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Abstract

In this paper, we investigate the mild solutions of a nonlocal Cauchy problem for nonautonomous frac-
tional evolution equations New results are obtained by using Sadovskii’s fixed point theorem and the Banach
contraction mapping principle. An example is given to illustrate the theory.
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1. Introduction

The qualitative behavior of evolutionary fractional differential and difference equations, whose right-
hand side is explicitly time-dependent can be described by nonautonomous dynamics. Over recent years,
the theory of such systems has developed into a highly active field related to, yet recognizably distinct from
that of classical autonomous dynamical systems. This development was motivated by problems of applied
mathematics, in particular in the life sciences where genuinely nonautonomous systems abound. On the
other hand, the existence of the solution of the fractional differential equations with nonlocal conditions has
been investigated widely by many authors as, the nonlocal conditions are more realistic than the classical
initial conditions such as in dealing with many physical problems.

In recent years, impulsive differential equations have become an active area of research due to their
demonstrated applications in wide spread fields of science and engineering such as biology, physics, control
theory, population dynamics, economics, chemical technology, medicine and many others. Many physical
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systems which are characterized by the occurrence of an abrupt change in the state of the system can be
described by impulsive differential equations. These changes occur at certain time instants over a period of
negligible duration. Impulsive differential equations are also an appropriate model to hereditary phenomena
for which a delay argument arises in the modeling equations. These equations describe the evolution processes
that are subjected to abrupt changes and discontinuous jumps in their states. Many physical systems
like the function of pendulum clock, the impact of mechanical systems, preservation of species by means
of periodic stocking or harvesting and the heartâĂŹs function, etc. naturally experience the impulsive
phenomena. Similarly in many other situations, the evolution processes have the impulsive behavior. For
example, the interruptions in cellular neural networks, the damperâĂŹs operation with percussive effects,
electromechanical systems subject to relaxation oscillations, dynamical systems having automatic regulations,
etc., have the impulsive phenomena. The existence, uniqueness and stability of mild solutions to functional
differential equations with impulsive conditions have been considered by many authors in literature (refer
[2,3,29,30]).

During the past decades, the fractional differential equations have been proven to be valuable tools in
the investigation of many phenomena in engineering and physics, they attracted many researchers (cf., e.g.,
[1,4,9,10,17,18,23,25,28]). Fractional derivatives introduce amazing instrument for the description of general
properties of different materials and processes. This is the primary advantage of fractional derivatives in
comparison with classical integer order models, in which such impacts are in fact ignored. The advantages
of fractional derivatives become apparent in modeling mechanical and electrical properties of real materi-
als, as well as in the description of properties of gases, liquids, rocks and in many other fields (see [1, 4]).
Since fractional order differential equations play important roles in modeling real world problems related
to biology, viscoelasticity, physics, chemistry, control theory, economics, signal and image processing phe-
nomenon, bioengineering, and so forth (for details, see [5-7,9-10]), it is investigated that fractional order
differential equations model real world problems more accurately than differential equations of integer or-
der. On the other hand, the autonomous and nonautonomous evolution equations and related topics were
studied in, e.g., [8,13-16,15,18,21,23,26,31-35], and the nonlocal Cauchy problem was considered in, e.g.,
[4,7,11,17,19,20,22,24,33]. Besides from the aforesaid problems, recently by using fixed point theory, several
remarkable problems have been investigated in FDEs with various boundary conditions, for detail see [14]
and the references therein.

In this paper, we consider the following nonlocal Cauchy problem for nonautonomous fractional evolution
equations: 

dqu(t)
dtq = −A(t)u(t) + f(t, (K1u)(t), (K2u)(t), . . . , (Knu)(t), t ∈ I = [0, T ]

∆y|t=tk = Ik(y(t−k )), t = tk, k = 1, 2, . . . ,m,

u(0) = A−1(0)g(u) + u0;

(1.1)

where 0 < q < 1, T > 0, g : C(I;X)→ X. The terms (Kiu)(t), i = 1, 2, . . . , n are defined by

(Kiu)(t) =

∫ t

0
ki(t, s)u(s)ds,

the positive functions ki(t, s) are continuous on D = {(t, s) ∈ R2 : 0 ≤ s ≤ t ≤ T} and

K∗i = sup
t∈[0,t]

∫ t

0
ki(t, s)ds <∞.

Throughout this work, we set I = [0, T ]. We denote by X a Banach space, L([0, T ];X) := L(X) the
space of all linear and bounded operators on X, and C(I,X) the space of all X-valued continuous functions
on I.

