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Abstract: This research applied Quantitative Structure Activity Relationship (QSAR) technique in 

developing a Multiple-Linear Regression (MLR) model using Genetic Functional Approximation (GFA) 
method in selecting optimum molecular descriptors from the structures of 24 C14-urea tetrandrine 
compounds. Firstly, the compounds were optimized at the Density Functional Theory (DFT) level using 
Becke’s three-parameter Lee-Yang-Parr hybrid functional (B3LYP) with the 6-31G* basis set in the 
Spartan 14 Version 1.1.4 software. The descriptors of the compounds were computed using Padel-

software, and data set was divided into training and test set. A model was built from the training set 
with internal validation parameter R2

train as 0.9104. The external validation of the model was done using 
the test set compounds with validation parameter R2

test as 0.6443 that passed the criteria for 
acceptability of a QSAR model globally. The coefficient of determination (𝑐𝑅2

𝑝) parameter was calculated 

as 0.8192 which is greater than 0.5, this affirms that the generated model is robust. Furthermore, 

AST4p, GATS8v, and MLFER are descriptors in the model with the positive mean effect of 0.0899, 0.9098 
and 0.0002 respectively. This study depicts a route in designing and synthesizing new C14-urea 

tetrandrine compounds with better inhibitory potentials.  
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INTRODUCTION  
 
Leukemia is one of the most fatal cancer type 
that affects tissue for blood formation in the 

bone marrow, lymphatic system, and spleen in 
the body (1). The K562 leukemic cell lines were 
the first human immortalized myelogenous 
leukemia cell line to be understood which was 
obtained from a 53-year-old female chronic 

myelogenous leukemia patient in blast crisis 
(2). The cells are non-adherent, rounded, 
positive for the BCR/ABL fusion gene, and bear 
some proteomic similarity to indistinguishable 

erythrocytes (2). In culture, they show much 
less clattering than many other suspension 
lines, perhaps due to the down-regulation of 
surface adhesion molecules by BCR/ABL. 
However, additional study lament that BCR/ABL 
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over-expression may actually increase cell 

adherence to cell culture plastic (3). The 
problem with K562 cells is that it undergoes 
excess of Aurora kinases which plays a role in 

the improvement of spindles, the partition of 
chromosomes, and cytokinesis (4). These 
functions are important in cells so as to split, 
redevelop tissues, and assume a support part in 
their homeostatic abilities. However, the excess 
of Aurora kinases takes uncontrolled cell 
division in to account and bringing about the 

tumor (4). Tetrandrines are compounds of 
dibenzyltetrahydroisoquinoline, derived from 
Chinese medicinal plant called Stephania 
tetrandra and it is reported to have anti-tumor 
activities, proliferation chemotherapeutic drugs 
and converses multidrug resistance (MDR) of 

tumor cell (5).  
 
In recent decades, there was a significant 
number of studies that proved the success of 
the Quantitative Structure-Activity Relationship 
(QSAR) approach for prediction of various 
properties, such as solubility, lipophilicity, 

toxicity, mutagenicity, activities (6). By 
definition, a QSAR model is a mathematical 
linear equation involving molecular descriptors 
used in predicting the biological activity of a 
compound which is ought to be very useful in 

designing the new compound with better 

activity. Therefore, the main aim of this 
research was to develop a QSAR model of some 
C14-urea tetrandrine compounds which can be 

used to predict the biological activities of 
compounds against the leukemia K562 cell line 
using Genetic Function Approximation–Multi-
Linear Regression (GFA-MLR) method. 
 
MATERIALS AND METHODS 
 

Data Set collection 
A data set of twenty-four (24) C14-urea 
tetrandrine compounds as potent anti-cancer 
agents for this study were sourced from the 
literature (7). The biological activities of the 
compounds against leukemia K562 cell line were 

measured in IC50 (𝜇𝑀) which is the 

concentration of compound required to reduce 
50% of the cell viability. This is further 
transformed to logarithm scale (Eq. 1) so as to 
have linearity or normality in the concentration 
values. The 2D structures of the compounds 
were drawn using ChemDraw software version 

12.0.2 as shown in “Fig 1”, then aligned with 
their respective IC50 values as shown in Table 1. 

)10log( 6
5050

 ICpIC  (Eq. 1) 

 
Figure 1: Main C14-urea tetrandrine structure. 

