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Abstract 

The physical environment of a space vehicle shows that bang-bang method for attitude control system of a 
space vehicle is a viable and natural choice. This tutorial describes the algorithm and the specific aspects of 
its implementation. It derives the equations and the switching surface used by the method. The immediate 
benefits of this design is short response time which results in larger fuel margin, less fuel consumption and 
less weight. 
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1. Introduction 
 

Typically, a space vehicle (SV) uses warm gas generators for achieving attitude control. 
These generators spew off gas through two pairs of opposing thrusters to control the pitch 
and the yaw channels respectively. Once activated these generators deliver gas to the 
thrusters continually through pulse width modulated valves until exhausted. 
 

Attitude control systems (ACS) may apply a classical feedback control to pulse width 
modulate these valves. Computer simulations show that the design may meets the control 
requirements, albeit the spontaneous net thrust is chaotic. This behavior causes sluggish 
response, higher gas consumption than needed and limiting the operating dynamic 
pressure to a level below what could be achieved. As such, an alternative is needed to avert 
the chaotic thrust so we can fully utilize the available energy by delivering it to the right 
thruster. The alternative is naturally offered by means of bang-bang control. 
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Bang-bang algorithm is a powerful control design and finds wide and farfetched 
applications as for example in references [1-3].  A vivid example is its use in attitude control 
systems. This control algorithm has been introduced under other names as relay, linear 
switching, on-off and contactor control [4-8]. Using it in our SV application is highly 
intuitive. Here a SV in the outer space needs to be reoriented along a desired direction. To 
do that a thruster is fired to generate a moment to slew the vehicle towards that direction. 
Problem, at least theoretically, is that once the thruster is fired, no matter for how long, the 
vehicle will continue to turn in the same direction indefinitely. Thus a second moment must 
be generated to counter the first one and halt the vehicle turn, hopefully along the desired 
vector. This shows that a pair of opposing moments, or a doublet, is needed to accomplish 
the maneuver. One might ask again, how strong this doublet should be and for how long it 
should last. Although this is the core of the mathematical derivation in this note, one might 
intuitively feel that each of the opposing moments would be enacted for one-half of the 
entire duration. The first moment will accelerate the vehicle until it is midway towards the 
final destination and the second moment will decelerate the vehicle until it reaches a 
steady state at the desired destination. 
 

In the following, we formally present the problem and provide the mathematical derivation 
towards a complete control algorithm and confirm it with the simulation results. 
 

2. Problem formulation and mathematical derivation 
 

Herein, we consider a SV in 2-dimensional plane. To control its pitch attitude, in the 
absence of atmospheric pressure, the SV is equipped with two collinear thrusters that are 
placed in the perpendicular plane at its base. The plane is l  feet from the body center of 
mass. The thrusters are capable of generating thrust forces F or -F respectively (see Fig. 1).  
 

 
 

Fig. 1 Body dynamics. 
 
Thus, the magnitude of the moment M  generated by the thrust force in either direction is: 
 

M Fl  (1) 
 

Suppose pitch attitude initial conditions are: 
 

𝜃(0) = 𝜃0, 𝜃̇(0) = 𝜃̇0 (2) 
 

It is desired to generate a doublet, as in Fig. 2, that restores the SV to steady state 
conditions, 
 

𝜃(𝑡) = 0,    𝜃̇(𝑡) = 0,     𝑡 ≥ 𝑇  (3) 
  
where 𝑇 is the doublet duration.  

M 
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F 
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Fig. 2 Moment doublet. 
 
Now, suppose that the durations of the opposing moments are 𝑇1  and 𝑇2  seconds 
respectively, then the Newton moment equation gives: 
 

𝐼𝜃̈ = 𝑀,                     0 < 𝑡 ≤ 𝑇1 
 

𝐼𝜃̈ = −𝑀,       𝑇1 < 𝑡 < 𝑇1 + 𝑇2 
(4) 

 

where I is second moment of inertia about the pitch axis. Integrating Eq. (4) twice with 
respect to time and using the initial conditions in Eq. (2) gives: 
 

𝜃̇(𝑡) = 𝐻𝑡 + 𝜃̇0,                   0 ≤ 𝑡 ≤ 𝑇1 
 

𝜃(𝑡) =
𝐻

2
𝑡2 + 𝜃̇0𝑡 + 𝜃0,     0 ≤ 𝑡 ≤ 𝑇1 

(5) 

 

where 
 

M
H

I
  (6) 

 

Thus, at 
1

t T , Eq. (5) becomes: 
 

 

 

1 1 1 0

2

1 1 1 0 1 02

T HT

H
T T T

  

   

  

   
 (7) 

 

The variables 𝜃1  and 𝜃̇1  become the initial conditions for the second part of Eq. (4). 
Carrying out the integration steps for the second part of Eq. (4) and using the above initial 
conditions gives: 
 

𝜃̇(𝑡′) = −𝐻𝑡′ + 𝜃̇1,                         0 ≤ 𝑡′ ≤ 𝑇2 
 

𝜃(𝑡′) = −
𝐻

2
𝑡′ 2 + 𝜃̇1𝑡′ + 𝜃1,        0 ≤ 𝑡′ ≤ 𝑇2 

(8) 

 

where t   is the time referenced to the end of the first moment, i.e. 
 