Let us assume that u ∈ L(X) and A(t) is a family of bounded linear operators defined in a Banach space
X. The fractional order integral of the function u is understood here in the Riemann-Liouville sense, i.e.,

Iqu(t) =
1

Γ(q)

∫ t

0
(t− s)q−1u(s)ds.
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In this paper, we denote that C is a positive constant, and assume that a family of closed linear operators
{A(t) : t ∈ [0, t]} satisfying the followings:

(A1) The domain D(a) of {A(t) : t ∈ [0, T ]} is dense in the Banach space X, A(t) depends on t.
(A2) The operator [A(t) + λ]−1 exists in L(X) for any λ with Reλ ≤ 0 and

‖[A(t) + λ]−1‖ ≤ C

|λ+ 1|
, t ∈ [0, T ], C is a real constant

(A3) There exist constants γ ∈ (0, 1] and C such that

‖[A(t1)−A(t2)]A
−1(s)‖ ≤ C|t1 − t2|γ ; t1, t2, s ∈ [0, T ].

Under condition (A2), each operator −A(s), s ∈ [0, T ], generates an analytic semi-group exp(−tA(s)), t >
0, and there exists a constant C such that

‖An(s)exp(−tA(s))‖ ≤ C

tn
,

where n = 0, 1, t > 0, s ∈ [0, T ], (refer [13]).
We study the existence of mild solution of (1.1) and obtain the existence theorem based on the measures

of noncompactness. An example is given to show an application of the abstract results.

2. Preliminaries

Definition 2.1. The fractional order integral of the function h ∈ L1([a, b], R) of order α ∈ R+ is defined by

Iαa h(t) =

∫ t

a

(t− s)α−1

Γ(α)
h(s)ds

where Γ is the Gamma function.

Definition 2.2. For a function h given on the interval [a, b], the αth Riemann-Liouville fractional order
derivative of h, is defined by

(Dα
a+h)(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

a
(t− s)n−α−1h(s)ds,

here n = [α] + 1 and [α] denotes the integer part of α.

Definition 2.3. For a function h given on the interval [a, b], the Caputo fractional order derivative of h, is
defined by

(cDα
a+h)(t) =

1

Γ(n− α)

∫ t

a
(t− s)n−α−1h(n)(s)ds,

where n = [α] + 1 and [α] denotes the integer part of α.

Lemma 2.4. Let α > 0, then the differential equation cDαh(t) = 0 has solutions

h(t) = c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1,

where ci ∈ R, i = 0, 1, 2, · · · , n− 1, n = [α] + 1.

Lemma 2.5. Let α > 0, then

Iα(cDαh)(t) = h(t) + c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1,

for some ci ∈ R, i = 0, 1, 2, · · · , n− 1, n = [α] + 1.
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Lemma 2.6. ([28])
(1) Iq : L1[0, T ]→ L1[0, T ];
(2) For g ∈ L1[0, T ], we have∫ t

0

∫ η

0
(t− η)q−1(η − s)γ−1g(s)dsdη = B(q, γ)

∫ t

0
(t− s)q+γ−1g(s)ds,

where B(q, γ) is a Beta function.

Definition 2.7. Let B be a bounded set of semi-normed linear space Y . The Kuratowski’s measure of
noncompactness (for brevity, α-measure) of B is defined as

α(B) = inf{d > 0 : B has a finite cover by sets of diameter ≤ d}.

From the definition we can get some properties of α-measure immediately, see ([5]).

Lemma 2.8. ([5]) Let A and B be bounded sets of X. Then
(1) α(A) ≤ α(B), if A ⊆ B.
(2) α(A) = α(Acl), where Acl denotes the closure of A.
(3) α(A) = 0 if and only if A is precompact.
(4) α(λA) = |λ|α(A), λ ∈ R.
(5) α(A ∪B) = max{α(A), α(B)}.
(6) α(A+B) ≤ α(A) + α(B), where A+B = {x+ y : x ∈ A, y ∈ B}.
(7) α(A+ x0) = α(A), for any x0 ∈ X.
For H ⊂ C(I,X), we define ∫ t

0
H(s)ds =

{∫ t

0
u(s)ds : u ∈ H

}
,

where H(s) = {u(s) ∈ X : u ∈ H}, for t ∈ I.

The following lemma will be needed:

Lemma 2.9. ([5]) If H ⊂ C(I,X) is a bounded, equicontinuous set, then
(1) α(H) = supt∈Iα(H(t)).
(2) α(

∫ t
0 H(s)ds) ≤

∫ t
0 α(H(s))ds, for t ∈ I.

Lemma 2.10. ([12]) If {un}∞n=1 ⊂ L1(I,X) and there exists a m(.) ∈ L1(I,R+) such that

‖un(t)‖ ≤ m(t), a.e t ∈ I,

then α({un(t)}∞n=1) is integrable and

α
({∫ t

0
un(s)ds

}∞
n=1

)
≤ 2

∫ t

0
α({un(s)}∞n=1)ds.

