

ESKİŞEHİR TECHNICAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY

A- APPLIED SCIENCES AND ENGINEERING

2018, 19(3), pp. 685 - 697, DOI: 10.18038/aubtda.422250

*Corresponding Author: atdogan@anadolu.edu.tr
Received: 09.05.2018 Accepted 09.07.2018

A LOW AREA FULLY PIPELINED IMPLEMENTATION OF JPEG ON FPGA

Atakan DOĞAN 1, *, İsmail SAN 1

1 Department of Electrical and Electronics Engineering, Faculty of Engineering, Eskişehir Technical University,

Eskişehir, Turkey

ABSTRACT

This paper presents a low-area and high-throughput design and implementation of JPEG encoder on FPGA. The design consists of

three main components: (1) 2-D DCT module, employing the row-column decomposition technique, (2) Quantization in zigzag

ordering, utilizing look-up tables, and (3) Entropy coder, transforming the quantized DCT coefficients into JPEG words. All

components are fully pipelined and optimized for FPGA resource utilization. The proposed implementation of JPEG encoder is able

to encode 143 and 71 SDTV frames per second with 720x480 gray scale and color pixels per frame, respectively, on Xilinx Spartan

6 FPGA. Moreover, the proposed architecture is capable of encoding at least 53 and 26 HD Ready TV frames per second with

1280x720 gray scale and color pixels per frame, respectively, on this FPGA chip. Thus, the proposed JPEG encoder architecture is

well-suited to various image and video compressing applications where performance and area are significantly important.

Keywords: JPEG compression, Discrete cosine transform, Logic design, FPGA

1. INTRODUCTION

The Joint Photographic Experts Group introduced the JPEG compression standard for still photographic

images [1], which has become the widely used lossy compression standard ever since. JPEG is heavily

used in high-resolution image transmission applications including digital cameras, image scanners and

so on. Such applications require both high-speed and low cost implementations of image encoding and

decoding. In order to meet several needs of various applications, the JPEG standard specifies two classes

of encoding and decoding processes: Discrete Cosine Transform (DCT) based processes for lossy

compression and predictor based processes for lossless compression, each with a few modes of operation

[1, 2]. Among the different operation modes of the DCT based lossy compression, the baseline mode is

widely implemented in software and hardware for JPEG compression [3-10]. Consequently, the JPEG

IP core architecture proposed in this study is based on the baseline mode.

In the literature, several studies are devoted to FPGA [3-7] and ASIC [8-10] implementations of the

baseline JPEG compression. The common approach of these studies is to split the baseline JPEG

compression process into four different modules handling 2-D DCT operation, quantization step, zig-

zag ordering step, and entropy coding operations separately. Among these studies, only [4, 9, 10] provide

detailed hardware design of each of these modules, while the others describe how each of them operates

in general without elaborating on the hardware design. As a result, the hardware design of JPEG IP core

proposed in this study is compared against [4, 9, 10]: (i) The proposed design implements 2-D DCT

based on single 1-D DCT hardware, while they use two 1-D DCT modules. (ii) The proposed design

performs the quantization in zig-zag ordering in a single module, whereas they do the quantization and

zig-zag ordering in different modules. (iii) All designs are fully pipelined to obtain the highest

throughput possible.

This study proposes a novel IP core for high throughput JPEG compression on low cost FPGAs. In order to

achieve the best throughput possible, each module is designed to be fully pipelined and optimized for the

Doğan and San / Eskişehir Technical Univ. J. of Sci. and Tech. A – Appl. Sci. and Eng. 19 (3) – 2018

686

FPGA resource utilization, while meeting the requirements of the JPEG standard [1, 2]. All modules were

captured in Verilog HDL. The proposed design is synthesized, simulated and verified with Xilinx ISE 14.7

tool. According to the results from ISE 14.7 tool, the JPEG IP core proposed is capable of compressing

more than 143 SDTV frames per second with 720×480 gray scale pixels and 53 HD Ready TV frames

per second with 1280×720 gray scale pixels per frame on a low cost Xilinx Spartan 6 FPGA chip.

