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Abstract 

This note describes an algorithm for computing the gain and phase margins for single input single output 
discrete time systems. It converts the complex computations into real computations. It results into 
Chebyshev polynomials from which we compute the desired margins. The algorithm is simple, easy to 
implement and devoid of complex computations. 
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1. Introduction 
 

The gain and phase margins of a control system play a central role in determining its 
stability [1,2]. The gain margin is the amount of amplification that the closed loop system 
can accommodate before becoming unstable and likewise for the phase margin. Analytical 
computation of these two margins for continuous time systems is a direct process as shown 
in references [3-5]. However, this process is a little more elaborate for discrete time 
systems. The intent here is to describe a simple algorithm for computing these margins for 
these systems. 
 

A causal single input single output discrete time system is generally described by the 
proper rational polynomial: 
 

( )
( )

( )

B z
G z

A z
  (1) 
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where 𝐴(𝑧) and 𝐵(𝑧) are polynomials of the time delay 𝑧, and causality mandates that the 
degree of 𝐴(𝑧) be at least as large as that of 𝐵(𝑧). With no loss of generality, we assume 
this system is imbedded in the forward part of a feedback control loop. In such case the 
closed loop system must be analyzed to ensure its stability. 
 

Because instability implies that the roots of the characteristic equations leave the unit 
circle, 𝑧 is confined to 𝑧 = 𝑒𝑖𝜃, where 0 ≤ 𝜃 ≤ 2𝜋, 𝜃 is in radians. The gain margin, 𝐺𝑚, is 
defined as the real value providing, 
 

( exp ) 1
m cg cg

G G z i    (2) 
 

where 𝜃𝑐𝑔  is the angle at which ∠𝐺(𝑧𝑐𝑔 = exp 𝑖𝜃𝑐𝑔) = −𝜋 is for the smallest normalized 

frequency. (Normalized frequency is frequency normalized by the sampling rate.) Likewise 
the phase margin, 𝑃𝑚, is defined as the phase lag that can be tolerated before the control 
system becomes unstable, i.e: 
 

( exp )
m cp cp

P G z i     (3) 
 

where 𝜃𝑐𝑝  is the angle at which |𝐺(𝑧𝑐𝑝 = exp 𝑖𝜃𝑐𝑝)| = 1  is for the smallest normalized 

frequency. One approach to compute these margins is to evaluate 𝐺(𝑧) for many values of
z and generate two lookup tables; z vs. |𝐺(𝑧)| and 𝑧  vs. ∠𝐺(𝑧) . From the 2nd table, we 

lookup 𝑧𝑐𝑔 . From the 1st table, we lookup |𝑧𝑐𝑔| and use Eq. (2) to compute 𝐺𝑚. Similarly 

from the 1st table, we lookup 𝑧𝑐𝑝 . From the 2nd table we lookup ∠𝐺(𝑧𝑐𝑝) and use Eq. (3) to 

compute 𝑃𝑚 . Evidently, this process uses complex computations and gives approximate 
margins, but it may be adequate for speedy computations. Matlab uses the H∞ theory and 
other methods to compute these margins [6]. Herein, we introduce a simplified analytical 
method that is free of complex computations to yield the same results. 
 

To start, we introduce some mathematical background in which we define symmetric and 
asymmetric polynomials, describe their properties and provide alternative algebraic 
means for representing them. These types of polynomials play a central role in the 
computations of the gain and phase margins. 
 

2. Symmetric and asymmetric polynomials 
 

The polynomial, 
 

1 1

1 2 1 -2 -1 

1
( ) ( ... ... )

2
n n k n n

n k
P z p z p z p z p z p z   

 
        (4) 

 

is symmetric if 𝑃(𝑧) = 𝑃(1/𝑧)  ⇒ 𝑝𝑘 = 𝑝−𝑘  ; 𝑘 = 1, … , 𝑛. Thus Eq. (4) becomes as follows: 
 

- -1 - 1

1 2 1

1
( ) [  ( )  ( ) ... ]

2
n n n n

n
P z p z z p z z p


       (5) 

 

The polynomial, 
 

 -1 - 1 -

1 2 1 -2 -1

1
( )  ...  ...

