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Abstract 

In this paper, Seiberg−Witten−like equations without self−duality are defined on 8 −dimensional mani-

folds. Then, non−trivial and flat solutions are given to them on ℝ8. Finally, on 8 −real–dimensional Kähler 

manifolds a global solution to these equation is obtained for a given negative and constant scalar curvature. 
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1. Introduction 

On the 4 −manifolds, Seiberg−Witten equations intro-

duced by E. Witten are consisted of Dirac equation and 

Curvature equation [9]. These equations provide infor-

mation about the topology and geometry of the 4 −mani- 

folds [3,4,6,8,9]. To define these equations, one needs 

two entities as an 𝑖ℝ valued connection 1 −form and a 

spinor field. Dirac equation can be defined on any mani-

fold endowed with 𝑆𝑝𝑖𝑛𝑐 −structure. But, defining the 

curvature equation needs self−duality concept of two 

form. Since self−duality concept is meaningful only in 

4 −dimension, generalized self−duality concept is given 

to define the curvature equation on a noun four− dimen-

sional manifold. Accordingly, Seiberg−Witten equations 

are investigated up to 4 −dimensional manifolds by         

defining generalized self−duality concept [1,5]. On 

8 −manifolds, Seiberg−Witten−like equations have  

been studied in [1,2,5] depending on the 𝑆𝑝𝑖𝑛 and                          

𝑆𝑝𝑖𝑛𝑐 −structure. In [1], the author defined Seiberg− 

Witten−like equations on the 𝑆𝑝𝑖𝑛 manifold with respect 

to the generalized self−duality concept and gives them 

local solutions. Then, in [2] these equations are con-

structed on the 𝑆𝑝𝑖𝑛𝑐 manifolds and non−trivial local so-

lutions are given to them.  Finally, the global solutions of 

these equations are given on the 8−manifolds endowed 

with 𝑆𝑈(4) −structure in [5].   

 

The purpose of this paper is planning to give in two part.  

One of them is to write down Seiberg−Witten−like 

equations without using the self−duality concept on the 

4 −manifolds and to show similarities with the classical 

Seiberg−Witten equations. The other one is to define 

these equations on the 8 −manifolds without using the 

self−duality concept and to obtain a non−trivial flat so-

lution on the 8 −dimensional Riemannian manifolds.  

Also, to give them a global solution on the 8 −real−di-

mensional Kähler manifold for a given negative and con-

stant scalar curvature. 

 

2. Materials and Methods 

2.1 𝑺𝒑𝒊𝒏𝒄 −structure and Dirac operator 

Suppose that 𝑀 is an orientable Riemannian manifold.  

Hence, there exist an open covering {𝑈𝛼}𝛼∈𝒜  of 𝑀 with 

the transitions functions 𝑔𝛼𝛽: 𝑈𝛼 ∩ 𝑈𝛽 ⟶ 𝑆𝑂(𝑛) for 

𝑇𝑀. If there exists another collection of transition func-

tions �̃�𝛼𝛽: 𝑈𝛼 ∩ 𝑈𝛽 ⟶ 𝑆𝑝𝑖𝑛𝑐(𝑛) such that the following 

diagram commutes 

 

  

 

 

 

 

 

 

 

That is, 𝜆 ∘ �̃�𝛼𝛽 = 𝑔𝛼𝛽 and the cocycle condition  

�̃�𝛼𝛽(𝑥) ∘ �̃�𝛽𝛾(𝑥) = �̃�𝛼𝛾(𝑥) on 𝑈𝛼 ∩ 𝑈𝛽 ∩ 𝑈𝛾 ≠ ∅ is sa-   

tisfied, then 𝑀 is called 𝑆𝑝𝑖𝑛𝑐  manifold. 

