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ABSTRACT 
 

This paper presents a low-area and high-throughput design and implementation of JPEG encoder on FPGA. The design consists of 

three main components: (1) 2-D DCT module, employing the row-column decomposition technique, (2) Quantization in zigzag 

ordering, utilizing look-up tables, and (3) Entropy coder, transforming the quantized DCT coefficients into JPEG words. All 

components are fully pipelined and optimized for FPGA resource utilization. The proposed implementation of JPEG encoder is able 

to encode 143 and 71 SDTV frames per second with 720x480 gray scale and color pixels per frame, respectively, on Xilinx Spartan 

6 FPGA. Moreover, the proposed architecture is capable of encoding at least 53 and 26 HD Ready TV frames per second with 

1280x720 gray scale and color pixels per frame, respectively, on this FPGA chip. Thus, the proposed JPEG encoder architecture is 

well-suited to various image and video compressing applications where performance and area are significantly important. 
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1. INTRODUCTION 
 

The Joint Photographic Experts Group introduced the JPEG compression standard for still photographic 

images [1], which has become the widely used lossy compression standard ever since. JPEG is heavily 

used in high-resolution image transmission applications including digital cameras, image scanners and 

so on. Such applications require both high-speed and low cost implementations of image encoding and 

decoding. In order to meet several needs of various applications, the JPEG standard specifies two classes 

of encoding and decoding processes: Discrete Cosine Transform (DCT) based processes for lossy 

compression and predictor based processes for lossless compression, each with a few modes of operation 

[1, 2]. Among the different operation modes of the DCT based lossy compression, the baseline mode is 

widely implemented in software and hardware for JPEG compression [3-10]. Consequently, the JPEG 

IP core architecture proposed in this study is based on the baseline mode. 

 

In the literature, several studies are devoted to FPGA [3-7] and ASIC [8-10] implementations of the 

baseline JPEG compression. The common approach of these studies is to split the baseline JPEG 

compression process into four different modules handling 2-D DCT operation, quantization step, zig-

zag ordering step, and entropy coding operations separately. Among these studies, only [4, 9, 10] provide 

detailed hardware design of each of these modules, while the others describe how each of them operates 

in general without elaborating on the hardware design. As a result, the hardware design of JPEG IP core 

proposed in this study is compared against [4, 9, 10]: (i) The proposed design implements 2-D DCT 

based on single 1-D DCT hardware, while they use two 1-D DCT modules. (ii) The proposed design 

performs the quantization in zig-zag ordering in a single module, whereas they do the quantization and 

zig-zag ordering in different modules. (iii) All designs are fully pipelined to obtain the highest 

throughput possible.   

 

This study proposes a novel IP core for high throughput JPEG compression on low cost FPGAs. In order to 

achieve the best throughput possible, each module is designed to be fully pipelined and optimized for the 
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FPGA resource utilization, while meeting the requirements of the JPEG standard [1, 2]. All modules were 

captured in Verilog HDL. The proposed design is synthesized, simulated and verified with Xilinx ISE 14.7 

tool. According to the results from ISE 14.7 tool, the JPEG IP core proposed is capable of compressing 

more than 143 SDTV frames per second with 720×480 gray scale pixels and 53 HD Ready TV frames 

per second with 1280×720 gray scale pixels per frame on a low cost Xilinx Spartan 6 FPGA chip. 

 

The rest of the article is organized as follows: the design philosophy and hardware implementation 

details related to the proposed JPEG IP core architecture are presented in Section 2. The implementation 

results of the proposed JPEG core on different Xilinx FPGAs are given in Section 3. Furthermore, 

comparisons between the proposed design and other JPEG cores from the open literature are given in 

Section 3. Finally, the article is concluded in Section 4. 

