-
tablished and the local stability of the disease free steady state and the infection
steady states were studied. An optimal control problem was proposed and investi-
gated. Numerical simulations were performed, confirming the stability of the free
and endemic equilibria and illustrating the effectiveness of the two incorporated
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Figure 5. The optimal control u1 (left) and the optimal control
u2 (right) versus time.

treatments via optimal control. It was shown that under optimal control the num-
ber of CD4+ cells increases while the viral load decreases significantly compared
with the model without control, which will improve the life quality of the patient.
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