 

On a 𝑆𝑝𝑖𝑛𝑐  manifold, one can construct 𝑃𝑆𝑂(𝑛), 

𝑃𝑆𝑝𝑖𝑛𝑐(𝑛) and 𝑃𝑆1  principal bundles by using principal 

bundle construction lemma  [7]. Also, by using 𝑃𝑆1 prin-

cipal bundle one can construct determinant line bundle 

ℒ ≔ 𝑃𝑆𝑝𝑖𝑛𝑐(𝑛) ×𝑙 ℂ=𝑃𝑆1  ×𝑈(1) ℂ 

where 
𝑙𝛼𝛽 = 𝑙: 𝑈𝛼 ∩ 𝑈𝛽 ⟶ 𝑆𝑝𝑖𝑛𝑐(𝑛). 

Moreover, an associated complex vector bundle    

𝕊=𝑃𝑆𝑝𝑖𝑛𝑐(𝑛) ×𝜅𝑛
 Δ𝑛 can be constructed by considering 

spinor representations 

𝜅𝑛: 𝑆𝑝𝑖𝑛𝑐(𝑛) ⟶ 𝐴𝑢𝑡(Δ𝑛) 

where Δ𝑛 = ℂ2
𝑛
2
. If the dimension of 𝑀 is even, then 𝕊 

spinor bundle splits into two pieces 𝕊 =𝕊+ ⊕ 𝕊− [4]. The 

sections of the complex vector bundle are called spinor 

fields. On the complex vector bundle 𝕊 one can define 

Hermitian inner product as follows: 
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<,>: Γ(𝕊) × Γ(𝕊) ⟶ ℂ 

([𝑝, Ψ], [𝑝, Φ]) ⟼ < Ψ,Φ >= Ψ̅ ⋅ Φ.    (2.1) 

By using Hermitian inner product defined in (2.1) one 

can associate each spinor Ψ to an endomorphism of 𝕊 by 

the formula 

ΨΨ∗: 𝕊 ⟶ 𝕊 

𝜏 ⟼ < Ψ, τ > Ψ. 

Following bundle homomorphisms are useful while stud-

ying on spinors. Extended map of 𝜅𝑛 is defined by 

𝜅: 𝑇𝑀 ⟶ 𝐸𝑛𝑑(𝕊). 

Some authors called the map 𝜅 a 𝑆𝑝𝑖𝑛𝑐 −structure on the 

manifold 𝑀 [8]. 

The Clifford multiplication with 𝑋 is defined  

𝑋 ⋅ Ψ ≔ 𝜅(𝑋)(Ψ) 

where 𝑋 ∈ Γ(𝑇𝑀) and Ψ ∈ Γ(𝕊). 

 

A spinor covariant derivative operator ∇𝐴 is obtained by 

using an 𝐴: 𝑇𝑃𝑆1 ⟶ 𝑖ℝ, 𝑖ℝ −valued 1 −form in the 

principal bundle 𝑃𝑆1  and Levi−Civita connection ∇ on 𝑀 

as follows      

∇𝐴
𝑋Ψ = dΨ(X) +

1

2
∑𝜔𝑖𝑗(𝑋)𝑒𝑖 ⋅ 𝑒𝑗(Ψ) +

1

2
𝐴(𝑋)(Ψ)

𝑖<𝑗

 

where Ψ ∈ Γ(𝕊) and 𝑋 ∈ Γ(𝑇𝑀). 

 

Now we can define the Dirac operator locally as follows. 

 

Definition 1: Let 𝑒 = {𝑒1, 𝑒2, … , 𝑒𝑛} be any local ortho-

normal frame on 𝑈 ⊂ 𝑀. Then the local expression of the 

Dirac operatör 𝐷𝐴 = Γ(𝕊)
  
→Γ(𝕊) is 

𝐷𝐴Ψ = ∑𝑒𝑖 . ∇𝑒𝑖
𝐴 Ψ 

𝑛

İ=1

 

where Ψ ∈ Γ(𝕊) and 𝐴 ∈ Ω1(𝑀, 𝑖ℝ). Dirac operator de-

composes into 𝐷𝐴 = 𝐷𝐴
+⨁𝐷𝐴

− in the case of dimension of 

𝑀 is even. 