 

2. JPEG IP CORE ARCHITECTURE 

 

Based on [1, 2], the proposed JPEG IP core is composed of three main components, which are 2-D DCT, 

quantization in zig-zag order, and entropy coder. FIFO based input and output interfaces provide low-

complexity flow control between the modules, which provides write and read semantics similar to a 

FIFO buffer interface, and they are explained as follows: 

 

 The input interface: A new data is received by the module on its writeData bus in the next rising 

edge of clock when writeEn signal is asserted and full signal is de-asserted during the current clock 

cycle. When full signal is asserted by the module, it cannot accept a new data word in the current 

clock cycle. The bit length and the direction of the input interface signals are given below. 

 writeData bus, input, 8-, 12-, or 96-bit  

 writeEn signal, input, 1-bit 

 full signal, output, 1-bit 

 The output interface: A new data is ready on its readData bus in the next rising edge of clock when 

readEn signal is asserted and empty signals is de-asserted during the current clock cycle. When 

empty signal is not asserted by the module, there is always an available valid data word on its 

readData bus. Once the module cannot produce a new data word in the current clock cycle, the 

empty signal is asserted. The bit length and the direction of the output interface signals are given 

below. 

 readData, output, 12-, or 96-bit  

 readEn, input, 1-bit 

 empty, output, 1-bit 

 

Following sections provide necessary details for each component in the proposed hardware design. 

 

2.1. 2-D DCT Architecture 
 

In this study, a low area implementation of the 2-D DCT is designed and implemented on FPGA. Its 

architecture is adopted and modified from a study proposed by [11] for ASIC implementation. In 

selecting the architecture proposed by [11] to be implemented on FPGA, there are three important 

reasons: (1) it is based on the row-column decomposition technique. Hence, a low area utilization is 

achieved since only single 1-D DCT component is used in a time-shared fashion, (2) a shift-register 

based transpose buffer is implemented in order to improve the utilization of Block RAM resources, and 

(3) simpler finite state machines are responsible to control the datapath since the control logic is 

distributed among the components.  
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Figure 1. Harwdare architecture of 2-D DCT operation (reprinted from [12]) 

Figure 1 (reprinted from [12]) illustrates the overview of the proposed 2-D DCT design for FPGA 

implementation.  The main modules including ping and pong buffers, 1-D DCT component, transpose 

and output buffer are depicted in Figure 1. The main differences of 2-D DCT architectures between [11] 

and this study include a different operation of pong buffer, pipeline register inclusion and the logic for 

rounding method in 1-D DCT operation, output buffer, and a special pipeline that can be stoppable. In 

the following sections, each of five components are separately explained by specifying what each 

module is responsible to compute in 2-D DCT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.1. Ping-Pong buffers 
 

Ping-pong buffering method contains two separate buffers: ping and pong buffers. While ping buffer is 

being loaded with input data, 1-D DCT component performs 1-D DCT operation using data stored in 

pong buffer.  
 

The ping buffer is simply a 96-bit shift-register which is controlled by a finite state machine (FSM) with 

two states {empty, full}:   

 

 empty state (serial-in): when writeEn signal is asserted, a new 12-bit word data is shifted into the 

ping buffer. Once the eighth 12-bit word is inserted into the ping buffer, finite state machine 

changes its state to the full state. Therefore, ping buffer takes at least eight clock cycles to become 

full. In this state, empty signal is asserted. 

 full state (parallel-out): when readEn signal is asserted, 96-bit current state of ping buffer is read in 

single clock cycle and finite state machine changes its state to empty state. In full state, full signal 

is asserted.  

 

According to the proposed ping buffer operation, loading all elements of 8x8 matrix into the ping buffer 

takes 64 cycles and transferring the rows of 8x8 matrix to pong buffer requires 8 cycles. Thus, totally it 

requires 64+8=72 clock cycles to be shifted in and out.  
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Pong buffer is simply a 96-bit register which is controlled by a finite state machine with four states 

{oned_dct_empty, oned_dct_full, twod_dct_empty, twod_dct_full}:   

 

 oned_dct_empty state (parallel-in operation): If writeEn signal is asserted, a new row of eight pixels 

(96-bit word) is loaded into the pong buffer and finite state machine changes its state to 

oned_dct_full state. MuxSel signal is not asserted so as to load from the ping buffer. In this state, 

empty signal is asserted. 

 oned_dct_full state (coefficient computation): in every clock cycle, a new 1-D DCT coefficient is 

computed. The machine stays in this state for eight cycles since there are eight pixels per row. 