 
Table 1: Substitution pattern of C14-urea tetrandrine compounds and their inhibitory concentrations 

(IC50) against leukemia K562 cell line. 

S/No. R1 R2 IC50 (𝝁𝑴) pIC50 

1 

 

H 5.09 5.2932 
 

2 

 

H 6.88 5.1624 
 

3 

 

H 4.89 5.3106 
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4 
 

Methyl 9.21 5.0357 

 
5 

 

Methyl 3.20 5.4948 
 

6 

 

H 6.24 5.2048 
 

7 

 

H 8.01 5.0963 
 

8 

 

H 2.89 5.5391 

 

9 

 

H 2.15 5.6675 

 

10 

 

H 3.22 5.4921 

11 

 

H 1.25 5.9030 
 

12 

 

H 1.81 5.7423 
 

13 

 

H 1.74 5.7594 
 

14 

 

H 2.02 5.6946 
 

15 

 

H 1.84 5.7351 
 

16 

 

H 2.05 5.6882 
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17 

 

H 4.59 5.3381 

 

18 

 

H 4.94 5.3062 
 

19 

 

H 1.97 5.7055 

 

20 

 

- 2.49 5.6038 
 

21 

 

H 5.56 5.2549 
 

22 

 

H 6.42 5.1924 
 

23 

 

- 3.06 5.5142 
 

24 

 

- 4.33 5.3635 
 

 
Equilibrium Geometry 
The equilibrium geometries of all the 
compounds were obtained by engaging Spartan 
14 version software at the density functional 
theory (DFT) level using Becke’s three-

parameter Lee-Yang-Parr hybrid functional 

(B3LYP) with the 6-31G* basis set (8, 9). The 
geometry optimization is an atomic 
arrangement process which gives the most 
stable state of the starting molecular structure. 
 
Molecular descriptor calculation 

The optimized twenty-four (24) molecules were 
subjected to PaDEL-Descriptor software V2.20 
to calculate a total of 1875 molecular 

descriptors including electronic, spatial, 
structural, thermodynamic, and topological 
descriptor (10). The data generated from the 
PADEL- software in MS Excel (.csv) format were 
observed to contain redundant data, zero 

columns or non-informative descriptors. 

 
Data pretreatment and Division 
The data was subjected to a pretreatment 
process using Data Pretreatment software 
downloaded from Drug Theoretical and 
Cheminformatics Laboratory so as to curate the 

results (11). Consequently, the pretreated data 
were divided into training and test sets using 
Data Division software also gotten from Drug 
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Theoretical and Cheminformatics Laboratory 

(DTC Lab) using Kennard and Stone’s algorithm 
method (12). 
 

Model Building and Validation 
The training set was used in developing the 
model from Material studio software version 8 
by engaging the Genetic Function 
Approximation (GFA) method in which the 
dependent variable is the inhibitory 
concentration (IC50) and the independent 

variables are the molecular descriptors. The 
model generated was evaluated using Friedman 
formula (Eq. 2) which determines the finest 
fitness score defined as; (13).  
 

𝐿𝑂𝐹 =
𝑆𝐸𝐸

(1 − 
𝑚 + 𝑠× 𝑑

𝑇
)

2    (Eq. 2) 

 
m is the number of the terms in the model, s is 

a user-defined smoothing parameter, d is the 
total number of descriptors in the model and T 
is the number of data in the training set (14). 
 

𝑆𝐸𝐸 =  √(𝑌𝑒𝑥𝑝  − 𝑌𝑝𝑟𝑒𝑑)
2

𝑁 −𝑃 −  1
   (Eq. 3) 

 

Where SEE is the Standard Error of Estimation 
or Sum of Squares of Errors (SSE). It gives an 
idea about the quality of a model, low SEE value 
signifies better model and vice versa. It was 
defined by the expression (Eq. 3); 
 

Internal Validation 

The established QSAR model was validated so 
as to check the predictive capability and 
reliability of the models. The internal validation 
of the models was examined using the leave-
one-out (LOO) cross-validation method. The 
cross-validation regression coefficient, R2

 (Q2
cv) 

were also calculated using Eq. 4: 

 

R2 =   1 − [
∑(𝑦𝑒𝑥𝑝  − 𝑦𝑝𝑟𝑒𝑑

)
2

∑(𝑦𝑒𝑥𝑝  − 𝑦𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
)

2]  (Eq. 4) 

 
Where 
 𝑦

𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
is the mean of experimental activities, 

𝑦exp is the experimental activities, and 𝑦pred is 

the predicted activity in the training set 

respectively (15). 
 