 

By using 𝜅, another bundle map 𝜌 associated 

each 2 −form to an endomorphism of 𝕊, can be defined 

on the orthonormal frame {𝑒1, 𝑒2, … , 𝑒𝑛} as follows 

𝜌: Λ2(𝑇∗𝑀) ⟶ 𝐸𝑛𝑑(𝕊) 

𝜂 = ∑ 𝜂𝑖𝑗𝑒𝑖 ∧ 𝑒𝑗
𝑖<𝑗

 ⟼ 𝜌(𝜂) = ∑ 𝜂𝑖𝑗𝜅(𝑒𝑖)𝜅(𝑒𝑗)

𝑖<𝑗

. 

Also 𝜌 can be extend to a complex valued 2 −forms [8] 

such that 

𝜌: Λ2(𝑇∗𝑀)⨂ℂ ⟶ 𝐸𝑛𝑑(𝕊). 

Also 𝜌 can be defined on the half spinor bundles 𝕊±.     

The half−spinor bundles 𝕊± are invariant under 𝜌(𝜂) for 

all 𝜂 ∈ Λ2(𝑇∗𝑀). That is, 

𝜌(𝜂)(Ψ) ∈ 𝕊+, ∀Ψ ∈ 𝕊+ 

                             𝜌(𝜂)(Ψ) ∈ 𝕊−, ∀Ψ ∈ 𝕊−. 

Then, we obtain the following maps by restriction  

𝜌+(𝜂) = 𝜌(𝜂)|𝑆+ ,  𝜌−(𝜂) = 𝜌(𝜂)|𝑆− . In this case 

𝜌+: Λ2(𝑇∗𝑀) ⊗ ℂ ⟶ 𝐸𝑛𝑑(𝕊+) 
is expressed as follows: 

𝜌+(𝜂) = 𝜌+(∑ 𝜂𝑖𝑗𝑒𝑖 ∧ 𝑒𝑗𝑖<𝑗 ) = ∑  𝜂𝑖𝑗𝜅(𝑒𝑖)𝜅(𝑒𝑗)𝑖<𝑗 . 

Note that, the space of 𝑖ℝ −valued 2 −forms Λ2(M, iℝ) 
is a sub bundle of Λ2(M, iℝ) × ℂ. We consider the sub 

bunde 𝑊 = 𝜌+(Λ2(M, iℝ)) of End(𝕊) to define curva-

ture equation. 

 

In order to be able to give a global solution for the 

Seiberg−Witten−like equation defined without self−du-

ality, the manifold must be endowed with 𝑆𝑈(4) −struc-

ture. That guarantees the existence of a Hermitian metric 

compatible with the complex structure on a Hermitian 

manifold. On the Hermitian manifold one can construct 

canonical 𝑆𝑝𝑖𝑛𝑐 −structure and by using this structure 

spinorial bundle can be defined with a spinorial connec-

tion. Also, Dirac operator is associated with such a con-

nection. As a result Seiberg−Witten−like equation wit- 

hout self−duality can be defined on such manifold and a 

global solution can be given to it. 

 

In the following, before the global solution is given, a 

short brief of the Kähler manifolds is given. 

 

2.2 Kähler Manifolds 

On the 8 −manifolds endowed with 𝑆𝑈(4) −structure, 

there exists an almost complex structure satisfying 

𝐽: 𝑇𝑀 ⟶ 𝑇𝑀, 𝐽2 = −𝐼𝑑 . 

 

A smooth manifold endowed with an almost complex 

structure is called an almost complex manifold and de-

noted by (𝑀, 𝐽). 
 