We use the following Sadovskii’s fixed point theorem:

Definition 2.11. ([27]) Let P be a operator in Banach space X. If P is continuous and takes bounded sets
into bounded sets, and α(P (H)) < α(H) for every bounded set H of X with α(H) > 0, then P is said to be
a condensing operator on X.

Lemma 2.12. (Sadovskii’s fixed point theorem [27]) Let P be a condensing operator on Banach space X. If
P (B) ⊆ B for a convex, closed and bounded set B of X, then P has a fixed point in B.

According to [10], a mild solution of (1.1) can be defined as follows:
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Definition 2.13. A function u ∈ C(I,X) satisfying the equation

u(t) = A−1(0)g(u) + u0 +

∫ t

0
ψ(t− η, η)U(η)A(0)[A−1(0)g(u) + u0]dη

+

∫ t

0
ψ(t− η, η)f(η, (K1u)(η), (K2u)(η), . . . , (Knu)(η))dη

+

∫ t

0

∫ η

0
ψ(t− η, η)ϕ(η, s)f(s, (K1u)(s), (K2u)(s), . . . , (Knu)(s))dsdη

+
∑

0<tk<t

U(t, tk)Ik(y(t−k ))

is called a mild solution of (1.1), where

ψ(t, s) = q

∫ ∞
0

θtq−1ξq(θ)exp(−tqθA(s))dθ

and ξq is a probability density function defined on [0,∞) such that its Laplace transform is given by∫ ∞
0

e−σxξq(σ)dσ =
∞∑
j=0

(−x)j

Γ(1 + qj)
, q ∈ (0, 1], x > 0, Γ is a gamma function

and

ϕ(t, τ) =

∞∑
k=1

ϕk(t, τ),

where

ϕ1(t, τ) = [A(t)−A(τ)]ψ(t− τ, τ),

ϕk+1(t, τ) =

∫ t

τ
ϕk(t, s)ϕ(s, τ)ds, k = 1, 2, . . . ,

and

U(t) = −A(t)A−1(0)−
∫ t

0
ϕ(t, s)A(s)A−1(0)ds.

To our purpose the following conclusions will be needed:

Lemma 2.14. ([10]) The operator-valued functions ψ(t−η, η) and A(t)ψ(t−η, η) are continuous in uniform
topology in the variables t, η, where 0 ≤ η ≤ t− ε, 0 ≤ t ≤ T, for any ε > 0. Clearly,

‖ψ(t− η, η)‖ ≤ C(t− η)q−1. (2.1)

Moreover, we have
‖ϕ(t, η)‖ ≤ C(t− η)γ−1. (2.2)

Remark 2.15. From the proof of Theorem 2.5 in [10], we can see (1) ‖U(t)‖ ≤ C + Ctγ .
(2) For t ∈ I,

∫ t
0 ψ(t− η, η)U(η)dη is uniformly continuous in the norm of L(X) and∥∥∥∫ t

0
ψ(t− η, η)U(η)dη

∥∥∥ ≤ C2tq
(1

q
+ tγB(q, γ + 1)

)
:= M̃(t). (2.3)
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3. Existence of solution

Assume that
(B1) f satisfies caratheödory property, i.e., f : I×X×X×· · ·×X → X satisfies f(., v1, v2, ..., vn) : I → X

is measurable for all vi ∈ X, i = 1, 2, . . . , n and f(t, ., ., . . . , .) : X × X × · · · × X → X is continuous for
a.e t ∈ I.
Also, there exists a positive function µ(.) ∈ Lp(I,R+)(p > 1

q > 1) and a continuous nondecreasing function
ω : [0,∞)→ [0,∞) such that

‖f(t, v1, v2, ..., vn)‖ ≤ µ(t)ω
( n∑
i=1

‖vi‖
)
, (t, v1, v2, ..., vn) ∈ I ×X ×X × · · · ×X,

and set Tp,q =max{T q−
1
p , T q}.

(B2) For any bounded sets D,D1, D2, . . . , Dn ⊂ X, and 0 ≤ τ ≤ s ≤ t ≤ T,

α(g(D)) ≤ β(t)α(D),

α(ψ(t− s, s)f(s,D1, D2, . . . , Dn)

≤ β1(t, s)α(D1) + β2(t, s)α(D2) + · · ·+ βn(t, s)α(Dn),

α(ψ(t− s, s)ϕ(s, τ)f(τ,D1, D2, . . . , Dn)

≤ ζ1(t, s, τ)α(D1) + ζ2(t, s, τ)α(D2) + · · ·+ ζn(t, s, τ)α(Dn),

where β(t) is a nonnegative function, and supt∈Iβ(t) := β <∞,

sup
t∈I

∫ t

0
βi(t, s)ds := βi <∞, i = 1, 2, . . . , n,

sup
t∈I

∫ t

0

∫ s

0
ζj(t, s, τ)dτds := ζj <∞, j = 1, 2, . . . , n.