During the computation of the last coefficient for a row, it goes to either oned_dct_empty state 

when this is not the last row, or twod_dct_empty state, otherwise. In this state, full signal is asserted. 

 twod_dct_empty state (parallel-in operation): This state is same as oned_dct_empty state except that 

MuxSel signal is now asserted to receive a column of eight 1-D DCT coefficients from the transpose 

buffer.  

 twod_dct_full state (coefficient computation): it is very similar oned_dct_full state except that it 

changes its state to either oned_dct_empty state when the last column is being processed, or 

twod_dct_empty state in the eighth clock cycle. 
 

According to the proposed pong buffer operation, 64+8=72 clock cycles are needed to perform the 

computation of either 1-D or 2-D DCT coefficients. Therefore, a total of 144 clock cycles are required 

by pong buffer to complete the processing of 8x8 matrix of pixels. In a fully-pipelined operation, the 

ping buffer latency will be completely overlapped with the pong buffer latency, so they will together 

introduce a latency of 144 clock cycles. 

 

2.1.2. 1-D DCT 

 

Eight-point 1-D DCT operation is computed by using the row-column decomposition technique [13] 

and it is given as follows: 

 

𝑧0 = 𝑑(𝑥0 + 𝑥7) + 𝑑(𝑥1 + 𝑥6) + 𝑑(𝑥2 + 𝑥5) + 𝑑(𝑥3 + 𝑥4) 
𝑧2 = 𝑏(𝑥0 + 𝑥7) + 𝑓(𝑥1 + 𝑥6) − 𝑓(𝑥2 + 𝑥5) − 𝑏(𝑥3 + 𝑥4) 

𝑧4 = 𝑑(𝑥0 + 𝑥7) − 𝑑(𝑥1 + 𝑥6) − 𝑑(𝑥2 + 𝑥5) + 𝑑(𝑥3 + 𝑥4) 
𝑧6 = 𝑓(𝑥0 + 𝑥7) − 𝑏(𝑥1 + 𝑥6) + 𝑏(𝑥2 + 𝑥5) − 𝑓(𝑥3 + 𝑥4) 

𝑧1 = 𝑎(𝑥0 − 𝑥7) + 𝑐(𝑥1 − 𝑥6) + 𝑒(𝑥2 − 𝑥5) + 𝑔(𝑥3 − 𝑥4) 

𝑧3 = 𝑐(𝑥0 − 𝑥7) − 𝑔(𝑥1 − 𝑥6) − 𝑎(𝑥2 − 𝑥5) − 𝑒(𝑥3 − 𝑥4) 

𝑧5 = 𝑒(𝑥0 − 𝑥7) − 𝑎(𝑥1 − 𝑥6) + 𝑔(𝑥2 − 𝑥5) + 𝑐(𝑥3 − 𝑥4) 

𝑧7 = 𝑔(𝑥0 − 𝑥7) − 𝑒(𝑥1 − 𝑥6) + 𝑐(𝑥2 − 𝑥5) − 𝑎(𝑥3 − 𝑥4) 
 

where zi denotes the transformed coefficient, xi denotes the pixel data, a=C1, b=C2, c=C3, d=C4, e=C5, 

f=C6, g=C7, Ci=0,5cos(kπ/16), i=0,1,..7, and k=1,2,..7. Furthermore, let X0 = x0+x7, X2 = x1+x6, X4 = 

x2+x5, X6 = x3+x4, X1 = x0-x7, X3 = x1-x6, X5 = x2-x5, and X7 = x3-x4.  

 

Figure 2 shows the proposed design for 1-D DCT operation which calculates the coefficients by means 

of these equations. The topmost Add/Sub component illustrated in Figure 2 computes either X0=(x0+x7) 

when OddSel is equal to 0 or X1=(x0-x7) when OddSel is equal to 1, and so on. Therefore, OddSel signal 

is asserted only when a coefficient with odd-index {z1, z3, z5, z7} is computed, and Add/Sub components 

compute either {X0, X2, X4, X6} or {X1, X3, X5, X7} values in parallel. 
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The results of parallel Add/Sub components are fed into the multipliers. Four integer multiplications are 

performed in parallel for every coefficient. In Figure 2, w[39:0] represents the set of weights used during 

the multiplications. For instance, z2 = b*×X0 + f*×X2 ‒ f*×X4 ‒ b*×X6 and w[39:0] ={b*, f*, -f*, -b*}, where 

* symbol is used to denote 10-bit 2’s complement representations. There is single 8×40-bit look-up 

table to store the weight values and it is not explicitly shown in Figure 2. The address of this look-up 

table is 3-bit index value of the coefficient being computed. The table stores 40-bit rows for each address 

and each row stores four different weights (i.e., {b*, f*, -f*, -b*} for z2) in 2’s complement format per 

coefficient. 