The almost complex structure 𝐽 acts on the space of 

1 −forms as follows: 

𝐽: 𝑇𝑀 ⟶ TM 

𝜔 ⟼ 𝐽(𝜔)(𝑋) ≔ 𝜔(𝐽𝑋) 

where 𝜔 ∈ Γ(𝑇∗𝑀) and 𝑋 ∈ Γ(𝑇𝑀). Moreover, 𝐽 acts on 

the complexification of the cotangent bundle of M as 

𝐽: 𝑇∗𝑀 ⊗ℝ ℂ ⟶ 𝐽: 𝑇∗𝑀 ⊗ℝ ℂ 

𝜔⨂𝑍 ⟼ 𝐽(𝜔)⨂𝑍. 

Since 𝐽2 = −𝐼𝑑 , ±𝑖 are eigenvalues of J. Then 

𝑇∗𝑀 ⊗ℝ ℂ is the direct sum of 

𝑇∗𝑀 ⊗ℝ ℂ = ⋀1,0(𝑀)⨁⋀0,1(𝑀) 

where 

⋀1,0(𝑀) = {Z∈ 𝑇∗𝑀 ⊗ℝ ℂ | 𝐽𝑍 = 𝑖𝑍} 
⋀0,1(𝑀) = {Z∈ 𝑇∗𝑀 ⊗ℝ ℂ | 𝐽𝑍 = −𝑖𝑍}. 

The space of 𝑟 −forms is given as: 

⋀𝑟(𝑀) = ∑ ⋀𝑎,𝑏(𝑀)
𝑎+𝑏=𝑟

 

where  

⋀𝑎,𝑏(𝑀) =  𝑠𝑝𝑎𝑛{𝑥 ∧ 𝑦|𝑥 ∈ ⋀𝑎(⋀1,0(𝑀)), 𝑦 ∈ ⋀𝑏(⋀0,1(𝑀))} 

is the space of (𝑎, 𝑏) type complex forms. Finally, Kähler 

manifold is defined as follows. 

 

Definition 2: Let (𝑀, 𝐽) be an almost complex manifold. 

Then, a Riemannian metric 𝑔 is called Hermitian metric 

if it is compatible with the almost complex structure 𝐽: 
𝑔(𝐽𝑋, 𝐽𝑌) = 𝑔(𝑋, 𝑌) 

where 𝑋, 𝑌 ∈ Γ(𝑇𝑀). 
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The associated smooth 2 −form Φ defined by 

Φ(𝑋, 𝑌) = 𝑔(𝑋, 𝐽𝑌) 

is called the Kähler 2 −form and satisfies  Φ(𝐽𝑋, 𝐽𝑌) =
Φ(𝑋, 𝑌). If Φ is closed then M is called Kähler Manifold 

and the metric on M is called a Kähler metric.  

 

2.3 Dirac operator on the Kähler Manifolds 

In this section, we talk about the canonical 𝑆𝑝𝑖𝑛𝑐 −struc-

ture of a Kähler manifold and its spinor bundle with as-

sociated connection. Since the structure group of any 

Kähler manifold of dimension 𝑛 is 𝑈(𝑛), it admits a ca-

nonical 𝑆𝑝𝑖𝑛𝑐 −structure given by: 

𝑃𝑆𝑝𝑖𝑛𝑐(𝑛)=𝑃𝑈(𝑛) ×𝐹 𝑆𝑝𝑖𝑛𝑐(2𝑛) 

where 𝐹:𝑈(𝑛) ⟶  𝑆𝑝𝑖𝑛𝑐(2𝑛) is the lifting map [4]. The 

associated canonical spinor bundle then has the form: 

𝕊 ≅ Ω(0,∗)(𝑀) 

where Ω(0,∗)(𝑀) is the direct sum of 

Ω(0,1)(𝑀)⨁Ω(0,2)(𝑀)⨁... ⨁Ω(0,𝑖)(𝑀), 𝑖 ∈ ℕ. There are 

two ways to include a spinorial Levi−Civita connection 

on 𝕊. 

 

The first is obtained by the extension of the connection 

to forms and the latter is obtained via 𝑆𝑝𝑖𝑛𝑐 − structure. 