2
n n k n n

n k
Q z q z q z q z q z q z

i


 
        (6) 

 

is asymmetric if 𝑄(𝑧) = −𝑄(1/𝑧)  ⇒ 𝑞𝑘 = −𝑞−𝑘  ; 𝑘 = 1, … , 𝑛. Thus Eq. (6) becomes: 
 

𝑄(𝑧) =
1

2𝑖
[𝑞1(𝑧𝑛 − 𝑧−𝑛) + 𝑞2(𝑧𝑛−1 − 𝑧−𝑛+1) + ⋯ + 𝑞𝑛(𝑧 − 𝑧−1)],       𝑞𝑛+1 = 0 (7) 
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Since we are confining our analysis to 𝑧 = 𝑒𝑖𝜃 one can see that: 
 

-

-

2cos

2 sin

k k

k k

z z k

z z i k





 

 
                   is integerk  (8) 

 

which implies that 𝑃(𝜃) and 𝑄(𝜃) take following trigonometric forms: 
 

𝑃(𝜃) = 𝑝1 cos 𝑛𝜃 + 𝑝2 cos(𝑛 − 1)𝜃 + ⋯ + 0.5𝑝𝑛+1 (9) 
 

𝑄(𝜃) = 𝑞1 sin 𝑛𝜃 + 𝑞2 sin(𝑛 − 1)𝜃 + ⋯ + 𝑞𝑛 sin 𝜃 (10) 
 

Thus, on the unit circle the symmetric and asymmetric polynomials are purely real 
polynomials. Our ultimate goal is to represent 𝑃(𝜃)  and 𝑄(𝜃)  in power series form of 

cosx  . First, we need to convert the sines in Eq. (10) to cosines as shown below. We 

observe that, 
 

sin 2sin cos( -1) sin( -2)k k k      (11) 
 

and substituting from Eq. (11) for the first term of 𝑄(𝜃) in Eq. (10) gives: 
 

1 2

1 3

( ) 2 sin cos( 1) sin( -1)

( )sin( -2) ... sin
n

Q q n q n

q q n q

   

 

  

   
 (12) 

 

Continuing the substitution from Eq. (11) into Eq. (12) results in, 
 

𝑄(𝜃) = 2 sin 𝜃 [𝑞1
′ cos(𝑛 − 1)𝜃 + 𝑞2

′ cos(𝑛 − 2)𝜃 + ⋯ + 𝑞𝑛−1
′ cos 𝜃 + 0.5𝑞𝑛

′ ] (13) 
 

which makes use of following recursion conditions: 
 

𝑞𝑗
′ = 𝑞𝑗−2

′ + 𝑞𝑗 ,    𝑗 = 3,4, … , 𝑛 ,     𝑞1
′ = 𝑞1,     𝑞2

′ = 𝑞2 (14) 
 

The above polynomials take the more concise forms as follow:  
 

( )P   pc  (15) 
 

( ) 2sin  
o

Q   qc  (16) 
 

where 𝐩, 𝐪, 𝐜 and 𝐜𝟎 are vectors given below: 
 

𝐩 = [𝑝1  𝑝2  …    0.5𝑝𝑛+1] 
 

𝐪 = [𝑞1
′   𝑞2

′  …   0.5𝑞𝑛
′ ] 

(17a) 
 

(17b) 
 

𝐜 = [cos 𝑛𝜃  cos(𝑛 − 1)𝜃 … cos 𝜃   1]𝑇 
 

𝐜𝟎 = [cos(𝑛 − 1)𝜃 cos(𝑛 − 2) 𝜃 … cos 𝜃   1]𝑇 

(18a) 
 

(18b) 
 

Even though Eqs. (15) and (16) are amenable to real number computations, they are 
inadequate for computing their roots. They need to be transformed into powers of

cosx  . One may realize that the entries of  𝐜  and 𝐜𝟎 in Eq. (18) are nothing but 

Chebyshev polynomials, 𝑇𝑛(𝑥) = cos 𝑛𝜃 , can be transformed to the desired powers as 
given in references [7,8]. For example, in a matrix form, c  in Eq. (18) can be represented 

by: 
 