 

After performing the multiplications, there is an 88-bit register which is controlled by a FSM with two 

states {empty, full} defined as follows: 

 

 empty state: when writeEn signal is asserted, a new 88-bit word is received into the register and 

FSM makes a transition to the full state. In empty state, empty_transpose (empty signal for transpose 

buffer) or empty_outbuff (empty signal for output buffer) signal is asserted if 1-D DCT or 2-D DCT 

coefficients are being computed, respectively. 

 full state: based on the results of four multiplications loaded in this register, a new 1-D DCT or 2-

D DCT coefficient will be computed by means of the following rounding and adder tree circuits. 
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Figure 2. 1-D DCT architecture 
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During the computation of 1-D DCT coefficients, as long as writeEn is asserted, a new 88-bit word 

will be stored into the register in every clock cycle and the machine stays in full state; otherwise, it 

goes to empty state. While computing 2-D DCT coefficients, on the other hand, a new 88-bit word 

will be stored into the register if both writeEn and readEn_outbuff are asserted so as to guarantee 

that the new 2-D coefficient is accepted by the output buffer. In this state, full signal is not asserted 

only if the output buffer becomes full during the computation of 2-D DC coefficients. 

 

22-bit result {r21, r20, …, r0} for each signed multiplication is rounded to 12-bit 2’s complement value 

by a combinational logic circuit depending on the sign of the result and it is defined as follows: 

 

 When the result is positive: There are three cases: 

 If {r21, r20, …, r10} is the maximum 22-bit positive number, the rounded result is equal to {r21, 

r20, …, r10}. 

 If {r21, r20, …, r10} is not the maximum 22-bit positive number and r9 is equal to 0, the rounded 

result is equal to {r21, r20, …, r10}. 

 If {r21, r20, …, r10} is not the maximum 22-bit positive number and r9 is equal to 1, the rounded 

result is equal to {r21, r20, …, r10} + 1. 

 When the result is negative: If r9 is equal to 0, it is equal to {r21, r20, …, r10}; otherwise, {r21, r20, 

…, r10} + 1. 

 

After rounding operation, 12-bit adder tree with four-input is used to compute either 1-D or 2-D 

coefficient values in 2’s complement format.  

 

2.1.3. Transpose and output  

 

Transpose buffer is simply a shift register with 63×12=756-bit length and it is adopted from [11]. There 

are two scenarios to consider for this module:   

 

 serial-in: If writeEn signal is asserted during 1-D DCT computation, a new 12-bit coefficient is 

serially shifted in this buffer. 

 parallel-out: Consider the shift_register={reg62, reg62, …, reg0} that is composed of 63 12-bit 

registers. When the shift register becomes full, a set of eight registers column={reg56, reg48, reg40, 

reg32, reg24, reg16, reg8, reg0} store the first column of 1-D DCT coefficients. In the next clock 

cycle, the 64th 1-D DCT coefficient is shifted in while the first column is received into pong buffer. 

After the right-shift, column will store the second column of 1-D DCT coefficients.  

 

The output buffer stores the coefficients of 2-D DCT operation and isolate the 2-D DCT hardware in 

Figure 1 from the following quantization component. Output buffer consists of two registers, namely 

reg0 and reg1, and they are controlled by a three-state {empty, almost-full, full} finite state machine 

whose states are defined as follows: 

 

 empty state: it means that both registers are empty. When writeEn signal is asserted, a new 12-bit 

word is loaded into reg0 and finite state machine changes its state to almost-full state. In this state, 

empty signal is asserted. 

 almost-full state: when both writeEn and readEn signals are asserted or deasserted, FSM stays in 

here. Moreover, when they are asserted, a new word is received into reg0 register. If writeEn signal 

is asserted, but readEn signal is de-asserted, a new word is received into reg1 register and it goes 

to full state. If writeEn signal is de-asserted, but readEn signal is asserted, it changes its state to 

empty state since reg0 register has been read. In this state, empty signal is asserted. 
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 full: If readEn signal is asserted, it makes a transition to almost-full state while old reg1 register is 

loaded into reg0. In full state, full signal is asserted. 