External Validation 
The R2 value are directly proportional to the 
number of descriptors. However, the R2 values 
is not consistent for evaluating the strength of 
the model. Thus, R2 is adjusted with the 

mandate to refurbish and stabilize the model. 
The adjusted R2 is defined as like in Eq. 5: 

 

R2
adj =  

𝑅2 −𝑝 (𝑛 −1)

𝑛 −𝑝 +1
   (Eq. 5) 

 
Where p is the number of descriptors in the 
model, n is the number of compounds that 

made up the training set (15). 
The model developed was further subjected to 
external validation in order to measure its 
prediction competency using the test set and 
the coefficient of determination(𝑅𝑡𝑒𝑠𝑡

2 ) value is 

given in Equation 6;  
 

𝑅𝑡𝑒𝑠𝑡
2 = 1 − 

∑(𝑌𝑝𝑟𝑒𝑑𝑡𝑒𝑠𝑡 − 𝑌𝑒𝑥𝑝𝑡𝑒𝑠𝑡)
2

∑(𝑌𝑝𝑟𝑒𝑑𝑡𝑒𝑠𝑡 − 𝑌𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 )
2   (Eq. 6) 

 
Where; 𝑌𝑝𝑟𝑒𝑑𝑡𝑒𝑠𝑡 and 𝑌𝑒𝑥𝑝𝑡𝑒𝑠𝑡

are the predicted and 

experimental activity test set respectively. 

𝑌𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 is mean values of experimental activity 

of the training set (15). 
 
Y-Randomization  
In order to have confidence in the model built, 
Y-Randomization test was executed on the 

training set descriptors matrix (16). This is done 
by randomly shuffling the inhibitory 
concentrations (dependent variable) while 
keeping the descriptors (independent variables) 
constant resulting in the generation of random 
MLR models. The new QSAR models are 

anticipated to have significantly low R2 and Q2 
values for 10 trials, which certify that the 
models are robust and c𝑅𝑝

2 is also calculated 

which should be more than 0.5 defined as: 
 
c𝑅𝑝

2 = 𝑅 ×  [𝑅2  −  (𝑅𝑟)2]1/2   (Eq. 7) 

 
 Where c𝑅𝑝

2 is coefficient of determination, R is 

the coefficient of regression and Rr is average 
‘R’ of random models. 
 

Statistical analysis of the descriptors  
Mean Effect 
The mean effect values of each descriptor were 
used to evaluate their relative significances in 
the model and it is defined as: 
 

𝑀𝑒𝑎𝑛 𝐸𝑓𝑓𝑒𝑐𝑡 =
𝛽𝑗  ∑ 𝐷𝑗

𝑛
𝑖

∑ (𝛽𝑗  ∑ 𝐷𝑗
𝑛
𝑖 )𝑚

𝑗

     (Eq. 8) 

 
Where βj is the coefficient of the descriptor j in 
that model, Dj is the value of each descriptor in 
the data matrix for each molecule in the training 
set and m is the number of the descriptor that 

appears in the model and n is the number of 
molecules in the training set (17). 
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Varian Inflation Factor (VIF) 

The Variance Inflation Factor is a measure of the 
multi-collinearity among the descriptors, 
usually expressed as: 

 

𝑉𝐼𝐹 =
1

(1−𝑅2)
   (Eq. 9) 

 

Where R2 is the correlation coefficient of the 
multiple regression between the variables within 
the model. If VIF equals to 1, no inter-
correlation exists for each variable, if VIF falls 
into the range of 1–5, the related model is 
acceptable; and if VIF is larger than 10, the 
related model is unstable and unacceptable 

(18). 
 