1
t t T    (9) 

 

At the end of the second moment, 
2

t T  , Eq. (8), using Eq. (7), become as follow:  
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By collecting terms, these equations simplify to: 
 

 

   

2 1 2 0

2 2

2 1 2 1 2 0 1 2 02
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T T HTT T T

 

  

  

     
 (11) 

 

With no loss of generality, we will require the steady state of the system be: 
 

𝜃̇2 = 0,    𝜃2 = 0 (12) 
 

Eqs. (11) and (12), result in: 
 

0
2 1
T T

H


   (13) 

 

Substituting Eq. (13) into Eq. (11), and a little algebra, results in, 
 

2
2 0 0 0
1 1 2

2
0

2
T T

H HH

  
     (14) 

 

and consequently, 𝑇1 is found as follows: 
 

2

0 0 0
1

1

2
T

H H H

   
     

 
 (15) 

 

Substituting Eq. (15) into Eq. (13) gives following expression for 𝑇2. 
 

2

0 0
2

1

2
T

H H

    
      

  
 (16) 

 

Negative sign of the square root in Eq.(15) is ruled out as it would result in negative 𝑇2. 
Interestingly for the case below, 
 

𝜃̇0 = 0,   𝜃0 < 0   ⇒    𝑇1 = 𝑇2 = √−
𝜃0

𝐻
 (17) 

 

two equal and opposite moments are applied during equal periods. At the end of the first 
period, 𝜃 = −𝜃0/2, a negative moment is applied to decelerate the body and bring it to 
steady state at 𝜃 = 𝜃̇ = 0. From Eqs. (5) and (8), the time histories for 𝜃 and 𝜃̇ are shown 
in Fig. 3. We discuss the case of 𝜃0 > 0 soon. 
 

In the above derivation, we assumed that a positive moment (positive thrust) is applied 
first. However, nothing tells us which one should start first. Firstly, if we argue that for 
positive 𝜃 apply a negative moment and vice versa, then we need to consider the initial 
condition at which 𝜃̇0 is not zero. Secondly and most importantly we need to monitor the 
thrust profile: what if the SV do not follow our mathematical model due to perturbations 
or nonlinearities? 
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Fig. 3 Time histories for 𝜃 and 𝜃̇. 
 

Well, let’s investigate the conditions under which time 𝑇1, is a positive number. Elementary 
algebra shows that Eq. (14) has two positive solutions under following conditions: 
 

𝜃̇0

𝐻
< 0,

1

2
(

𝜃̇0

𝐻
)

2

+
𝜃0

𝐻
> 0,      

1

2
(

𝜃̇0

𝐻
)

2

−
𝜃0

𝐻
> 0 (18) 

 

The above expression can be written in short form as below: 
 

𝜃̇0

𝐻
< 0,

1

2
(

𝜃̇0

𝐻
)

2

> |
𝜃0

𝐻
| (19) 

 

From Eq. (14), another possible condition for a positive 𝑇1 is given as: 
 

2

0 01

2 H H

  
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 
 (20) 

 

The regions of the above two equations can be depicted via the phase portrait in Fig. 4. The 
shape comprises two back-to-back parabolas given by: 
 

2

0 01
0

2 H H

  
   

 
 (21) 

 

The phase portrait in Fig. 4 is divided into four regions, each has specific signs for 𝑇1 as 
follows: 
 

Region   I: 𝑇1 has two positive solutions. 
Region  II: 𝑇1 has one positive and one negative solution. 
Region III: 𝑇1 has two negative solutions. 
Region IV: 𝑇1 has two complex conjugate solutions. 
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Fig. 4 Phase portrait. 
 
Eq. (19) implies that the initial condition resides outside the parabolas in region I; while 
Eq. (20) implies that the initial condition resides inside the left parabola in region II. Thus, 
if the initial condition resides in the region I II , then 𝑇1 will be real and positive. It is in 
this combined region that the attitude control system will be required to enact a positive 
thrust (i.e. positive moment). Intuitively, one can guess that in the remainder region of the 
phase portrait, the ACS must enact a negative thrust (i.e. negative moment). Indeed this is 
the case. If Eqs. (5)-(16) were re-derived with the negative thrust enacted first, one could 
have arrived that in region III IV , 𝑇1 will be real and positive. Actually, we do not need 

to do the lengthy derivation of all these equations. All is needed is replacing H  with H
in these equations to arrive to the conclusion. Thus for the negative thrust, the activation 
regions are as follows: 
 

Region   I: 𝑇1 has two complex conjugate solutions. 
Region  II: 𝑇1 has two negative solutions. 
Region III: 𝑇1 has two positive solutions. 
Region IV: 𝑇1 has one positive and one negative solution. 
 