Vc x  (19) 
 

where 𝐱 is a column vector given as: 
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𝐱 = [𝑥𝑛  𝑥𝑛−1  …   1]𝑇 (20) 
 

and V  is the transformation matrix. Numerical values of V for few degrees are listed in 

references [7,8]. However this approach requires either to store the above matrix or to 
generate it in the computer; both are not very attractive. A more appealing approach is 
using the identity, 𝑇𝑛+1(𝑥) = 2𝑥𝑇𝑛(𝑥) − 𝑇𝑛−1(𝑥),   𝑇0(𝑥) = 1,   𝑇1(𝑥) = 𝑥,  where 𝑥 = cos 𝜃.  
Applying this identity repetitively, degree of the 𝑇𝑛 term goes down while power of 𝑥 goes 
up. An in-place procedure [8],  
 

𝑓𝑜𝑟 𝑖 = 𝑛 − 1 𝑑𝑜𝑤𝑛 𝑡𝑜 1 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑗 = 1, … , 𝑖 
𝑝(𝑗 + 2) = 𝑝(𝑗 + 2) − 𝑝(𝑗);            
𝑝(𝑗) = 2𝑝(𝑗);                                       

(21) 

 

to the nth degree polynomial whose coefficients are as given in Eq. (17) yields the desired 
transformation. 
 

Now, we describe the method for computing the gain margin.  
 

3. Procedure for computing the gain margin 
 

To carry out the computation of 𝐺𝑚 in real arithmetic, we multiply both terms of Eq. (2) by 
𝐴(1/𝑧), which will now become as follows: 
 

( ) (1/ ) ( ) (1/ ) 0
m

G B z A z A z A z   (22) 
 

Evidently, 
 

( ) ( ) (1/ )D z A z A z  (23) 
 

is real and 
 

( ) ( ) (1/ )N z B z A z  (24) 
 

is complex number for which the real and imaginary parts are as follow: 
 

( ) [ ( ) (1/ )]/2
r

N z N z N z   (25) 
 

( ) [ ( ) (1/ )]/2
i

N z N z N z i   (26) 
 

The modified characteristic equation now becomes: 
 

( ) 0
m r i

G N iN D    (27) 
 

Therefore, the real and imaginary parts of Eq. (27) are written as: 
 

0
m r

G N D   (28) 
 

0
m i

G N   (29) 
 

The above equation shows that the gain margin is determined at 𝑧𝑐𝑔  at which 𝑁𝑖 = 0, and 

for this value of 𝑧, the gain margin is found by computing following expression. 
 

=- ( )/ ( )
m cg r cg

G D z N z  (30) 
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The polynomial 𝑁𝑖 , in Eq. (26), is asymmetric and its roots can be found as follows: Let n
and m be the degrees of A and B . Eqs. (24) and (26) yield: 
 

( )2/ (1/ ) ( ) (1/ ) ( ) ( ) (1/ )
i

N z i N z N z B z A z B z A z     (31) 
 

To make the above in positive powers of 𝑧 , let 𝐵(1/𝑧) = 𝑧−𝑚�̅�(𝑧) , 𝐴(1/𝑧) = 𝑧−𝑛�̅�(𝑧) , 
𝐶(𝑧) = �̅�(𝑧)𝐴(𝑧), and 𝐶̅(𝑧) = �̅�(𝑧)𝐵(𝑧). (Note that the coefficients of �̅�(𝑧) and �̅�(𝑧) are 
the reverse of 𝐵(𝑧) and 𝐴(𝑧) respectively.) This implies Eq. (32), 
 

( )2/ ( ) ( )m n

i
N z i z C z z C z    (32) 

 

where 𝐶(𝑧) is given as: 
 

1
1

1

( ) ( ) ( )
n m

m n j

j
j

C z B z A z c z
 

  



    (33) 

 

Coefficients of 𝐶̅(𝑧) are the reverse of 𝐶(𝑧),  𝑐�̅� = 𝑐𝑚+𝑛+2−𝑗 , 𝑗 = 1, … , 𝑚 + 𝑛 + 1. Thus: 
 