Applicability Domain 
A QSAR model applicability domain is usually 
tasked to explore the area where the compound 
predictions can be dependably useful. As such, 

chemical compounds that fall outside the 
applicability domain cannot make a very good 
prediction (19, 20). Consequently, the 
prediction that is interpolated in the chemical 
space is acceptable while extrapolated 
predictions in the chemical space are rejected 
as well.  The leverage method was engaged in 

evaluating the applicability domain of the 
established QSAR model and it is defined as the 
leverage values for the ith compound (Eq. 10) 
(21): 
 

T
i

T
i XXXXhi 1)(     (Eq. 10) 

 
Where; Xi is training compounds matrix of I, X 
is the n × k descriptor matrix of the training set 

compound and 𝑋𝑇 is the transpose matrix of X 

used in developing the model. The warning 
leverage (h*) is the borderline of normal values 
for X outliers and is defined as follows (Eq. 11):  
 

𝒉*= 3
(𝑟+1)

𝑛
   (Eq. 11) 

 
Where n is the number of training compounds 
and r is the number of descriptors in the model.  
 
The leverages of the test compounds with 𝒉𝒊<𝒉* 

are measured to be consistently predicted by 
the model. A plot of standardized residuals 
versus leverage values (Williams plot) is utilized 

to interpret the relevance area of the model in 
terms of chemical space. The area of unfailing 
predictions for the external test compounds, 
defined as compounds whose leverage values 
are within the threshold and standardized 
residuals is not greater than 2α (2 standard 

deviation units). Therefore, the test compound 
(𝒉𝒊<𝒉*) are accepted as Y outlier. Similarly, the 

test set compounds having (𝒉𝒊>𝒉*) are variably 

projected by the model since they are 
extrapolated (21) 

 
RESULT AND DISCUSSION 
 
Descriptor Calculations 
The QSAR studies were performed to generate 
a model that relates the structure activity 
relationship of twenty-four C14-urea tetrandrine 

compounds as a potential anticancer agent 
against leukemia (K562) cell lines. Initially, the 
32 quantum chemical descriptors for all the 
drawn compounds were obtained from Spartan 
14 software via optimization process. These 

were pooled with the 1875 molecular descriptor 

calculated by PaDEL-Descriptor software V2.20 
to give 1907.  
 
Data Pretreatment and Division 
The descriptors result in MS Excel (.csv) were 
subjected to data pretreatment which removed 
non-informative constant data and a pair of 

variables with a correlation coefficient greater 
than 0.7 using the Data Pretreatment software. 
The data set results from the pretreatment 
process was divided by using Kennard-Stone 
algorithm method where 16 compounds (70% 
of the total compounds) are considered as 
training set and 8 compounds (30% of the total 

compounds) are the test set. The division was 

successfully done using the Dataset Division 
GUI 1.2 software.  
 
Model Building and Validation 
In building the QSAR model, three (3) 

descriptors were used to build the model by the 
Genetic Function Approximation (GFA) of 
Material studio software and the model 
generated is illustrated below: 
  
pIC50 =   − 0.064954009 ∗ 𝐀𝐓𝐒𝐂𝟒𝐩 +  6.794973156 

∗ 𝐆𝐀𝐓𝐒𝟖𝐯 −  0.626117779 
∗ 𝐌𝐋𝐅𝐄𝐑_𝐀 

− 2.008205026                                                                                        
(Eq. 12) 

 

The validation parameters of the model were 
presented in Table 2 which clearly shows that 

the model passed the criteria of acceptability. In 
addition, the coefficients of regression (R-
squares) are 0.9104 and 0.6443 for both the 
training and test set compounds respectively. 
This is an indication of a good relationship 
between the predicted and experimental 
activities. The Centered Broto-Moreau 

autocorrelation-lag 4 per weighted by 
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polarizabilities (𝐀𝐓𝐒𝐂𝟒𝐩) descriptor is an 

autocorrelation of a topological structure 
defined as the most recognized spatial 
autocorrelation on a molecular graph which is 

given as; 
 

)(
2

1
);(

2

1

1 1

wBwkdwwATS KT
i

A

i

A

j

jik j  
 

   

 (Eq. 13) 
 

where w is any atomic property, A is the 

number of atoms, k is the interval, and ij  is the 

topological distance between ith and jth atoms; 

 (dij; k) is a Kronecker delta function which is 

equivalent to1 if dij=k, but if dij is not equal k, 

the function is said to be zero. k B is the kth order 

corresponding to the geodesic matrix, whose 
elements are equal to 1 only for vertices vi and 

vj at topological distance k, and zero otherwise; 

w is the dimensional vector of atomic properties 
(22). 
 