 

In a fully-pipelined operation, the latency of the proposed 2-D DCT architecture is optimal in the sense 

that there are no wasted clock cycles. That is, 

 

 It takes at most 76 clock cycles for the first 2-D coefficient to appear at the output buffer outputs. 

Within this 76 clock cycles, 64 clock cycles are spent for computing 64 1-D coefficient, 8 clock 

cycles for loading eight rows of pixel into the pong buffer, 1 clock cycle loading the first column 

of 1-D coefficients into the pong buffer, 1 clock cycle computing the first 2-D coefficient and 2 

clock cycles of buffering latency due to 88-bit register and output buffer. 

 It takes at most 144 clock cycles for the computation of all 2-D coefficients and 146 clock cycles 

for all 64 2-D coefficients to be sent out. 

   

2.2. Quantization in Zigzag Order 

 

The 2-D coefficients Zij of an 8×8 block should be uniformly quantized according to the quantizer step 

size 1≤Qij ≤255 from an 8×8 matrix called the quantization table. Specifically, quantization is defined 

as division of each 2-D DCT coefficient by its corresponding quantizer step size and it is followed by 

rounding the value to the nearest integer: 

 

Zij
* = round (Zij ÷ Qij), 0 ≤i, j≤ 7 

 

where Zij
* is the quantized 2-D DCT coefficient. 

 

The quantization results in that most of the 2-D coefficients towards the lower right corner of 8×8 matrix, 

which are high-frequency coefficients, are zero. The zigzag ordering is used to rearrange the two 

dimensional 2-D coefficients in a one dimensional vector so that the low-frequency coefficients are 

placed before the high-frequency coefficients in the vector so as to maximize the compression during 

the entropy coding stage. 

 

In the literature, it is typical that the quantization and zigzag ordering are handled in two different 

components. In the proposed design of JPEG encoder, however, these two components are combined 

into one architecture in Figure 3 by performing the quantization in the zigzag order. 

 

The zigzag ordering is achieved by a two state {write_ram, read_ram} FSM together with a 64-entry 

RAM and 64-entry look-up table (Zigzag Table) as follows: 

 

 write_ram: The DCT coefficients that are received in the column major order from the 2-D 

architecture are written into the RAM one by one. While the last coefficient is being written, the 

FSM goes to the other state. 

 read_ram: The RAM is read in the zigzag order defined by [1] that is available from Zigzag Table 

while read signal is asserted. After the last coefficient is read from the RAM, the FSM goes to 

write_ram. As a result, the FSM stays in this state for 64 clock cycles. 

 

Then, any DCT coefficient Zij that is read from the RAM is multiplied by an integer constant 

Qij
*=2048/Qij, where the 64 values of Qij

* are kept in a look-up table (Quantization Table in Figure 3) 

and Qij is the related quantizer step size from the quantization table in [1]. Note that there are luminance 

and chrominance quantization tables, one of which is chosen by chrom signal accordingly. Then, there 

is a register controlled by a FSM with two states {empty, full}, which is the same as the one in 1-D DCT. 

This register receives the 24-bit multiplication result in every clock cycle if its writeEn is asserted, and 

if either it is in empty state or its readEn is asserted. After that, the 24-bit multiplication result from the 
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register is rounded into 11-bit integer number by a rounding logic similar to the one in Figure 2, and the 

quantized 2-D DCT coefficients are written into the output buffer one by one for the next stage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4. Entropy Coder Architecture 

 

Entropy coding is the last step in JPEG compression, which loads the quantized 2-D DCT coefficients 

and provides to the output the compressed and assembled JPEG words. The entropy coding is achieved 

by three components, namely run length coding, Huffmann coding, and assembler, each of which is 

elaborated in detail below.    

 

2.4.1. Run length coding 

 

After the quantization in zigzag order, a vector of 64 coefficients will be ready for the entropy coding. 