The rest of the article is organized as follows: the design philosophy and hardware implementation

details related to the proposed JPEG IP core architecture are presented in Section 2. The implementation

results of the proposed JPEG core on different Xilinx FPGAs are given in Section 3. Furthermore,

comparisons between the proposed design and other JPEG cores from the open literature are given in

Section 3. Finally, the article is concluded in Section 4.

2. JPEG IP CORE ARCHITECTURE

Based on [1, 2], the proposed JPEG IP core is composed of three main components, which are 2-D DCT,

quantization in zig-zag order, and entropy coder. FIFO based input and output interfaces provide low-

complexity flow control between the modules, which provides write and read semantics similar to a

FIFO buffer interface, and they are explained as follows:

 The input interface: A new data is received by the module on its writeData bus in the next rising

edge of clock when writeEn signal is asserted and full signal is de-asserted during the current clock

cycle. When full signal is asserted by the module, it cannot accept a new data word in the current

clock cycle. The bit length and the direction of the input interface signals are given below.

 writeData bus, input, 8-, 12-, or 96-bit

 writeEn signal, input, 1-bit

 full signal, output, 1-bit

 The output interface: A new data is ready on its readData bus in the next rising edge of clock when

readEn signal is asserted and empty signals is de-asserted during the current clock cycle. When

empty signal is not asserted by the module, there is always an available valid data word on its

readData bus. Once the module cannot produce a new data word in the current clock cycle, the

empty signal is asserted. The bit length and the direction of the output interface signals are given

below.

 readData, output, 12-, or 96-bit

 readEn, input, 1-bit

 empty, output, 1-bit

Following sections provide necessary details for each component in the proposed hardware design.

2.1. 2-D DCT Architecture

In this study, a low area implementation of the 2-D DCT is designed and implemented on FPGA. Its

architecture is adopted and modified from a study proposed by [11] for ASIC implementation. In

selecting the architecture proposed by [11] to be implemented on FPGA, there are three important

reasons: (1) it is based on the row-column decomposition technique. Hence, a low area utilization is

achieved since only single 1-D DCT component is used in a time-shared fashion, (2) a shift-register

based transpose buffer is implemented in order to improve the utilization of Block RAM resources, and

(3) simpler finite state machines are responsible to control the datapath since the control logic is

distributed among the components.

Doğan and San / Eskişehir Technical Univ. J. of Sci. and Tech. A – Appl. Sci. and Eng. 19 (3) – 2018

687

12

Reset

 Clock

MuxSel

96

T
ra

n
sp

o
se

B

u
ff

er
 Mux Ping

Buffer

96 12
1-D
DCT

12

O
u

tp
u
t

B
u

ff
er

 12

Pong
Buffer

96 96

Figure 1. Harwdare architecture of 2-D DCT operation (reprinted from [12])

Figure 1 (reprinted from [12]) illustrates the overview of the proposed 2-D DCT design for FPGA

implementation. The main modules including ping and pong buffers, 1-D DCT component, transpose

and output buffer are depicted in Figure 1. The main differences of 2-D DCT architectures between [11]

and this study include a different operation of pong buffer, pipeline register inclusion and the logic for

rounding method in 1-D DCT operation, output buffer, and a special pipeline that can be stoppable. In

the following sections, each of five components are separately explained by specifying what each

module is responsible to compute in 2-D DCT.

2.1.1. Ping-Pong buffers

Ping-pong buffering method contains two separate buffers: ping and pong buffers. While ping buffer is

being loaded with input data, 1-D DCT component performs 1-D DCT operation using data stored in

pong buffer.