(B3) g : C(I;X)→ X is continuous and there exists

0 < α1 < (C + M̃(T ))−1, α2 ≥ 0

such that

‖g(u)‖ ≤ α1‖u‖+ α2.

(B4) The functions µ and ω satisfy the following condition:

C(1 + CB(q, γ))T γp,q,Ωp,q

( n∑
i=1

K∗i

)
‖µ‖Lp lim inf

τ→∞

ω(τ)

τ
< 1− α1(C + M̃(T )),

where

Ωp,q =
( p− 1

pq − 1

) p−1
p
, and T γp,q = max{Tp,q, Tp,q+γ}.

Theorem 3.1. Suppose that (B1) - (B4) are satisfied, and if (C+M̃(T ))β+ 4(
∑n

i=1(βi+ 2ζi)K
∗
i ) < 1, then

(1.1) has a mild solution on [0, T ].
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Proof. Define the operator F : C(I;X)→ C(I;X) by

F (u)(t) = A−1(0)g(u) + u0 +

∫ t

0
ψ(t− η, η)U(η)A(0)[A−1(0)g(u) + u0]dη

+

∫ t

0
ψ(t− η, η)f(η, (K1u)(η), (K2u)(η), . . . , (Knu)(η))dη

+

∫ t

0

∫ η

0
ψ(t− η, η)ϕ(η, s)f(s, (K1u)(s), (K2u)(s), . . . , (Knu)(s))dsdη

+
∑

0<tk<t

U(t, tk)Ik(y(t−k )), t ∈ I.

Then we proceed in five steps.
Step 1. We show that F is continuous.
Let ui be a sequence such that ui → u as i→∞. Since f satisfies (B1) we have

f(t, (K1ui)(t), (K2ui)(t), . . . , (Knui)(t))→ f(t, (K1u)(t), (K2u)(t), . . . , (Knu)(t)), as i→∞. (3.1)

Then

‖F (ui)(t)− F (u)(t)‖ ≤ ‖A−1(0)‖‖g(ui)− g(u)‖+

∫ t

0
‖ψ(t− η, η)U(η)‖‖g(ui)− g(u)‖dη

+

∫ t

0
‖ψ(t− η, η)[f(η, (K1ui)(η), (K2ui)(η), . . . , (Knui)(η))

− f(η, (K1u)(η), (K2u)(η), . . . , (Knu)(η))]‖dη

+

∫ t

0

∫ η

0
‖ψ(t− η, η)ϕ(η, s)[f(s, (K1ui)(s), (K2ui)(s), . . . , (Knui)(s))

− f(s, (K1u)(s), (K2u)(s), . . . , (Knu)(s))]‖dsdη
+M1mρ‖u− ui‖∞.

According to the condition (A2), (2.3), and continuity of g, we have

‖A−1(0)‖‖g(ui)− g(u)‖ → 0, as i→∞;∫ t

0
‖ψ(t− η, η)U(η)‖‖g(ui)− g(u)‖dη → 0, as i→∞.

Noting that ui → u in C(I,X), there exists ε > 0 such that ‖ui − u‖ ≤ ε for i sufficiently large. Therefore,
we have

‖[f(t, (K1ui)(t), (K2ui)(t), . . . , (Knui)(t))− f(t, (K1u)(t), (K2u)(t), . . . , (Knu)(t))]‖

≤ µ(t)
[
ω
( n∑
j=1

‖Kjui)(t)‖
)

+ ω
( n∑
j=1

‖Kju)(t)‖
)]

≤ µ(t)
[
ω
( n∑
j=1

K∗j (‖u‖+ ε)
)

+ ω
( n∑
j=1

K∗j ‖u‖
)]
.

Using (2.1) and by means of the Lebesgue Dominated Convergence Theorem, we obtain

∫ t

0
‖ψ(t− η, η)[f(η, (K1ui)(η), (K2ui)(η), . . . , (Knui)(η))

− f(η, (K1u)(η), (K2u)(η), . . . , (Knu)(η))]‖dη

≤ C
∫ t

0
(t− η)q−1‖f(η, (K1ui)(η), (K2ui)(η), . . . , (Knui)(η))

− f(η, (K1u)(η), (K2u)(η), . . . , (Knu)(η))]‖dη → 0, as i→∞.
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Similarly, by (2.1) and (2.2), we have∫ t

0

∫ η

0
‖ψ(t− η, η)ϕ(η, s)[f(s, (K1ui)(t), (K2ui)(t), . . . , (Knui)(t))

− f(s, (K1u)(s), (K2u)(s), . . . , (Knu)(s))]‖dsdη

≤ C2

∫ t

0

∫ η

0
(t− η)q−1(η − s)γ−1‖f(s, (K1ui)(t), (K2ui)(t), . . . , (Knui)(t))

− f(s, (K1u)(s), (K2u)(s), . . . , (Knu)(s))‖dsdη → 0, as i→∞.

