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Abstract
In this paper, Seiberg—Witten—like equations without self—duality are defined on 8 —dimensional mani-
folds. Then, non—trivial and flat solutions are given to them on R®. Finally, on 8 —real-dimensional Kahler
manifolds a global solution to these equation is obtained for a given negative and constant scalar curvature.
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On the 4 —manifolds, Seiberg—Witten equations intro-
duced by E. Witten are consisted of Dirac equation and
Curvature equation [9]. These equations provide infor-
mation about the topology and geometry of the 4 —mani-
folds [3,4,6,8,9]. To define these equations, one needs
two entities as an iR valued connection 1 —form and a
spinor field. Dirac equation can be defined on any mani-
fold endowed with Spin¢ —structure. But, defining the
curvature equation needs self—duality concept of two
form. Since self—duality concept is meaningful only in
4 —dimension, generalized self—duality concept is given
to define the curvature equation on a noun four— dimen-
sional manifold. Accordingly, Seiberg—Witten equations
are investigated up to 4 —dimensional manifolds by
defining generalized self—duality concept [1,5]. On
8 —manifolds, Seiberg—Witten—like equations have
been studied in [1,2,5] depending on the Spin and
Spin€ —structure. In [1], the author defined Seiberg—
Witten—like equations on the Spin manifold with respect
to the generalized self—duality concept and gives them
local solutions. Then, in [2] these equations are con-
structed on the Spin® manifolds and non—trivial local so-
lutions are given to them. Finally, the global solutions of
these equations are given on the 8—manifolds endowed
with SU(4) —structure in [5].

The purpose of this paper is planning to give in two part.
One of them is to write down Seiberg—Witten—like
equations without using the self—duality concept on the
4 —manifolds and to show similarities with the classical
Seiberg—Witten equations. The other one is to define
these equations on the 8 —manifolds without using the
self—duality concept and to obtain a non—trivial flat so-
lution on the 8 —dimensional Riemannian manifolds.
Also, to give them a global solution on the 8 —real—di-
mensional Kéhler manifold for a given negative and con-
stant scalar curvature.
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2.1 Spin‘ —structure and Dirac operator

Suppose that M is an orientable Riemannian manifold.
Hence, there exist an open covering {U,}4ec.4 Of M with
the transitions functions g,z: U, N Ug — SO(n) for
TM. If there exists another collection of transition func-
tions gy p: Uy N Ug — Spin®(n) such that the following
diagram commutes

Spin(n)
?jaﬁ A\
Ua NUp s SO(n)

That is, Ao g.s = gep and the cocycle condition
Gap(x) ° Gpy(x) = oy (x) ON U, NUg N U, #+ @ is sa-
tisfied, then M is called Spin¢ manifold.

On a Spin® manifold, one can construct Pgy ),
Pgpincny and Pg1 principal bundles by using principal
bundle construction lemma [7]. Also, by using Pg1 prin-
cipal bundle one can construct determinant line bundle

L= Pgpincny X1 C=Ps1 Xy(q) C
where

lagg =L:U,NUg — Spinf(n).
Moreover, an associated complex vector bundle
S=Pgspinc(n) X«,, On Can be constructed by considering
spinor representations

Kn: Spin(n) — Aut(4,)

where A,, = C?2. If the dimension of M is even, then S
spinor bundle splits into two pieces S =S* @ S~ [4]. The
sections of the complex vector bundle are called spinor
fields. On the complex vector bundle S one can define
Hermitian inner product as follows:
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<,>T(S)XI(S) — C

([p,¥], [p, ®]) — <Y o>=P.0. (2.1)
By using Hermitian inner product defined in (2.1) one
can associate each spinor ¥ to an endomorphism of S by
the formula

yy=:s — S
T — <Y1r>V.
Following bundle homomorphisms are useful while stud-
ying on spinors. Extended map of k,, is defined by
K:TM — End(S).
Some authors called the map x a Spin€ —structure on the
manifold M [8].
The Clifford multiplication with X is defined
X-¥:=kX)(¥)

where X € I'(TM) and ¥ € I'(S).

A spinor covariant derivative operator V4 is obtained by
using an A:TP¢1 — iR, iR —valued 1 —form in the
principal bundle P: and Levi—Civita connection V on M
as follows

1 1
VAW = dW(X) + EZ wy(Ne; - () +5 A (P)
i<j
where ¥ € I'(S) and X € I['(TM).
Now we can define the Dirac operator locally as follows.