Among these coefficients, the first element is called DC component and all other elements are known 

as AC components. According to the JPEG standard, the run length coding (RLC) must be applied to 

only AC components. In the proposed design of JPEG encoder, the RLC is simply achieved by a three 

state {dc_coeff, ac_coeff, insert_zrl} FSM followed by an output buffer as follows: 

 

 dc_coeff: The FSM first receives the DC coefficient Z00
* from the quantization architecture, inserts 

{1’b1, 4’b0000, Z00
*} into its output buffer, and goes to ac_coeff state, where 1’b1 signals that this 

is the DC coefficient and 4’b0000 is the related run length of zeros. 

 ac_coeff: The FSM receives the 63 AC coefficients Zij
* one by one, and there are several scenarios 

to handle: 

 If Zij
* is not the last coefficient: 

 If Zij
* is zero, run_length counter is incremented by one. If this is the sixteenth consecutive 

zero (run_length=15), zrl_symbol counter is also incremented by one. 

 If Zij
* is non-zero, there are two cases: If zrl_symbol counter is zero, {1’b0, run_length, Zij

*} 

is copied into the output buffer, and run_length=0. Otherwise, the FSM goes to insert_zrl 

state. 

 If Zij
* is the last coefficient: 

 If Zij
* is zero, {1’b0, 4’b0000, 11’h000} is put into the buffer, where {0, 0} is a special code 

known as EOB (end-of-block) symbol, and it goes to dc_coeff state. 
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 If Zij
* is non-zero, there are two cases again: If zrl_symbol counter is zero, {1’b0, run_length, 

Zij
*} is copied into the output buffer, run_length=0, and it goes to dc_coeff state. Otherwise, 

the FSM goes to insert_zrl state. 

 insert_zrl: While zrl_symbol counter is non-zero, {1’b0, 4’b1111, 11’h000} is inserted into the 

buffer, where {15, 0} is a special code known as ZRL (zero run length) symbol, and zrl_symbol is 

decremented by one. Once zrl_symbol is zero, {1’b0, run_length, Zij
*} is sent to the buffer, and the 

FSM goes to ac_coeff if Zij
* is not the last AC coefficient. Otherwise, it goes to dc_coeff for the 

next block. 
 
According to this FSM, it takes 64 clock cycles at best or 70 clock cycles at worst to run length code 64 

coefficients, which is sufficient enough to support a fully-pipelined operation without any stall clock 

cycles. 

 

2.4.2. Huffmann coding 

 

The output of RLC is a 16-bit word in the form of {1-bit DC flag, 4-bit run length, 11-bit DC/AC 

coefficent}. The Huffmann coding architecture proposed in Figure 4 receives such run length coded 

words and provides the Huffmann codes in a pipelined fashion as follows: 

 

 Stage-1 (Receive): When a new output word is available from RLC, the registers in the first stage 

of pipeline latches the new word as zrl= 4-bit run length, Zij
*=11-bit DC/AC coefficient, dc=1-bit 

DC flag. In addition to these received signals, 11-bit diff and 1-bit lumin signals are computed by 

the differential coder and the chrominance block marker architectures, respectively, and sent to the 

first stage.  

According to the JPEG specification, the DC components must be first differentially coded by a 

simple subtraction between the DC component (Z00
*) of the current 8×8 block and the DC 

component (prevZ00
*) of the previous block from the same source image component (Y, Cb, Cr). 

Even though it is not shown in Figure 4, the differential coder architecture consists of one adder 

and three registers in order to store the previous DC components of luminance and chrominance 

components. As a result, when the reception of a new DC component is signaled by asserting 1-bit 

dc signal, diff = Z00
*- prevZ00

* and Z00
* is written into the related register.  

On the other hand, the luminance block marker is a simple counter that asserts its lumin output 

signal only if the current block being processed by the Huffmann coder is a luminance source image 

component. 

 Stage-2 (Category Selection): The differentially coded DC coefficients and AC coefficients are 

passed through an encoder shown as the cat (category selection) block in Figure 4. That is, the cat 

block receives 11-bit coefficients and encodes them to 4-bit numbers according to the JPEG 

standard, where a 4-bit number indicates how many bits are significand in the current coefficient. 