The ping buffer is simply a 96-bit shift-register which is controlled by a finite state machine (FSM) with

two states {empty, full}:

 empty state (serial-in): when writeEn signal is asserted, a new 12-bit word data is shifted into the

ping buffer. Once the eighth 12-bit word is inserted into the ping buffer, finite state machine

changes its state to the full state. Therefore, ping buffer takes at least eight clock cycles to become

full. In this state, empty signal is asserted.

 full state (parallel-out): when readEn signal is asserted, 96-bit current state of ping buffer is read in

single clock cycle and finite state machine changes its state to empty state. In full state, full signal

is asserted.

According to the proposed ping buffer operation, loading all elements of 8x8 matrix into the ping buffer

takes 64 cycles and transferring the rows of 8x8 matrix to pong buffer requires 8 cycles. Thus, totally it

requires 64+8=72 clock cycles to be shifted in and out.

Doğan and San / Eskişehir Technical Univ. J. of Sci. and Tech. A – Appl. Sci. and Eng. 19 (3) – 2018

688

Pong buffer is simply a 96-bit register which is controlled by a finite state machine with four states

{oned_dct_empty, oned_dct_full, twod_dct_empty, twod_dct_full}:

 oned_dct_empty state (parallel-in operation): If writeEn signal is asserted, a new row of eight pixels

(96-bit word) is loaded into the pong buffer and finite state machine changes its state to

oned_dct_full state. MuxSel signal is not asserted so as to load from the ping buffer. In this state,

empty signal is asserted.

 oned_dct_full state (coefficient computation): in every clock cycle, a new 1-D DCT coefficient is

computed. The machine stays in this state for eight cycles since there are eight pixels per row.

During the computation of the last coefficient for a row, it goes to either oned_dct_empty state

when this is not the last row, or twod_dct_empty state, otherwise. In this state, full signal is asserted.

 twod_dct_empty state (parallel-in operation): This state is same as oned_dct_empty state except that

MuxSel signal is now asserted to receive a column of eight 1-D DCT coefficients from the transpose

buffer.

 twod_dct_full state (coefficient computation): it is very similar oned_dct_full state except that it

changes its state to either oned_dct_empty state when the last column is being processed, or

twod_dct_empty state in the eighth clock cycle.

According to the proposed pong buffer operation, 64+8=72 clock cycles are needed to perform the

computation of either 1-D or 2-D DCT coefficients. Therefore, a total of 144 clock cycles are required

by pong buffer to complete the processing of 8x8 matrix of pixels. In a fully-pipelined operation, the

ping buffer latency will be completely overlapped with the pong buffer latency, so they will together

introduce a latency of 144 clock cycles.

2.1.2. 1-D DCT

Eight-point 1-D DCT operation is computed by using the row-column decomposition technique [13]

and it is given as follows:

𝑧0 = 𝑑(𝑥0 + 𝑥7) + 𝑑(𝑥1 + 𝑥6) + 𝑑(𝑥2 + 𝑥5) + 𝑑(𝑥3 + 𝑥4)
𝑧2 = 𝑏(𝑥0 + 𝑥7) + 𝑓(𝑥1 + 𝑥6) − 𝑓(𝑥2 + 𝑥5) − 𝑏(𝑥3 + 𝑥4)

𝑧4 = 𝑑(𝑥0 + 𝑥7) − 𝑑(𝑥1 + 𝑥6) − 𝑑(𝑥2 + 𝑥5) + 𝑑(𝑥3 + 𝑥4)
𝑧6 = 𝑓(𝑥0 + 𝑥7) − 𝑏(𝑥1 + 𝑥6) + 𝑏(𝑥2 + 𝑥5) − 𝑓(𝑥3 + 𝑥4)

𝑧1 = 𝑎(𝑥0 − 𝑥7) + 𝑐(𝑥1 − 𝑥6) + 𝑒(𝑥2 − 𝑥5) + 𝑔(𝑥3 − 𝑥4)

𝑧3 = 𝑐(𝑥0 − 𝑥7) − 𝑔(𝑥1 − 𝑥6) − 𝑎(𝑥2 − 𝑥5) − 𝑒(𝑥3 − 𝑥4)