Therefore, we deduce that

lim
i→∞
‖F (ui)− F (u)‖ = 0.

Step 2. We show that F maps bounded sets of C(I,X) into bounded sets in C(I,X).
For any r > 0, we set Br = {u ∈ C(I,X) : ‖u‖ ≤ r}. Now, for u ∈ Br, by (B1), we can see

‖f(t, (K1u)(t), (K2u)(t), . . . , (Knu)(t))‖ ≤ µ(t)ω
( n∑
j=1

K∗j r
)
. (3.1)

Based on (2.3), we denote that S(t) :=
∫ t
0 ψ(t− η, η)U(η)dη, we have

‖S(t)A(0)u0‖ ≤ C2tq
(1

q
+ tγB(q, γ + 1)

)
‖A(0)u0‖ = M̃(t)‖A(0)u0‖.

Then for any u ∈ Br, by (A2), (2.1), (2.2), and Lemma 2.6, we have

‖(Fu)(t)‖ ≤ ‖A−1(0)g(u)‖+ ‖u0‖+ ‖S(t)g(u)‖+ ‖S(t)A(0)u0‖

+

∫ t

0
‖ψ(t− η, η)f(η, (K1u)(η), (K2u)(η), . . . , (Knu)(η))‖dη

+

∫ t

0

∫ η

0
‖ψ(t− η, η)ϕ(η, s)f(s, (K1u)(s), (K2u)(s), . . . , (Knu)(s))‖dsdη

≤ (C + M̃(t))‖g(u)‖+ ‖u0‖+ M̃(t)‖A(0)u0‖

+ C

∫ t

0
(t− η)q−1µ(η)ω

( n∑
j=1

K∗j r
)
dη

+ C2

∫ t

0

∫ η

0
(t− η)q−1(η − s)γ−1µ(s)ω

( n∑
j=1

K∗j r
)
dsdη

≤ α1(C + M̃(t))‖u‖+ α2(C + M̃(t)) + ‖u0‖+ M̃(t)‖A(0)u0‖

+M1

[
C

∫ t

0
(t− η)q−1µ(η)dη + C2B(q, γ)

∫ t

0
(t− η)q+γ−1µ(η)dη

]
+
∑

0<tk<t

U(t, tk)Ik(y(t−k )), t ∈ I,

where M1 = ω(
∑n

j=1K
∗
j r).

By means of the Hölder inequality, we have∫ t

0
(t− η)q−1µ(η)dη = t

pq−1
p Mp,q‖µ‖Lp ≤ Tp,qΩp,q‖µ‖Lp ,∫ t

0
(t− η)γ+q−1µ(η)dη ≤ Tp,qΩp,q+γ‖µ‖Lp .
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Thus

‖(Fu)(t)‖ ≤ α1(C + M̃(T ))r + α2(C + M̃(T )) + ‖u0‖+ M̃(T )‖A(0)u0‖
+M1Ωp,qT

γ
p,q[C + C2B(q, γ)]‖µ‖Lp +M1mρ1 := r̃.

This means F (Br) ⊂ Br̃.
Step 3. We show that there exists m ∈ N such that F (Bm) ⊂ Bm.
Suppose contrary that for every m ∈ N , there exists um ∈ Bm, for any m < r and tm ∈ I, such that
‖(Fum)(tm)‖ > m. However, on the other hand

‖f(t, (K1um)(t), (K2um)(t), . . . , (Knum)(t))‖ ≤ µ(t)ω
( n∑
j=1

K∗jm
)
, (3.2)

we have

m < ‖(Fum)(tm)‖ ≤ α1(C + M̃(T ))‖um‖+ α2(C + M̃(T )) + ‖u0‖

+ M̃(T )‖A(0)u0‖+M1

[
C

∫ tm

0
(tm − η)q−1µ(η)dη +M1mρ1

+ C2B(q, γ)

∫ tm

0
(tm − η)q+γ−1µ(η)dη

]
≤ α1(C + M̃(T ))‖um‖+ α2(C + M̃(T )) + ‖u0‖

+ M̃(T )‖A(0)u0‖+M1Ωp,qT
γ
p,q[C + C2B(q, γ)]‖µ‖Lp +M1mρ1

≤ α1(C + M̃(T ))m+ α2(C + M̃(T )) + ‖u0‖

+ M̃(T )‖A(0)u0‖+M1Ωp,qT
γ
p,q[C + C2B(q, γ)]‖µ‖Lp +M1mρ1.