In this work, we mainly focused on the canonical 

𝑆𝑝𝑖𝑛𝑐 −structure with the following isomorphism: 

𝕊 ≅ Ω(0,∗)(𝑀). 

On this bundle, we described Dirac operator defined on 

𝕊 and we give the relation with the Dirac−type operator 

defined on Ω(0,∗)(𝑀). 

 

In the case of Kähler manifold endowed with a canonical 

𝑆𝑝𝑖𝑛𝑐 −structure, there is a spinorial connection ∇𝐴 on 

the associated spinor bundle 𝕊 induced by an unitary con-

nection 1 −form A on the determinant line bundle ℒ to-

gether with the spinorial Levi−Civita connection ∇.  

Also, on the associated spinor bundle one can describe 

Dirac operator as follows: 

Let {𝑒𝑖} 𝑖 = 1, . . . , 𝑛 be a local orthonormal frame on M.  

Then the Dirac operator 𝐷𝐴 is given by: 

𝐷𝐴Ψ = ∑ 𝑒𝑖. ∇𝑒𝑖
𝐴 Ψ.

𝑛

İ=1

 

Moreover, by considering Kähler manifolds with   

Ω(0,∗)(𝑀) associated spinor bundle the Dirac type opera-

tor is defined as follows:  

Let 

�̅�: Ω0,𝑟(𝑀) ⟶ Ω0,𝑟+1(𝑀), �̅�∗: Ω0,𝑟(𝑀) ⟶ Ω0,𝑟−1(𝑀), 
given by: 

𝜕0
̅̅ ̅ = ∑ 𝑍�̅�

∗
∧ ∇𝑍�̅�

,   𝜕2
̅̅ ̅∗𝑛

𝑖=1 = −∑ 𝜄(𝑍�̅�)
∗ ∧ ∇𝑍�̅�

𝑛
𝑖=1  respec-

tively, where ∇ is the extension of the Levi−Civita con-

nection to Ω(0,∗)(𝑀) and 𝜄 is the contraction operator. 

Since 𝕊 ≅ Ω(0,∗)(𝑀), one has 

𝐷𝐴0
= √2 ( 𝜕0

̅̅ ̅ + 𝜕2
̅̅ ̅∗

)                              (2.3) 

where 𝐴0 is the Levi−Civita connection of the line bun-

dle 𝐿 = Λ2(𝑀) of the canonical 𝑆𝑝𝑖𝑛𝑐 −structure. 

 

2.4 Seiberg−Witten Equations Without Self−Dua-

lity on the 𝒏 − Manifolds 

 

Definition 3: Let (𝑀, 𝑔) be a 𝑛 −dimensional 𝑆𝑝𝑖𝑛𝑐 

manifold. Then Seiberg−Witten Like equations for the 

pair(𝐴,Ψ)is given by 

         𝐷𝐴Ψ = 0, Dirac Equation 

         𝜌+(𝐹𝐴) =
1

2
(ΨΨ∗)+, Curvature Equation       (2.4) 

where 𝐹𝐴 is the curvature of A and (ΨΨ∗)+ is the orthog-

onal projection of ΨΨ∗ onto 𝑊 = 𝜌+(Ω2(M, iℝ)). In the 

local orthonormal frame {𝑒1, . . . , 𝑒𝑛}, 
(ΨΨ∗)+ = 𝑃𝑟𝑜𝑗𝑊(ΨΨ∗) 
 = 

∑
< 𝜌+(𝑒𝑖 ∧ 𝑒𝑗), ΨΨ∗ >

< 𝜌+(𝑒𝑖 ∧ 𝑒𝑗), 𝜌+(𝑒𝑖 ∧ 𝑒𝑗) >
𝑖<𝑗

𝜌+(𝑒𝑖 ∧ 𝑒𝑗). 