 Stage-3 (Huffmann coding): According to the JPEG standard, Zij
* (x in Figure 4) is decremented by 

one if Zij
* is negative (signx=0 in Figure 4); otherwise, it is kept the same. For any DC coefficient, 

its 4-bit category value is 15-bit Huffmann coded (11-bit Huffmann code and 4-bit Huffmann code 

length) by means of either the luminance DC Table or the chrominance DC table selected by lumin2 

signal. On the other hand, for each AC coefficient, its 4-bit run-length and 4-bit category value are 

first concatenated to form an 8-bit signal. Then, this 8-bit signal is 20-bit Huffmann coded (16-bit 

Huffmann code and 4-bit Huffmann code length) based on either the luminance AC Table or the 

chrominance AC table chosen by lumin2 signal. Note that all DC and AC tables used are taken 

from the JPEG standard document [1]. 

 Stage-4 (Send): The output buffer is written by the following signals: 11-bit Zij
+ (Zij

+ =Z ij* if Z ij* ≥ 

0; otherwise, Zij
+ =Z ij

*-1), 4-bit category, 16-bit Huffmann code, and 5-bit Huffmann code length. 

Note that 4-bit Huffmann code length for each AC code word is kept as the decremented by one 

from its real code length in the AC tables to optimize the area usage. In order compensate this 
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decrementation, the 4-bit Huffmann code length for each AC code word is incremented by one 

before writing into the output buffer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4.3. Assembler 

 

The assembler in Figure 5 is used to convert the variable length compressed data coming from the 

Huffmann coder into a stream of 32-bit compressed data.  

 

The assembler works as follows. In the first stage of pipeline, an OR-mask circuit is used to set the 

insignificant bits of 11-bit coefficient (Zij
+) to zero according to 4-bit category (cat) of this coefficient. 

Meanwhile, 16-bit Huffman code (Hij) is variably left shifted a number of times according to the same 

category value by a Shifter in order to bit align the Huffman code with the masked coefficient data. 

Finally, the left shifted Huffman code is ORed with the masked coefficient data, and the result is written 

in register A. On the other hand, the total length of the Huffmann code and coefficient, which is the sum 

of category (cat) and Huffmann code length (len), is placed into register length-A. Note that the result 

length cannot exceed 27 bits since the maximum length of the Huffman code is 16 bits and the coefficient 

is 11 bits.  

 

In the second stage of pipeline, the content of register B is first variably left shifted a number of times 

according to length-A by another Shifter in order to bit align with the content of register A, which 

currently keeps {Huffman code, masked category}. Then, the left shifted register B is ORed with register 

A, and the result and its total length are stored into register B and register length-B, respectively.  Note 

Figure 4. Huffmann coding in a pipelined fashion 
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that the next state of register length-B can be length-A+length-B (output buffer cannot accept a new 

word), length-B-32 (no new data is available from register A), or length-A+length-B-32 (output buffer 

accepts a new word and register A has new data). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the third and final stage of the pipeline, a new 32-bit data word is written into the output port whenever 

the length-B is equal to or greater than 32 and the output buffer is not full. In order to find out the next 

32-bit word to be sent, register B is variably right shifted a number of times according to (length-B-32). 

 

3. IMPLEMENTATION RESULTS 

 

The JPEG IP core architecture proposed in the article is captured with Verilog HDL with a device 

independent form, simulated and verified by a series of testbenches using Xilinx ISim. It is synthesized 

using Xilinx ISE 14.7 for several Xilinx FPGAs including Xilinx Spartan 3 (XC3S1000-5FG320), 

Spartan 3E (XC4VSX35-12FF668), and Spartan 6 (XC6SLX75T-3FFG676) FPGA devices. 