Dividing both sides by m and taking the lower limit as m→∞, we obtain

C(1 + CB(q, γ))T γp,qΩp,q

n∑
j=1

K∗j ‖µ‖Lp lim inf
m→∞

w(m)

m
+M1mρ1 ≥ 1− α1(C + M̃(T ));

which contradicts (B4).
Step 4. We now prove that F is equicontinuous. Denote

F (u)(t) = A−1(0)g(u) + u0 +

∫ t

0
ψ(t− η, η)U(η)A(0)[A−1(0)g(u) + u0]dη +G(u)(t) +M1mρ1,

where

G(u)(t) =

∫ t

0
ψ(t− η, η)f(η, (K1u)(η), (K2u)(η), . . . , (Knu)(η))dη

+

∫ t

0

∫ η

0
ψ(t− η, η)ϕ(η, s)f(s, (K1u)(s), (K2u)(s), . . . , (Knu)(s))dsdη +

∑
0<tk<t

U(t, tk)Ik(y(t−k )).

We show that G(u)(.) is equicontinuous.
Let 0 < t2 < t1 < T and u ∈ Bm. Then

‖(Gu)(t1)− (Gu)(t2)‖ ≤ I1 + I2 + I3 + I4 + I5,
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where

I1 =

∫ t2

0
‖[ψ(t1 − η, η)− ψ(t2 − η, η)]f(η, (K1u)(η), (K2u)(η), . . . , (Knu)(η))‖dη,

I2 =

∫ t1

t2

‖ψ(t1 − η, η)f(η, (K1u)(η), (K2u)(η), . . . , (Knu)(η))‖dη,

I3 =

∫ t2

0

∫ η

0
‖[ψ(t1 − η, η)− ψ(t2 − η, η)]ϕ(η, s)f(s, (K1u)(s), (K2u)(s), . . . , (Knu)(s))‖dsdη,

I4 =

∫ t1

t2

∫ η

0
‖ψ(t1 − η, η)ϕ(η, s)f(s, (K1u)(s), (K2u)(s), . . . , (Knu)(s))‖dsdη,

I5 = M1mρ‖t1 − t2‖

It follows from Lemma 2.8, (B1), and (3.2) that I1, I3 → 0, as t2 → t1.
For I2, from (2.1),(3.2), and (B1), we have

I2 =

∫ t1

t2

‖ψ(t1 − η, η)f(η, (K1u)(η), (K2u)(η), . . . , (Knu)(η))‖dη

≤ CM1

∫ t1

t2

(t1 − η)q−1µ(η)dη → 0, as t2 → t1.

Similarly, by (2.1), (2.2), (B1) and Lemma (2.6), we have

I4 =

∫ t1

t2

∫ η

0
‖ψ(t1 − η, η)ϕ(η, s)f(s, (K1u)(s), (K2u)(s), . . . , (Knu)(s))‖dsdη

≤ C2M1

∫ t1

t2

(t1 − η)q−1
∫ η

0
(η − s)γ−1µ(s)dsdη → 0, as t2 → t1.

Step 5. We show that α(F (H)) < α(H) for every bounded set H ⊂ Bm. For any ε > 0, we can take a
sequence {hv}∞v=1 ⊂ H such that

α(H) ≤ 2α({hv}) + ε,

(cf. [4]). So it follows from Lemmas 2.14-2.4, 2.8, (2) in Remark 2.15, and (B2) that

α(F (H)) ≤ Cα(g(H)) + M̃(T )α(g(H)) + 2α(G{hv}) + ε

≤ Cα(g(H)) + M̃(T )α(g(H))

+ 2 sup
t∈I

α
({∫ t

0
ψ(t− η, η)f(η, (K1hv)(η), (K2hv)(η), . . . , (Knhv)(η))dη

}
+
{∫ t

0

∫ η

0
ψ(t− η, η)ϕ(η, s)f(s, (K1hv)(s), (K2hv)(s), . . . , (Knhv)(s))dsdη

})
+ ε



D.N.Chalishajar, D.S. Raja, K. Karthikeyan, P.Sundararajan, Results in Nonlinear Anal. 1 (2018), 133–147143

≤ Cβα(H) + M̃(T )βα(H)