The Geary autocorrelation-interval 8 per 
weighted by the Vander Waals volumes 
(𝐆𝐀𝐓𝐒𝟖𝐯) is a 2D autocorrelation descriptor, 

which is obtained from molecular graphs by 
summing the products of atom weights of the 
terminal atoms of all the paths of the considered 
path length (the lag 8) (22). Whereas, the 
𝐌𝐋𝐅𝐄𝐑_𝐀 descriptor is a linear free energy 

relation (LFERs) descriptor whose coefficient 
measures the acidity of hydrogen bond due to 
the interaction of basic solutes with acidic phase 
(22). The positive mean effect of these three (3) 
descriptors in this study inferred that there will 

be a positive influence on the inhibitory 

concentrations when each descriptor value 
increases in the same direction. 

 
Table 2: Validation parameters of the model. 

Validation Parameters Model QSAR Validation Standard 

Friedman LOF 0.0280 - 
R-squared (Training set) 0.9104 ≥ 0.6  
Adjusted R-squared 0.8880 - 
Cross validated R-squared 0.8172  ≥ 0.5 
Significant Regression Yes - 
Significance-of-regression F-value 40.6445 - 

Critical SOR F-value (95%) 3.6506 - 
Replicate points 0 - 
Computed experimental error 0 - 
Lack-of-fit points 12 - 

Min expt. error for non-significant LOF (95%) 0.0601 - 
R-square (test set) 0.6443 ≥ 0.6 

 
Univariate analysis were conducted on the 
inhibitory concentration values of the two set 
(i.e. training set and test set) as presented in 
Table 3. These clearly show that the training set 
range values are within the test set range 
values. Furthermore, the mean activities and 

standard deviation of both the training set were 
almost alike when compared to the test set 
value. This inferred that test set compounds 

activities were interpolative within the activities 
of the training set.  
 
The experimental, predicted inhibitory 
concentration (pIC50) and the residual values 
generated from the compounds were shown in 

Table 4. The residual value is defined as the 
differences between experimental and predicted 
activity, and lower residual values signify that 
the model has a high predictive ability. 

 
  



Abdullahi M et al. JOTCSA. 2018; 5(3): 1387-1398   RESEARCH ARTICLE 

1394 

Table 3: Univariate analysis for the inhibitory concentrations (IC50).  
All Training Set Test Set 

Number of sample points 24 16 8 
Range 0.8673 0.7065 0.7106 
Maximum 5.9030 5.7423 5.9030 
Minimum 5.0357 5.0357 5.1924 
Mean 5.4624 5.4179 5.5513 
Median 5.4934 5.4027 5.5798 

Variance 0.0567 0.0532 0.0517 
Standard deviation 0.2432 0.2383 0.2432 
Mean absolute deviation 0.2106 0.2099 0.2048 
Skewness -0.0291 -0.024 -0.0499 
Kurtosis -1.3179 -1.557 -1.6534 

 

Table 4:  Experimental, predicted and residual values of tetrandrine derivatives  
Training Set 

  
Test Set 

  

Compound Experimental  Predicted  Residual Compound Experimental  Predicted  Residual 

1 5.2932 5.2300 0.0632 9 5.6675 5.7165 -0.0489 

2 5.1624 5.1855 -0.0235 10 5.4921 5.7516 -0.2594 
3 5.3106 5.2425 0.0680 11 5.9030 5.9345 -0.0314 
4 5.0354 5.1089 -0.0732 13 5.7594 5.6038 0.1555 
5 5.4945 5.4227 0.0720 14 5.6946 5.5557 0.1388 
6 5.2048 5.2385 -0.0337 17 5.3381 5.2026 0.1355 
7 5.0963 5.1650 -0.0687 22 5.1924 5.2129 -0.0205 
8 5.5391 5.6657 -0.1266 24 5.3635 5.5647 -0.2012 

12 5.7423 5.6612 0.0811 - 
   

15 5.7358 5.7416 -0.0064 - 
   

16 5.6882 5.7723 -0.0840 - 
   

18 5.3062 5.2613 0.0448 - 
   

19 5.7055 5.6388 0.0666 - 
   

20 5.6038 5.4989 0.1048 - 
   

21 5.2549 5.2974 -0.0425 - 
   

23 5.5142 5.5562 -0.0419 - 
   

 
Statistical Analysis of the Descriptors 
In order to assess the relationships between 
each descriptor used in the model, the values of 

the three (3) descriptors were extracted from 
the training set, then subjected to Pearson’s 
correlation analysis and the results were 
described in Table 5. These show that there is 
no significant inter-correlation between the 

descriptors used in the model because the 
correlation coefficients between all pairs are less 
than 0.5. The Variance Inflation Factor (VIF) 

values for all the three (3) descriptors are not 
greater than 2 which signifies that the 
descriptors are and the model is said to be 
stably acceptable. 