Definition 1: Let e = {ey, ey, ..., ,,} be any local ortho-
normal frame on U < M. Then the local expression of the
Dirac operator D, = I'(S) = I'(S) is

n

DW= Z e;. Vﬁi‘{’
i=1

where ¥ € I'(S) and A € I (M, iR). Dirac operator de-
composes into D, = D @D, in the case of dimension of
M is even.

By using x, another bundle map p associated
each 2 —form to an endomorphism of S, can be defined
on the orthonormal frame {e,, e, ..., e, } as follows

p:A2(T*M) — End(S)
n= Z nije; \ej p(m) = Z Uijk(ei)’f(ej)-
i<j i<j

Also p can be extend to a complex valued 2 —forms [8]
such that
p: A2(T*M)QRC — End(S).
Also p can be defined on the half spinor bundles S*.
The half—spinor bundles $* are invariant under p(n) for
all n € A2(T*M). That is,
p(mMW) € S*,v¥ € §*
p(mMWP) eSS, VP EeS™.

Then, we obtain the following maps by restriction
pr(m = pls+, p~(m) = p()|s- . Inthis case

pt:A2(T*M) ® C — End(St)
is expressed as follows:

pt(m) = P+(Zi<j nije A ej) = Zi<j Uin(ei)K(ej)~
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Note that, the space of iR —valued 2 —forms A%(M, iR)
is a sub bundle of A%2(M,iR) x C. We consider the sub
bunde W = p*(A%(M,iR)) of End(S) to define curva-
ture equation.

In order to be able to give a global solution for the
Seiberg—Witten—like equation defined without self—du-
ality, the manifold must be endowed with SU(4) —struc-
ture. That guarantees the existence of a Hermitian metric
compatible with the complex structure on a Hermitian
manifold. On the Hermitian manifold one can construct
canonical Spin® —structure and by using this structure
spinorial bundle can be defined with a spinorial connec-
tion. Also, Dirac operator is associated with such a con-
nection. As a result Seiberg—Witten—like equation wit-
hout self—duality can be defined on such manifold and a
global solution can be given to it.

In the following, before the global solution is given, a
short brief of the Kédhler manifolds is given.

2.2 Kahler Manifolds
On the 8 —manifolds endowed with SU(4) —structure,
there exists an almost complex structure satisfying
J:TM — TM,J? = —1I,.

A smooth manifold endowed with an almost complex
structure is called an almost complex manifold and de-
noted by (M, ).

The almost complex structure J acts on the space of
1 —forms as follows:
J:TM — TM
w — J(@X)=wlX)
where w € I'(T*M) and X € I'(TM). Moreover, ] acts on
the complexification of the cotangent bundle of M as
J:T"M Qg C — J:T*M Qg C
w®Z — J(w)QZ.
Since J? = —1,;, +i are eigenvalues of J. Then
T*M Qg C is the direct sum of
T*M ®g C = AY°(M)BA*I (M)
where
A0 (M) {ZeT*M Qr C|]Z = iZ}
AL (M) {ZeT*"M Qr C|]Z = —iZ}.
The space of r —forms is given as:

Ny = D A

a+b=r

where

AP (M) = span{x A y|x € A*(AYO(M)),y € AL(A®L(M))}
is the space of (a, b) type complex forms. Finally, Kéhler
manifold is defined as follows.

Definition 2: Let (M, ]) be an almost complex manifold.

Then, a Riemannian metric g is called Hermitian metric

if it is compatible with the almost complex structure J:
9UX,JY) = g(X,Y)

where X,Y € ['(TM).
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The associated smooth 2 —form & defined by
(X, Y) = g(X,JY)

is called the Kahler 2 —form and satisfies ®(JX,JY) =

®(X,Y). If ®is closed then M is called Kahler Manifold

and the metric on M is called a Kdhler metric.

2.3 Dirac operator on the Kihler Manifolds
In this section, we talk about the canonical Spin¢ —struc-
ture of a Kéhler manifold and its spinor bundle with as-
sociated connection. Since the structure group of any
Kahler manifold of dimension n is U(n), it admits a ca-
nonical Spin€ —structure given by:
Pspincy=Py(ny Xr Spin(2n)

where F: U(n) — Spin€(2n) is the lifting map [4]. The
associated canonical spinor bundle then has the form:

S = 0O (M)
where  Q©@9(M) is the direct sum  of
QD MBACD (M)D... ®2D (M), i € N. There are
two ways to include a spinorial Levi—Civita connection
onS.