+ 4 sup
t∈I

(∫ t

0
α({ψ(t− η, η)f(η, (K1hv)(η), (K2hv)(η), . . . , (Knhv)(η))})dη

)
+ 8 sup

t∈I

(∫ t

0

∫ η

0
α({ψ(t− η, η)ϕ(η, s)f(s, (K1hv)(s), (K2hv)(s), . . . , (Knhv)(s))})dsdη

)
+ ε

≤ Cβα(H) + M̃(T )βα(H) + 4 sup
t∈I

(∫ t

0

( n∑
i=1

βi(t, η)K∗i

)
α({hv})dη

)
+ 8 sup

t∈I

(∫ t

0

∫ η

0

( n∑
i=1

ζi(t, η, s)K
∗
i

)
α({hv})dsdη

)
+ ε

≤ Cβα(H) + M̃(T )βα(H) +
(

4
n∑
i=1

βiK
∗
i + 8

n∑
i=1

ζiK
∗
i

)
α({hv}) + ε

=
[
(C + M̃(T ))β + 4

( n∑
i=1

(βi + 2ζi)K
∗
i

)]
α(H) + ε.

Since ε is arbitrary, we can obtain

α(F (H)) ≤
[
(C + M̃(T ))β + 4

( n∑
i=1

(βi + 2ζi)K
∗
i

)]
α(H) < α(H).

In summary, we have proven that F has a fixed point ũ ∈ Bm. Consequently, (1.1) has at least one mild
solution.

Our next result is based on the Banach’s fixed point theorem.
(G1) There exists a positive function l(.) ∈ L1(I,R+) and a constant µ > 0 such that

‖g(u)− g(u∗)‖ ≤ µ‖u− u∗‖,

and

‖f(t, v1, v2, . . . , vn)− f(t, w1, w2, . . . , wn)‖ ≤ l(t)
( n∑
i=1

‖vi − wi‖
)
, (vi − wi) ∈ X2, i = 1, 2, . . . , n.

(G2) There exists a constant 0 < δ < 1 such that the function Λ : I → R+ defined by

Λ(t) = µ(C + M̃(T )) + C
( n∑
i=1

K∗i

)
Γ(q)Iql(t) + C2

( n∑
i=1

K∗i

)
Γ(q)Γ(γ)Iq+γl(t) +M1mρ‖u− u∗‖ ≤ δ, t ∈ I.

Theorem 3.2. Assume that (G1), (G2) are satisfied, then (1.1) has a unique mild solution.

Proof. Let F be defined as in Theorem 3.1. For any u, u∗ ∈ C(I,X), we have

‖f(t, (K1u)(t), (K2u)(t), . . . , (Knu)(t))− f(t, (K1u
∗)(t), (K2u

∗)(t) . . . , (Knu
∗)(t))‖

≤ l(t)
( n∑
i=1

‖(Kiu)(t)− (Kiu
∗)(t)‖

)
≤ l(t)

n∑
i=1

K∗i ‖u− u∗‖.
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Thus, from (A2), (2.1), (2.2) and Lemma 2.6, we have

‖(Fu)(t)− (Fu∗)(t)‖

≤ µC‖u− u∗‖+ µ

∫ t

0
‖ψ(t− η, η)U(η)‖‖u− u∗‖dη

+

∫ t

0
‖ψ(t− η, η)‖‖f(η, (K1u)(η), (K2u)(η), . . . , (Knu)(η))

− f(η, (K1u
∗)(η), (K2u

∗)(η), . . . , (Knu
∗)(η))‖dη

+

∫ t

0

∫ η

0
‖ψ(t− η, η)ψ(η, s)‖‖f(s, (Ku)(s), (Hu)(s))− f(s, (Ku∗)(s), (Hu∗)(s))‖dsdη +M1mρ‖u− u∗‖∞

≤ ‖u− u∗‖
[
µ(C + M̃(T )) + C

( n∑
i=1

K∗i

)∫ t

0
(t− η)q−1l(η)dη

+ C2
( n∑
i=1

K∗i

)∫ t

0

∫ η

0
(t− η)q−1(η − s)γ−1l(s)dsdη

]
+M1mρ‖u− u∗‖∞

=
[
µ(C + M̃(T )) + C

( n∑
i=1

K∗i

)
Γ(q)Iql(t) + C2

( n∑
i=1

K∗i

)
Γ(q)Γ(γ)Iq+γl(t)

]
‖u− u∗‖+M1mρ‖u− u∗‖∞

= Λ(t)‖u− u∗‖+M1mρ‖u− u∗‖∞.

We get

‖F (u)− F (u∗)‖ ≤ δ‖u− u∗‖.

By the Banach contraction mapping principle, F has a unique fixed point, which is a mild solution of the
(1.1).