𝑧5 = 𝑒(𝑥0 − 𝑥7) − 𝑎(𝑥1 − 𝑥6) + 𝑔(𝑥2 − 𝑥5) + 𝑐(𝑥3 − 𝑥4)

𝑧7 = 𝑔(𝑥0 − 𝑥7) − 𝑒(𝑥1 − 𝑥6) + 𝑐(𝑥2 − 𝑥5) − 𝑎(𝑥3 − 𝑥4)

where zi denotes the transformed coefficient, xi denotes the pixel data, a=C1, b=C2, c=C3, d=C4, e=C5,

f=C6, g=C7, Ci=0,5cos(kπ/16), i=0,1,..7, and k=1,2,..7. Furthermore, let X0 = x0+x7, X2 = x1+x6, X4 =

x2+x5, X6 = x3+x4, X1 = x0-x7, X3 = x1-x6, X5 = x2-x5, and X7 = x3-x4.

Figure 2 shows the proposed design for 1-D DCT operation which calculates the coefficients by means

of these equations. The topmost Add/Sub component illustrated in Figure 2 computes either X0=(x0+x7)

when OddSel is equal to 0 or X1=(x0-x7) when OddSel is equal to 1, and so on. Therefore, OddSel signal

is asserted only when a coefficient with odd-index {z1, z3, z5, z7} is computed, and Add/Sub components

compute either {X0, X2, X4, X6} or {X1, X3, X5, X7} values in parallel.

Doğan and San / Eskişehir Technical Univ. J. of Sci. and Tech. A – Appl. Sci. and Eng. 19 (3) – 2018

689

The results of parallel Add/Sub components are fed into the multipliers. Four integer multiplications are

performed in parallel for every coefficient. In Figure 2, w[39:0] represents the set of weights used during

the multiplications. For instance, z2 = b*×X0 + f*×X2 ‒ f*×X4 ‒ b*×X6 and w[39:0] ={b*, f*, -f*, -b*}, where

* symbol is used to denote 10-bit 2’s complement representations. There is single 8×40-bit look-up

table to store the weight values and it is not explicitly shown in Figure 2. The address of this look-up

table is 3-bit index value of the coefficient being computed. The table stores 40-bit rows for each address

and each row stores four different weights (i.e., {b*, f*, -f*, -b*} for z2) in 2’s complement format per

coefficient.

After performing the multiplications, there is an 88-bit register which is controlled by a FSM with two

states {empty, full} defined as follows:

 empty state: when writeEn signal is asserted, a new 88-bit word is received into the register and

FSM makes a transition to the full state. In empty state, empty_transpose (empty signal for transpose

buffer) or empty_outbuff (empty signal for output buffer) signal is asserted if 1-D DCT or 2-D DCT

coefficients are being computed, respectively.

 full state: based on the results of four multiplications loaded in this register, a new 1-D DCT or 2-

D DCT coefficient will be computed by means of the following rounding and adder tree circuits.

writeData[59:48]

writeData[47:36]

writeData[71:60]

writeData[35:24]

writeData[83:72]

writeData[23:12]

writeData[95:84]

writeData[11:0]

OddSel

i0

 Add/Sub o

i1

OddSel

i0

 Add/Sub o

i
1

OddSel

i0

 Add/Sub o

i
1

OddSel

i0

 Add/Sub o

i
1

12

12

12

12

12

12

12

12

w[9:0]

10

12

Mult

w[19:10]

10

12

Mult

w[29:20]

10

12

Mult

w[39:30]

10

12

Mult

22

22

22

22

88

12

12

Round

12

i0

 o

i
1

Add
12

R
eg

is
te

r

88

22

22

22

22

 Clock

Round

12

Round

12

i0

 o

i
1

Add

Round

i0

 o

i
1

Add
12

Figure 2. 1-D DCT architecture

Doğan and San / Eskişehir Technical Univ. J. of Sci. and Tech. A – Appl. Sci. and Eng. 19 (3) – 2018

690

During the computation of 1-D DCT coefficients, as long as writeEn is asserted, a new 88-bit word

will be stored into the register in every clock cycle and the machine stays in full state; otherwise, it

goes to empty state. While computing 2-D DCT coefficients, on the other hand, a new 88-bit word

will be stored into the register if both writeEn and readEn_outbuff are asserted so as to guarantee

that the new 2-D coefficient is accepted by the output buffer. In this state, full signal is not asserted

only if the output buffer becomes full during the computation of 2-D DC coefficients.