 
Table 5: Pearson’s correlation analysis for descriptor used in the QSAR model. 

  ATSC4p GATS8v MLFER_A VIF 

ATSC4p 1   1.2954 

GATS8v 0.3439 1  1.2183 

MLFER_A 0.4354 0.3719 1 1.3255 

*VIF is the variance inflation factor 
 
The results in Table 6 illustrate some statistical 

parameters of descriptors in the developed 
model. From results, the absolute t-statistics 
values for each descriptor are greater than 2, 
this also inferred that the selected descriptors 

were good (23). The p-values of all descriptors 

in the model are less than 0.05 which means 
that there is a relationship between the 
descriptors and the inhibitory concentration of 
the compounds 
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Table 6: Statistical parameters. 

  

Coefficients 

 

Standard 

Error 

t Stat 

 

P-value 

 

Mean 

Effect 

ATSC4p -0.0649 0.0086 -7.5382 6.87E-06 0.0899 

GATS8v 6.7949 1.2599 5.3931 0.000162 0.9098 

MLFER_A -0.6261 0.1293 -4.8403 0.000405 0.0002 

 
The output of 𝑌-Randomization test was 

presented in Table 7. The 𝑐𝑅2
𝑝 value was 

calculated as 0.8192 which is greater than 0.5, 

this affirms that the generated model is robust. 
 

A Plot of standardized residual against 
experimental activity in “Fig 3” illustrated a 

random scattering around the baseline of data 
at the standardized residual equal to zero. 
Hence, there was no systematic error in the 
model built. 

 
Table 7: Y-randomization test 

Model R R^2 Q^2 

Original 0.9541 0.9104 0.8172 
Random 1 0.4285 0.1836 -0.2395 
Random 2 0.5090 0.2591 -0.1873 
Random 3 0.3475 0.1208 -1.0654 

Random 4 0.2729 0.0744 -0.5785 
Random 5 0.3166 0.1002 -0.8467 
Random 6 0.3393 0.1151 -0.5946 
Random 7 0.5352 0.2865 -0.0898 
Random 8 0.4387 0.1924 -0.7466 
Random 9 0.2490 0.0620 -0.5746 
Random 10 0.7233 0.5232 0.2392 

Random models parameters  
Average R : 0.4160   

Average R^2 : 0.1917   
Average Q^2 : -0.4684   

cRp^2 : 0.8192   
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Figure 2: Plot of predicted against experimental activities (pIC50). 

 
Figure 3: Plot of standardized residual against experimental activity (pIC50). 

 
A scatter plot for standardized residuals against 
the leverages termed as Williams Plot was 
presented in “Fig 4” so as to detect the presence 

of outliers and influencing compounds in the 
models. Our results revealed that all the 

compounds are within the square area ±2 of 

standardized deviation unit which means there 
is no outlier. However, the calculated warning 
leverage (h*) is 0.75. The plot also revealed 

that two (2) test set compounds (i.e., 
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compound 17 and 22) are considered to be the 

influencing compounds because their leverages 
are more than the warning leverage. The reason 
may be attributed to the differences in the 

substitution pattern of the chemical structure in 

the data set. 
 
 

 
Figure 4: The williams plot (Standardized residuals vs the leverage values) 

 
CONCLUSION  
 
In conclusion, this research has successfully 
achieved its aim of constructing a QSAR model 
for the tetrandrine compounds which predicts 

the inhibitory concentration against leukemia 
K562 cell line using Genetic functional algorithm 

method. Our research findings revealed the 
molecular descriptors AST4p, GATS8v and 
MLFER with a mean effect of 0.0899, 0.9098 
and 0.0002 respectively, were found to 

positively influence the inhibitory 
concentrations. This knowledge could be of vital 
importance in designing and synthesizing new 
C14-urea tetrandrine compound with excellent 
inhibitory potentials. 
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