3. Results and Discussion 

In this section, we write down the Seiberg−Witten−Like 

equation on 4 and 8 −dimensional manifolds. Then we 

compare the solution of these equations with the solution 

of classical Seiberg−Witten equations on ℝ𝟒 [8,9]. Fi-

nally, we give a global solution to these equations on  

8 −manifolds. 

 

3.1 Seiberg−Witten−like equation on ℝ𝟒 

In 𝑀 = ℝ4 case, the explicit form of the Dirac operator 

with respect to the 𝑆𝑝𝑖𝑛𝑐(4) −structure is given as fol-

lows: 
𝜕𝜓1

𝜕𝑥1
𝑥4 + 𝐴1𝜓1 = 𝑖 (

𝜕𝜓1

𝜕𝑥2
+ 𝐴2𝜓1) +

𝜕𝜓2

𝜕𝑥3
+ 𝐴3𝜓2 

                                         +𝑖 (
𝜕𝜓2

𝜕𝑥4
+ 𝐴4𝜓2),   

𝜕𝜓2

𝜕𝑥1
+ 𝐴1𝜓2 = −𝑖 (

𝜕𝜓2

𝜕𝑥2
+ 𝐴2𝜓2) −

𝜕𝜓1

𝜕𝑥3
− 𝐴3𝜓1  

                                     +𝑖 (
𝜕𝜓1

𝜕𝑥4
+

1

2
𝐴4𝜓1). 

The second equation of the Seiberg−Witten−like equa-

tions without self−duality is obtained as follows 

   𝐹12 + 𝐹34 = −
𝑖

2
(|𝜓1|

2 − |𝜓2|
2), 

𝐹13 − 𝐹24 =
1

2
(𝜓1𝜓2

̅̅̅̅ − 𝜓2𝜓1
̅̅̅̅ ), 

     𝐹14 + 𝐹23 = −
𝑖

2
(𝜓1𝜓2

̅̅ ̅̅ + 𝜓2𝜓1
̅̅̅̅ ). 

 

Notice that, in the case of 𝑀 = ℝ4 Seiberg−Witt-

ten−like equations without self−duality coincide with 

the classical Seiberg−Witen equations [8,9]. 

 

In the following we define the Seiberg−Witten−like 

equations on 8 −manifolds. 

 

3.2 Seiberg−Witten− like equation on ℝ𝟖 

By considering the following 𝑆𝑝𝑖𝑛𝑐 −structure [5]: 

𝜅8: ℝ
8 ⟶ ℂ16,            
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κ8(ei) = [
0 μ(ei)

−μ(ei) 0
]                           (3.1) 

where 𝑒𝑖 , 𝑖 = 1, … ,8 is the standart basis of ℝ𝟖, 𝜇(𝑒1) =
𝐼𝑑 is a 8 × 8 identity matrix , and for 𝑖 = 1,… ,8 explicit 

form of 𝜇(𝑒𝑖) are given by 

 
𝜇(2) = 𝐼2⨂𝐼2⨂𝑚1, 𝜇(3) = 𝐼2⨂𝐼2⨂𝑚2, 

𝜇(4) = 𝑖𝐼2⨂𝑚1⨂𝑚1𝑚2, 𝜇(5) = 𝑖𝐼2⨂𝑚2⨂𝑚1𝑚2, 

𝜇(6) = −𝑚1⨂𝑚1𝑚2⨂𝑚1𝑚2, 𝜇(7) = −𝑚2⨂𝑚1𝑚2⨂𝑚1𝑚2, 

𝜇(8) = −𝑚1𝑚2⨂𝑚1𝑚2⨂𝑚1𝑚2 
 

 

where 𝐼2 is a 2 × 2  identity matrix and 

𝑚1 = [
𝑖 0
0 −𝑖

],    𝑚2 = [
0 𝑖
𝑖 0

]. 