22-bit result {r21, r20, …, r0} for each signed multiplication is rounded to 12-bit 2’s complement value

by a combinational logic circuit depending on the sign of the result and it is defined as follows:

 When the result is positive: There are three cases:

 If {r21, r20, …, r10} is the maximum 22-bit positive number, the rounded result is equal to {r21,

r20, …, r10}.

 If {r21, r20, …, r10} is not the maximum 22-bit positive number and r9 is equal to 0, the rounded

result is equal to {r21, r20, …, r10}.

 If {r21, r20, …, r10} is not the maximum 22-bit positive number and r9 is equal to 1, the rounded

result is equal to {r21, r20, …, r10} + 1.

 When the result is negative: If r9 is equal to 0, it is equal to {r21, r20, …, r10}; otherwise, {r21, r20,

…, r10} + 1.

After rounding operation, 12-bit adder tree with four-input is used to compute either 1-D or 2-D

coefficient values in 2’s complement format.

2.1.3. Transpose and output

Transpose buffer is simply a shift register with 63×12=756-bit length and it is adopted from [11]. There

are two scenarios to consider for this module:

 serial-in: If writeEn signal is asserted during 1-D DCT computation, a new 12-bit coefficient is

serially shifted in this buffer.

 parallel-out: Consider the shift_register={reg62, reg62, …, reg0} that is composed of 63 12-bit

registers. When the shift register becomes full, a set of eight registers column={reg56, reg48, reg40,

reg32, reg24, reg16, reg8, reg0} store the first column of 1-D DCT coefficients. In the next clock

cycle, the 64th 1-D DCT coefficient is shifted in while the first column is received into pong buffer.

After the right-shift, column will store the second column of 1-D DCT coefficients.

The output buffer stores the coefficients of 2-D DCT operation and isolate the 2-D DCT hardware in

Figure 1 from the following quantization component. Output buffer consists of two registers, namely

reg0 and reg1, and they are controlled by a three-state {empty, almost-full, full} finite state machine

whose states are defined as follows:

 empty state: it means that both registers are empty. When writeEn signal is asserted, a new 12-bit

word is loaded into reg0 and finite state machine changes its state to almost-full state. In this state,

empty signal is asserted.

 almost-full state: when both writeEn and readEn signals are asserted or deasserted, FSM stays in

here. Moreover, when they are asserted, a new word is received into reg0 register. If writeEn signal

is asserted, but readEn signal is de-asserted, a new word is received into reg1 register and it goes

to full state. If writeEn signal is de-asserted, but readEn signal is asserted, it changes its state to

empty state since reg0 register has been read. In this state, empty signal is asserted.

Doğan and San / Eskişehir Technical Univ. J. of Sci. and Tech. A – Appl. Sci. and Eng. 19 (3) – 2018

691

 full: If readEn signal is asserted, it makes a transition to almost-full state while old reg1 register is

loaded into reg0. In full state, full signal is asserted.

In a fully-pipelined operation, the latency of the proposed 2-D DCT architecture is optimal in the sense

that there are no wasted clock cycles. That is,

 It takes at most 76 clock cycles for the first 2-D coefficient to appear at the output buffer outputs.

Within this 76 clock cycles, 64 clock cycles are spent for computing 64 1-D coefficient, 8 clock

cycles for loading eight rows of pixel into the pong buffer, 1 clock cycle loading the first column

of 1-D coefficients into the pong buffer, 1 clock cycle computing the first 2-D coefficient and 2

clock cycles of buffering latency due to 88-bit register and output buffer.