4. Example

To illustrate the usefulness of our main result, we consider the following fractional differential equation:

∂q

∂tq
u(t, ξ) = b(t, ξ)

∂2

∂ξ2
u(t, ξ) +

tn

n

∫ t

0
(t− s)u(s, ξ)ds+

tn

n

∫ t

0
e−(t+s)u(s, ξ)ds, ξ ∈ [0, 1]

∆y|t= 1
2

= I1(
1−

2
), t ∈ J1 := [0, 1], t 6= 1

2
,

u(t, 0) = u(t, 1) = 0

u(0, ξ) = −
∫ ξ

0

∫ y

0
b−1(0, x) sin

∣∣∣u
λ

∣∣∣dxdy, (4.1)

where 0 < q < 1, 0 ≤ t ≤ 1, λ > C + M̃(1), n ∈ N, b(t, ξ) is continuous function and is uniformly Hölder
continuous in t, i.e., there exists C > 0 and γ ∈ (0, 1) such that

‖b(t1, ξ)− b(t2, ξ)‖ ≤ C|t1 − t2|γ , 0 ≤ t1 ≤ t2 ≤ 1.

Let X ∈ L2([0, 1], R) and define A(t) by

D(A(t)) = H2(0, 1) ∩H1
0 (0, 1) = {H2(0, 1) : z(0) = z(1) = 0},

−A(t)(z) = b(t, ξ)z′′.
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Then −A(s) generates an analytic semigroup exp(−tA(s)).
For t ∈ [0, 1], ξ ∈ [0, 1], we set

u(t)(ξ) = u(t, ξ),

g(u) = sin
∣∣∣u
λ

∣∣∣,
I1(y) =

|y|
3 + |y|

A−1(0)g(u) = −
∫ ξ

0

∫ y

0
b−1(0, x) sin

∣∣∣u
λ

∣∣∣dxdy,
f(t, (K1u)(t), (K2u)(t)(ξ) =

tn

n

∫ t

0
(t− s)u(s, ξ)ds+

tn

n

∫ t

0
e−(t+s)u(s, ξ)ds,

where

(K1u(t))(ξ) =

∫ t

0
(t− s)u(s, ξ)ds,

(K2u(t))(ξ) =

∫ t

0
e−(t+s)u(s, ξ)ds,

and

K∗1 = sup
t∈I

∫ t

0
(t− s)ds < 1

2
<∞,

K∗2 = sup
t∈I

∫ t

0
e−(t+s)ds =

1

4
<∞,

|I1(y1)− I1(y2)| ≤
1

3
|x− y|.

Moreover, we can get

‖g(u)‖ ≤ 1

λ
‖u‖,

α(g(D)) ≤ 1

λ
α(D)

for any D ⊂ X. Then the above equation (4.1) can be written in the abstract form as (1.1). On the other
hand,

‖f(t, (Ku)(t), (Hu)(t)(ξ)‖ ≤ tn

n
(‖(K1u)(t, ξ)‖+ ‖(K2u)(t, ξ)‖)

≤ tn

n
(K∗1‖u‖+K∗2‖u‖)

= µ(t)ω(K∗1‖u‖+K∗2‖u‖),

where µ(t) = tn, ω(z) = z
n satisfying (B1). For any u1, u2 ∈ X,

‖ψ(t− s, s)f(s, (K1u1)(s), (K2u1)(s))(ξ)− ψ(t− s, s)f(s, (K1u2)(s), (K2u2)(s))(ξ)‖

≤ Csn

n
(t− s)q−1(‖(K1u1)(s))(ξ)− (K1u2)(s))(ξ)‖+ ‖(K2u1)(s))(ξ)− (K2u2)(s))(ξ)‖).

Therefore, for any bounded sets D1, D2 ⊂ X, we have

α(ψ(t− s, s)f(s,D1, D2)) ≤
Csn

n
(t− s)q−1(α(D1) + α(D2)).
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Moreover,

C

n
sup
t∈[0,1]

∫ t

0
(t− s)q−1snds =

C

n
sup
t∈[0,1]

tn+qB(q, n+ 1) =
C

n
B(q, n+ 1) := β1 = β2.

Similarly, we obtain

α(ψ(t− s, s)ϕ(s, τ)f(τ,D1, D2)) ≤
C2

n
(t− s)q−1(s− τ)γ−1τn(α(D1) + α(D2)),

and

C2

n
sup
t∈[0,1]

∫ t

0

∫ s

0
(t− s)q−1(s− τ)γ−1τndτds ≤ C2

n
B(q, γ)B(q + γ, n+ 1) := ζ1 = ζ2.

Suppose further that

(1)
3

4n
C(1 + CB(q, γ))

( p− 1

pq − 1

) p−1
p ‖µ‖Lp +

1

3
< 1− C + M̃(1)

λ
,

(2)
1

λ
(C + M̃(1)) + 3(β1 + 2ζ1) +

1

3
< 1.

Then (4.1) has a mild solution by Theorem 3.1.
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