1 1 1
1 1 1

2
1 1 1

( )
n m n m n m

m n j m n j k

j m n j k
j j k

C z c z c z c z
     

       

  
  

      (34) 

 

Substituting for the 𝐶(𝑧) and 𝐶̅(𝑧) polynomials from Eqs. (33) and (34) into Eq. (32) yields: 
 

1 1 1
1 1 1 1

1 1 1

( )2/ ( )
n m n m n m

m m n j n j n j n j

i j j j
j j j

N z i z c z z c z c z z
     

           

  

       (35) 

 

The above summation can be simplified if it is split into three summations: 
 

𝑁𝑖(𝑧)2/𝑖 = ∑ 𝑐𝑗(𝑧𝑛+1−𝑗 − 𝑧−𝑛−1+𝑗)

𝑛−𝑚

𝑗=1

+ ∑ 𝑐𝑗(𝑧𝑛+1−𝑗 − 𝑧−𝑛−1+𝑗)

𝑛

𝑗=𝑛−𝑚+1

+ ∑ 𝑐𝑗(𝑧𝑛+1−𝑗 − 𝑧−𝑛−1+𝑗)

𝑛+𝑚+1

𝑗=𝑛+1

 

(36) 

 

Applying 2 2k n j    to the last term, noting that 1j n  term vanishes, gives: 
 

1 1
1 1 1 1

2 2
2

( ) ( )
n m n m

n j n j n k n k

j n k
j n k n

c z z c z z
   

         

 
  

     (37) 

 

Substituting back into Eq. (36) gives: 
 

1 1 1 1

2 2
1 1

( )2/ ( ) ( )( )
n m n

n j n j n j n j

i j j n j
j j n m

N z i c z z c c z z


         

 
   

       (38) 

 

Thus, Eq. (38) can be simplified to Eq. (39). 
 

𝑁𝑖(𝑧) = − ∑ 𝑞𝑗 sin(𝑛 + 1 − 𝑗) 𝜃

𝑛

𝑗=1

 

𝑞𝑗 = 𝑐𝑗 ,                          𝑗 = 1, … , 𝑛 − 𝑚         

𝑞𝑗 = 𝑐𝑗 − 𝑐2𝑛+2−𝑗,      𝑗 = 𝑛 − 𝑚 + 1, … , 𝑛 

(39) 

 

Precisely following the above steps for 𝑁𝑟 , we reach to following solution. 
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𝑁𝑟(𝑧) = ∑ 𝑞𝑗 cos(𝑛 + 1 − 𝑗) 𝜃

𝑛+1

𝑗=1

 

𝑞𝑗 = 𝑐𝑗 ,                          𝑗 = 1, … , 𝑛 − 𝑚         

𝑞𝑗 = 𝑐𝑗 + 𝑐2𝑛+2−𝑗,      𝑗 = 𝑛 − 𝑚 + 1, … , 𝑛 

𝑞𝑗 = 𝑐𝑛+1,                    𝑗 = 𝑛 + 1                    

(40) 

  

Therefore, the procedure for determining the gain margin is summarized below: 
 

i. Compute the coefficients 𝑐𝑗  of the C polynomial from the coefficients of A and B
using Eq. (33). 

ii. Construct polynomial 𝑁𝑖  from Eq. (39) and solve for its roots to get 𝑧𝑐𝑔 . 

iii. Construct polynomial D  from Eq. (23) and 𝑁𝑟  from Eq. (40), evaluate at 𝑧𝑐𝑔 . 

iv. Determine the gain margin from Eq. (30). 
 

Next, we describe the process for computing the phase margin. 
 

4. Procedure for computing the phase margin 
 

Computing the phase margin, 𝑃𝑚, is governed by Eq. (3). It shows that the amplitude of 

( )G z  equals to 1, at 𝑧𝑐𝑝 for which 𝐺(𝑧𝑐𝑝)𝐺(1/𝑧𝑐𝑝) = 1. Thus, we solve Eq. (41).  
 

( ) ( ) (1/ ) ( ) (1/ ) 0
cp cp cp cp cp

W z A z A z B z B z    (41) 
 

Similar to Eqs. (22)-(27), we see the equation given below. 
 