The first is obtained by the extension of the connection
to forms and the latter is obtained via Spin¢ — structure.
In this work, we mainly focused on the canonical
Spin€ —structure with the following isomorphism:
S = 0O (M).

On this bundle, we described Dirac operator defined on
S and we give the relation with the Dirac—type operator
defined on Q) (M).

In the case of Kdhler manifold endowed with a canonical
Spin® —structure, there is a spinorial connection V4 on
the associated spinor bundle S induced by an unitary con-
nection 1 —form A on the determinant line bundle £ to-
gether with the spinorial Levi—Civita connection V.
Also, on the associated spinor bundle one can describe
Dirac operator as follows:

Let {e;}i =1,...,n be a local orthonormal frame on M.
Then the Dirac operator D is given by:

n

D,¥ = z e;. Vo W
i=1

Moreover, by considering Kahler manifolds with
Q© (M) associated spinor bundle the Dirac type opera-
tor is defined as follows:
Let
0: Q07 (M) — QO7*H(M), 9*: Q07 (M) — Q07 H(M),
given by:
0o =Y11Z AVz, 0, = =X UZ) AVz, respec-
tively, where V is the extension of the Levi—Civita con-
nection to Q(®*) (M) and « is the contraction operator.
Since S = Q%) (M), one has

Da, =V2 (99 +0;) (23)
where A, is the Levi—Civita connection of the line bun-
dle L = A%(M) of the canonical Spin® —structure.
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2.4 Seiberg—Witten Equations Without Self—Dua-
lity on the n — Manifolds

Definition 3: Let (M, g) be a n —dimensional Spin®
manifold. Then Seiberg—Witten Like equations for the
pair(4, ¥)is given by
D,¥ = 0, Dirac Equation
pt(Fy) = %(l}'l}’*)’“, Curvature Equation ~ (2.4)
where F, is the curvature of Aand (W¥*)* is the orthog-
onal projection of ¥¥* onto W = p*(Q?(M, iR)). In the
local orthonormal frame {e;, ..., e,},
(PwH* Projy,(W¥")
Z <p*tle'nel), vy >
£ <p*t(etnel),pt(etnel) >

pt(etne).

3. Results and Discussion

In this section, we write down the Seiberg—Witten—Like
equation on 4 and 8 —dimensional manifolds. Then we
compare the solution of these equations with the solution
of classical Seiberg—Witten equations on R* [8,9]. Fi-
nally, we give a global solution to these equations on
8 —manifolds.

3.1 Seiberg—Witten—like equation on R*

In M = R* case, the explicit form of the Dirac operator
with respect to the Spin€(4) —structure is given as fol-
lows:

oY, (0P oY,
6_x1x4 +AP, =1 (6_962 + A2¢1) + 6_x3 + Az,
(2
+i (0—12 + A41/;2),
0, (0, oY,
6_xl + A1, = —i (a_xz + Azlpz) - 6_963 — Az,
. (0P,
+i (% +1A,).

The second equation of the Seiberg—Witten—like equa-
tions without self—duality is_ obtained as follows

L
Fip +F34 = _E(W)ﬂz — 213,
1 — I
Fiz3 —Fyy = E(lpﬂl)z - 1/)21/’1):
i — —
Fig +Fp3 = 3 (W12 + P2thy).
Notice that, in the case of M = R* Seiberg—Witt-
ten—like equations without self—duality coincide with

the classical Seiberg—Witen equations [8,9].

In the following we define the Seiberg—Witten—like
equations on 8 —manifolds.

3.2 Seiberg—Witten— like equation on R®
By considering the following Spin¢ —structure [5]:
Kg: R® — C'°,
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xg(e;) = [—u(ei) 0 ] (3.1)

where e;, i = 1, ...,8 is the standart basis of R®, u(e;) =
I,; is a 8 x 8 identity matrix , and for i = 1, ...,8 explicit
form of u(e;) are given by

u(2) = L®L®mM,,
u(4) = il,®m,; ®m;m,,
u(6) = —m;@mm,®m;m,,

u(3) = L,R®L,Qm,,
us) = il,®m,®mm,,
w(7) = —my®@m;m,®@m;ms,

u(8) = —mm,®@®mm,@®mm,

where [, isa 2 X 2 identity matrix and

i 0 [0 i
= [0 —i]’ M2 =1 o]'
By using (3.1) one can obtain explicit form of (2.4) and
the solution of these equation can be obtained by the fol-

lowing pair,
8
A= Z —2ix; dx!
i=1
and

w = (0,0,0,e=1 =1,0,0, €= 7 0).
Here (4,¥) isthe local, non—trivial but flat (ie. F, = 0)

solution of the Seiberg—Witten—like equation without
self—duality with respect to M = RS,

In the next subsection, a global solution to the
Seiberg—Witten—like equations without self—duality is
given on 8 —real—dimensional Kahler Manifolds.