 

Table 1 summarizes the synthesis results for the JPEG IP core and its three main modules for Spartan 3 

and Spartan 6 FPGAs. According to Table 1, the entropy coder uses the most of FPGA’s LUT and FF 

resources, followed by 2-D DCT and quantizer modules. FFs utilizations are similar on both Spartan 3 

and Spartan 6 FPGAs, while LUTs utilizations are lower on Spartan 6 FPGA. This is due to the fact that 

Spartan 6 equipped with 6-input LUTs (as compared to 4-input LUTs of Spartan 3) provides more 

efficient combinational logic implementation. Furthermore, the AC Huffmann tables are mapped to two 

BRAMs on Spartan 6 instead of a LUT-based implementation on Spartan 3. The 2-D DCT module has 

the lowest operation frequency among three modules and defines the maximum operation frequency 

(Fmax) of the JPEG IP core. Finally, since Spartan 6 is a newer technology than Spartan 3, the complete 

design and all individual modules achieve better maximum operation frequencies.   

Table 1. Synthesis results of the JPEG IP core for color images 

Spartan 3 Spartan 6 

 LUTs FFs BRAMs Multipliers Fmax  LUTs FFs BRAMs Multipliers Fmax  

2-D DCT 655 356 -- 4 74.32 491 351 -- 4 108.34 

Quantizer 225 40 -- 1 90.63 112 35 -- 1 124.79 

Entropy coder 1684 445 -- -- 96.87 970 461 2 -- 167.64 

JPEG IP Core 2485 810 -- 5 74.32 1439 812 2 5 111.92 

Figure 5. Assembler architecture in a pipelined fashion 
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Remember that it takes at most 144 clock cycles for the computation of all 2-D coefficients. 

Furthermore, the fully pipelined design of the JPEG IP core allows it to process an 8×8 block of pixels 

in 144 clock cycles in a pipelined fashion. Thus, the JPEG IP core, when mapped to a Spartan 6 FPGA, 

reaches a minimum period of 1.28 µs and processing rates up to 49.74 Msamples/s. This processing rate 

is sufficient for compressing more than 143 and 71 SDTV frames per second with 720×480 gray scale 

and color pixels per frame, respectively. Furthermore, the IP core proposed can compress more than 53 

and 26 HD Ready TV frames per second with 1280×720 gray scale and color pixels per frame, 

respectively. These results indicate that the JPEG IP core proposed implemented on a low cost FPGA 

like Xilinx Spartan 6 can be deployed as an IP core of an M-JPEG video compressor directed to both 

SDTV and HD Ready TV applications. 

 

The proposed JPEG IP core is compared against four other competitive designs in Table 2. According 

to Table 2, it is evident that the proposed IP core is clearly superior to [6] and [7] in terms of both 

resource utilization and maximum operation frequency. Note that comparing Stratix IV with Virtex 5 is 

slightly unfair for the proposed design since [14] reports that Stratix IV is 35% faster than Virtex 5 and 

packs 1.8X more logic element than that of Virtex 5. The JPEG compressors of [3] and [5] are better 

than the proposed one in terms of the LUTs utilization, which is due to implementing the tables on 

BRAMs, and Fmax. On other hand, they tend to use more FF resources and multipliers. Thus, there is 

no clear winner among [3,5] and the proposed design.  

 
Table 2. A comparison of the JPEG IP core with other IP cores in the literature 

 

 Technology LUTs FFs BRAMs Multipliers Fmax 

[3] Spartan 3 1724 1275 2 11 80.00 

[5] Spartan 3E 1671 2450 4 8 101.35 

[6] Spartan 6 3020 2549 -- 3 83.33 

[7] Stratix IV 1918 915 21 47 100.00 

       

Proposed 

Spartan 3 2486 810 -- 5 74.32 

Spartan 3E 2459 816 -- 5 90.32 

Spartan 6 1439 812 2 5 111.92 

Virtex 5 1567 705 -- 5 184.15 

        1 Approximately. 

 

4. CONCLUSIONS 
 

This article proposes a fully pipelined and low area JPEG encoder architecture. The key element of the 

proposed methodology is to carefully design the pipeline stages in order to increase the resource sharing 

and decrease the total clock cycles to complete the overall JPEG operation. Furthermore, we compare 

the achieved implementation results of this study with four different competitive designs from the open 

literature. In order to minimize the FPGA resource utilization as low as possible, the proposed 

architecture employs the row-column decomposition technique for 2-D DCT transformation step in 

JPEG encoding, which yields a saving of 1-D DCT resource utilization. The proposed low area design 

achieves high processing rates that is well-suited to various image and video compressing applications. 
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