( ) ( )/
r i

G z N iN D   (42) 
 

Hence, ∠𝐺 becomes, 
 

arctan( , )
i r

G N N   (43) 
 

where 𝑁𝑟  and 𝑁𝑖  are computed at 𝑧𝑐𝑝 . The phase margin is then found as: 
 

m
P G    (44) 

 

The procedure for determining 𝑃𝑚 is summarized here: 

i. Construct W  from Eq. (41) and solve for its roots to get 𝑧𝑐𝑝 . 

ii. Evaluate 𝑁𝑟  and 𝑁𝑖  at 𝑧𝑐𝑝 . 

iii. Compute the phase margin from Eq. (44). 
 

One observes that polynomial,W , is symmetric. Again its roots can be found by converting 
it to a Chebyshev polynomial and determine its roots. 
 

5. Application of the procedure 
 

To expedite the derivation of this algorithm, we treated the discrete time transfer function 
(DTTF), from the outset, as a theoretical mathematical entity without regards to where it 
is originated from or how its results would be applicable. Now, we address some applicable 
practical issues. In practice, DTTF usually results from sampling linear continuous time 
system at a constant time interval T and transforming them to DTTF. There are various 
transformation methods, and one of them is the bilinear transformation. The Laplace 
variable 𝑠 = 𝑖𝜔 is now transformed into the delay 𝑧 = 𝑒𝑖𝜃 = 𝑒𝑖𝜔𝑇. Hence, 𝜃 represents the 
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frequency 𝜔 normalized by the sampling rate, 1/𝑇; and the frequency, 𝜔, is obtained by 
dividing 𝜃 by 𝑇. Now, from Eqs. (2) and (3), the gain and phase cross over frequencies are 
given by 𝜔𝑐𝑔 = 𝜃𝑐𝑔/𝑇 and 𝜔𝑐𝑝 = 𝜃𝑐𝑝/𝑇. To describe the procedure, we shall use following 

example. 
 

𝐺(𝑧) =
0.04798𝑧 + 0.0464

𝑧3 − 1.41𝑧2 + 0.1808𝑧 + 0.36
 ,       𝑇 = 0.1 (45) 

 

The 4th element of denominator, A(4), will be used as a variable that ranges from 0.3 to 
0.36. The gain and phase margins are computed and plotted, against the variable A(4), 
using the above analytical algorithm vs. the Matlab ‘margin’ function as shown in Figs. 1 
and 2. Both figures show that, practically, differences between the results of methods are 
eye indistinguishable. 
 

 
 

Fig. 1 Gain margin vs A(4) graph. 
 

 
 

Fig. 2 Phase margin vs A(4) graph. 
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Figs. 3 and 4 depict the differences between these two solutions for margin parameters 
against the variable A(4). Both figures show that these differences are minor. For example 
when A(4) =0.36, the cross over frequencies and the gain and phase margins found by the 
analytical algorithm are, 
 

4.1959 rad/s  1.2179

3.9846 rad/s  6.6869 deg
cg m

cp m

G

P





 

 
 

 

while those given by the Matlab function ‘margin’ are as follows: 
 

4.1960 rad/s  1.2181

3.9846 rad/s  6.6861 deg
cg m

cp m

G

P





 

 
 

 

 
 

Fig. 3 Gain margin error vs A(4) graph. 
 

 
 

Fig. 4 Phase margin error vs A(4) graph. 
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As seen, the results of both methods match very closely. However, this analytical method 
is programmable and can be implemented in any language and can be imbedded in any 
design. Despite the appearance of trigonometric functions everywhere, they are only used 
when computing the cross over frequencies and in computing the phase margin in Eq. (43). 
 

6. Summary and conclusions 
 

This paper has presented a numerical algorithm for computing the gain and phase margins 
for a discrete time system. The algorithm entirely uses real computations. Inputs to this 
algorithm are just the coefficients of the numerator and denominator of the polynomials 
of the discrete system. The method is programmable and non-iterative; therefore, it can be 
imbedded in procedures for computing the design and stability of discrete time systems. 
Computationally, when compared with the Matlab function ‘margin’, it provides almost 
identical results. 
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