3.3 Seiberg—Witten—Like Equations on the
8 —Real—Dimensional Kihler Manifold

Let (M, g,]) be a 8 —real—dimensional Kéhler manifold
endowed with a canonical Spin® —structure and e,, e, =
J(e1) es, es =](e3), es,e6 =J(es), €7, eg =] (e;), be a lo-
cal orthonormal frame with the dual basis {e,, e, e,
€4, €s, €, €7, eg}. Then the Kéhler 2 —form has the
form

O = e Ne, + es3\ey + esNeg + e;/\eg.
Under the action @, one gets the following decomposi-
tion

S = S,DS, DS, DS;BS,,

where
S, = {YE€ SOV =14iv},
S, = {YeE S|oVY =2y},
S, {Ye S|oV¥ =0},
S; = {Ye So¥=-2i¥},
S, = {¥Ye S|®V¥=—4i¥}.

Accordingly, f:i*e;-e,-e;-e,-es-es-e; -eg:S —
S endomorphism, the complex spinor bundle S splits into
S =S"@S”

where
$* = $,@S,8S, = A** (M)A (M)DA*° (M),
S™ = S$,BS; = A% (MDA (M).
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Let ¥, be a spinor in S, = Q%°(M) corresponding to
constant function 1 in the chosen coordinates

0
0
0

Y, = 8 . By using ¥, one has
0
0
1

(WoWo ) —

S oo oCooco o
[cNeNoNoNoNolole)
[cNeNoNoNoNolole)
[eN ool oNoNolole)
OO OO0 OO0 O

cCooc o Co o
cocococoxloo
S OO O ocooco o

Let A, be the connection on the S* —principal bundle P;1
induced by means of the Levi—Civita connection V in the
line bundle L = Q%2(M) of the canonical Spin® —struc-
ture [4]. Accordingly, the corresponding Dirac operator
Dy,:T(S*) — I'(S7) coincides with v2(3,89,").
Also, the curvature of the connection 1 —form A, is
given by

FAO = ipric (32)
where pX,Y)=(X,Y) = g(X,] o Ric(Y)) and
Ric:TM — TM denotes the Ricci tensor. Since the al-
most complex structure J and the Ricci tensor Ric com-
mute, one has

Pric = —Ryie;\e; — RyzesNey — Ryz(e\ey — e;/\e3)
+R1s(e;Nez — e;\ey) — Rys(ei\eg — ez/\es)
+Rig(e1\es + e;\eg) — Ryi7(e;\eg — e;\e;)
+Rig(e1/\e; + e;Aeg) — Ris(es/\eg — es/\es)
+Rze(es\es + eyNeg) — R3z(es/\eg — es\e7)
+R3g(esNe; + eyNeg) — Rgses\eg — Ryre,/\eg
—Rs;(esNeg — eg\e;) + Rsg(esAe; — eg\eg).

In the following a global solution is given for the appro-
priate Ricci tensor.

Theorem 1.

Let (M, g,]) be an 8 —real—dimensional Kéhler mani-
fold. Then for a given negative and constant scalar cur-
vature s (4o, ¥ =+V—-2s%,) is the solution of the
Seiberg—Witten—like equations without self—duality.

Proof. Since ¥ =+vV-2s%¥, € Q%°(M) and ¥ is the
spinor field corresponding to the constant function 1, by
using (2.3), one gets D,, =0. Satisfying the curvature
equation remains. To achive this, Ric must be taken as
follows:

S s
reetiaefy 17
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where s is the negative and constant. By using Ric in
(3.2), one gets p*(Fy,) =ip*(prc) Which means

_(wHt

p+(FA0) - 2

4. Conclusion
We give a global solution to the Seiberg—Wit-
ten—like equations on 8 —real-dimensional Kéh-
ler manifolds for a given negative and constant
scalar curvature.
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