By using (3.1) one can obtain explicit form of (2.4) and 

the solution of these equation can be obtained by the fol-

lowing pair, 

𝐴 = ∑−2𝑖𝑥𝑖

8

𝑖=1

𝑑𝑥𝑖 

and 

Ψ = (0,0,0, 𝑒∑ −
1

2
𝑥𝑗

28
𝑗=1 , 0,0, 𝑒∑ −

1

2
𝑥𝑗

28
𝑗=1 , 0). 

Here (𝐴,Ψ)  is the local, non−trivial but flat (𝑖𝑒. 𝐹𝐴 = 0) 

solution of the Seiberg−Witten−like equation without 

self−duality with respect to 𝑀 = ℝ8. 

 

In the next subsection, a global solution to the 

Seiberg−Witten−like equations without self−duality is 

given on 8 −real−dimensional Kähler Manifolds.                    

 

3.3 Seiberg−Witten−Like Equations on the 

𝟖 −Real−Dimensional Kähler Manifold 

Let (𝑀, 𝑔, 𝐽) be a 8 −real−dimensional Kähler manifold 

endowed with a canonical 𝑆𝑝𝑖𝑛𝑐 −structure and 𝑒1, 𝑒2 =

𝐽(𝑒1), 𝑒3, 𝑒4 = 𝐽(𝑒3), 𝑒5, 𝑒6 = 𝐽(𝑒5), 𝑒7,  𝑒8 = 𝐽(𝑒7), be a lo-

cal orthonormal frame with the dual basis {𝑒1, 𝑒2, 𝑒3,
𝑒4, 𝑒5,  𝑒6, 𝑒7,  𝑒8}. Then the Kähler 2 −form has the 

form    

Φ = 𝑒1⋀𝑒2 + 𝑒3⋀𝑒4 + 𝑒5⋀𝑒6 + 𝑒7⋀𝑒8. 
Under the action Φ, one gets the following decomposi-

tion 

𝕊 = 𝕊0⨁𝕊1⨁𝕊2⨁𝕊3⨁𝕊4, 

where 

𝕊0 = {Ψ ∈  𝕊|Φ Ψ = 4iΨ}, 
𝕊1 = {Ψ ∈  𝕊|Φ Ψ = 2iΨ}, 
𝕊2 = {Ψ ∈  𝕊|Φ Ψ = 0}, 
𝕊3 = {Ψ ∈  𝕊|Φ Ψ = −2iΨ}, 
𝕊4 = {Ψ ∈  𝕊|Φ Ψ = −4iΨ}. 

Accordingly, 𝑓: 𝑖4𝑒1 ⋅ 𝑒2 ⋅ 𝑒3 ⋅ 𝑒4 ⋅ 𝑒5 ⋅ 𝑒6 ⋅ 𝑒7 ⋅ 𝑒8: 𝕊 ⟶
𝕊 endomorphism, the complex spinor bundle 𝕊 splits into 

𝕊 = 𝕊+⨁𝕊− 

where 

𝕊+ = 𝕊0⨁𝕊2⨁𝕊4 ≅ ⋀0,4(𝑀)⨁⋀0,2(𝑀)⨁⋀0,0(𝑀), 

     𝕊− = 𝕊0⨁𝕊3 ≅ ⋀0,3(𝑀)⨁⋀0,1(𝑀).  

Let Ψ0 be a spinor in 𝕊4 ≅ Ω0,0(𝑀) corresponding to 

constant function 1 in the chosen coordinates           

Ψ0 =

[
 
 
 
 
 
 
 
0
0
0
0
0
0
0
1]
 
 
 
 
 
 
 

. By using  Ψ0, one has  

(Ψ0Ψ0
∗)+

2
=

[
 
 
 
 
 
 
 
0 0
0 0

0 0
0 0

0 −1
4

0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 1

4]
 
 
 
 
 
 
 

. 