From the above, one may realize that non-positive or complex solutions are an indication 
that we cannot restore the attitude of the SV, if we enacted the wrong thruster first in these 
regions. Likewise, we can be faced with the case of two positive solutions of 𝑇1, in Region I.  
Eq. (14) tells that these two solutions are as follows:  
 

2

0 0 0
1

1

2
T

H H H

   
    

 
 (22) 

 

When the root is positive the solution of 𝑇2, given by Eq. (16), is positive, but when the root 
is negative 𝑇2  is negative. Thus one solution (with positive root) is only viable and 
therefore a point in the combined region III IV has only one viable solution for 𝑇1 and 
𝑇2 . Despite the apparent complexity of the above analysis, the thruster sign law is so 
simple: 
 

𝑑𝑖𝑠𝑐 =
1

2
(

𝜃̇0

𝐻
)

2

−
|𝜃0|

𝐻
                                                              

if (𝑑𝑖𝑠𝑐 > 0)     ⇒   SV is outside the parabola borders 

(23) 
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𝑠𝑔𝑛𝑇ℎ𝑟 = 𝑠𝑔𝑛(−𝜃̇0)        𝑖. 𝑒 in regions 𝐼 or 𝐼𝐼𝐼               

𝑒𝑙𝑠𝑒            ⇒   SV is inside the parabola borders           
𝑠𝑔𝑛𝑇ℎ𝑟 = 𝑠𝑔𝑛(−𝜃0)        𝑖. 𝑒 in regions 𝐼𝐼 or 𝐼𝑉              

 

where “𝑠𝑔𝑛𝑇ℎ𝑟” denote the thrust sign. From Eqs. (15), (16) and (22) pulse durations are 
given by: 
 

2

0 0
2

1

2
T sgnThr

H H

  
   

 

 (24) 

 

0
1 2
T T sgnThr

H


   (25) 

 

The real payoff, from a control system point of view, is that the ACS can monitor the 
attitude of the space vehicle continually. It can determine the region of the phase portrait 
it resides in, and then it can decide on which thruster it should fire first. 
 

3. Computer simulations 
 

A one-degree of freedom flight simulation is used to examine the dynamic performance of 
the new ACS. The base line parameter is: 𝐻 = 100 deg/s2. 
 

When applying the control law we have two options: The first is to apply the thruster 
doublet during 𝑇1 and 𝑇2 in an open loop manner; the second is to apply the control law 
given by Eq. (23) by computing the parameter ' 'disc  continually and based on its value 

we decide on the thruster sign. In ideal conditions both strategies gave the same results as 
depicted in Figures 5(a)-5(d) which show the trajectories of SV under four scenarios that 
originate from Regions I, II, III and IV respectively. 
 

 
 

Fig. 5(a) Region I trajectory. 
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Fig. 5(b) Region II trajectory. 
 
 

 
 

Fig. 5(c) Region III trajectory. 
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Fig. 5(d) Region IV trajectory. 
 
Some practical issues remain to be discussed. In the above analysis we did not consider 
sensor inaccuracies, thruster model uncertainties or SV parameter errors. These error 
sources will influence the values of the sensor readings, the computation of the parameter 
𝐻  and consequently on ' 'disc  Eq. (23) parameter validity. A way to obviate these 

problems is to monitor the region in which |𝜃 − 𝜃𝑓| < 𝜀1 and |𝜃̇ − 𝜃̇𝑓| < 𝜀2, where (𝜃, 𝜃̇)  is 

the current state, (𝜃𝑓, 𝜃̇𝑓) is the desired final state, and 𝜀1, 𝜀2 denote two small acceptable 

errors. The control law is then implemented so long as the state is outside the region. Once 
the state crosses the region, thrust forces are cutoff. This avoids needless thruster limit 
cycle. 
 

4. Conclusions 
 

Bang-bang is indeed a simple method for attitude control system of a SV and other similar 
systems. The immediate benefits of this design is short response time which results in 
larger fuel margin, less fuel consumption and less weight. The amount of computations 
needed for implementing the algorithm is minimal. Even though the algorithm presented 
herein is described for a 2-dimensional case, it can be easily extended to handle 3-
dimensional systems. The algorithm can be modified to account for system modeling 
inaccuracies. 
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