 

Let 𝐴0 be the connection on the 𝑆1 −principal bundle 𝑃𝑆1 

induced by means of the Levi−Civita connection ∇ in the 

line bundle 𝐿 = Ω0,2(𝑀) of the canonical 𝑆𝑝𝑖𝑛𝑐 −struc-

ture [4]. Accordingly, the corresponding Dirac operator 

𝐷𝐴0
: Γ(𝕊+) ⟶ Γ(𝕊−) coincides with √2(𝜕0

̅̅ ̅⨁𝜕2
∗̅̅ ̅̅  ).   

Also, the curvature of the connection 1 −form 𝐴0 is 

given by 

𝐹𝐴0
= 𝑖𝜌𝑟𝑖𝑐                              (3.2) 

where 𝜌(𝑋, 𝑌) = (𝑋, 𝑌) = 𝑔(𝑋, 𝐽 ∘ 𝑅𝑖𝑐(𝑌)) and           

𝑅𝑖𝑐: 𝑇𝑀 ⟶ 𝑇𝑀 denotes the Ricci tensor. Since the al-

most complex structure J and the Ricci tensor 𝑅𝑖𝑐 com-

mute, one has 

 

𝜌𝑟𝑖𝑐 = −𝑅11𝑒1⋀𝑒2 − 𝑅33𝑒3⋀𝑒4 − 𝑅13(𝑒1⋀𝑒4 − 𝑒2⋀𝑒3) 

  +𝑅14(𝑒1⋀𝑒3 − 𝑒2⋀𝑒4) −  𝑅15(𝑒1⋀𝑒6 − 𝑒2⋀𝑒5) 

  +𝑅16(𝑒1⋀𝑒5 + 𝑒2⋀𝑒6) −  𝑅17(𝑒1⋀𝑒8 − 𝑒2⋀𝑒7) 

  +𝑅18(𝑒1⋀𝑒7 + 𝑒2⋀𝑒8) −  𝑅35(𝑒3⋀𝑒6 − 𝑒4⋀𝑒5) 

  +𝑅36(𝑒3⋀𝑒5 + 𝑒4⋀𝑒6) − 𝑅37(𝑒3⋀𝑒8 − 𝑒4⋀𝑒7) 

  +𝑅38(𝑒3⋀𝑒7 + 𝑒4⋀𝑒8) − 𝑅55𝑒5⋀𝑒6 − 𝑅77𝑒7⋀𝑒8 

  −𝑅57(𝑒5⋀𝑒8 − 𝑒6⋀𝑒7) + 𝑅58(𝑒5⋀𝑒7 − 𝑒6⋀𝑒8). 
 

In the following a global solution is given for the appro-

priate Ricci tensor. 

 

Theorem 1. 

Let (𝑀, 𝑔, 𝐽) be an 8 −real−dimensional Kähler mani-

fold. Then for a given negative and constant scalar cur-

vature 𝑠 (𝐴0, Ψ = √−2𝑠Ψ0) is the solution of the 

Seiberg−Witten−like equations without self−duality. 

 

Proof. Since Ψ = √−2𝑠 Ψ0 ∈ Ω0,0(𝑀) and Ψ is the 

spinor field corresponding to the constant function 1, by 

using (2.3), one gets 𝐷𝐴0
≡0. Satisfying the curvature 

equation remains. To achive this, 𝑅𝑖𝑐  must be taken as 

follows: 

𝑅𝑖𝑐 = [𝑅𝑖𝑗]8×8
= {

𝑠

8
𝑖 = 𝑗

0 𝑖 ≠ 𝑗,
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where 𝑠 is the negative and constant. By using 𝑅𝑖𝑐 in 

(3.2), one gets 𝜌+(𝐹𝐴0
) = 𝑖𝜌+(𝜌𝑟𝑖𝑐) which means 

𝜌+(𝐹𝐴0
) =

(ΨΨ∗)+

2
. 

 

4. Conclusion 

We give a global solution to the Seiberg−Wit-

ten−like equations on 8 −real–dimensional Käh-

ler manifolds for a given negative and constant 

scalar curvature. 
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