 It takes at most 144 clock cycles for the computation of all 2-D coefficients and 146 clock cycles

for all 64 2-D coefficients to be sent out.

2.2. Quantization in Zigzag Order

The 2-D coefficients Zij of an 8×8 block should be uniformly quantized according to the quantizer step

size 1≤Qij ≤255 from an 8×8 matrix called the quantization table. Specifically, quantization is defined

as division of each 2-D DCT coefficient by its corresponding quantizer step size and it is followed by

rounding the value to the nearest integer:

Zij
* = round (Zij ÷ Qij), 0 ≤i, j≤ 7

where Zij
* is the quantized 2-D DCT coefficient.

The quantization results in that most of the 2-D coefficients towards the lower right corner of 8×8 matrix,

which are high-frequency coefficients, are zero. The zigzag ordering is used to rearrange the two

dimensional 2-D coefficients in a one dimensional vector so that the low-frequency coefficients are

placed before the high-frequency coefficients in the vector so as to maximize the compression during

the entropy coding stage.

In the literature, it is typical that the quantization and zigzag ordering are handled in two different

components. In the proposed design of JPEG encoder, however, these two components are combined

into one architecture in Figure 3 by performing the quantization in the zigzag order.

The zigzag ordering is achieved by a two state {write_ram, read_ram} FSM together with a 64-entry

RAM and 64-entry look-up table (Zigzag Table) as follows:

 write_ram: The DCT coefficients that are received in the column major order from the 2-D

architecture are written into the RAM one by one. While the last coefficient is being written, the

FSM goes to the other state.

 read_ram: The RAM is read in the zigzag order defined by [1] that is available from Zigzag Table

while read signal is asserted. After the last coefficient is read from the RAM, the FSM goes to

write_ram. As a result, the FSM stays in this state for 64 clock cycles.

Then, any DCT coefficient Zij that is read from the RAM is multiplied by an integer constant

Qij
*=2048/Qij, where the 64 values of Qij

* are kept in a look-up table (Quantization Table in Figure 3)

and Qij is the related quantizer step size from the quantization table in [1]. Note that there are luminance

and chrominance quantization tables, one of which is chosen by chrom signal accordingly. Then, there

is a register controlled by a FSM with two states {empty, full}, which is the same as the one in 1-D DCT.

This register receives the 24-bit multiplication result in every clock cycle if its writeEn is asserted, and

if either it is in empty state or its readEn is asserted. After that, the 24-bit multiplication result from the

Doğan and San / Eskişehir Technical Univ. J. of Sci. and Tech. A – Appl. Sci. and Eng. 19 (3) – 2018

692

register is rounded into 11-bit integer number by a rounding logic similar to the one in Figure 2, and the

quantized 2-D DCT coefficients are written into the output buffer one by one for the next stage.

2.4. Entropy Coder Architecture

Entropy coding is the last step in JPEG compression, which loads the quantized 2-D DCT coefficients

and provides to the output the compressed and assembled JPEG words. The entropy coding is achieved

by three components, namely run length coding, Huffmann coding, and assembler, each of which is

elaborated in detail below.

2.4.1. Run length coding

After the quantization in zigzag order, a vector of 64 coefficients will be ready for the entropy coding.

Among these coefficients, the first element is called DC component and all other elements are known

as AC components. According to the JPEG standard, the run length coding (RLC) must be applied to

only AC components. In the proposed design of JPEG encoder, the RLC is simply achieved by a three

state {dc_coeff, ac_coeff, insert_zrl} FSM followed by an output buffer as follows:

 dc_coeff: The FSM first receives the DC coefficient Z00
* from the quantization architecture, inserts

{1’b1, 4’b0000, Z00
*} into its output buffer, and goes to ac_coeff state, where 1’b1 signals that this

is the DC coefficient and 4’b0000 is the related run length of zeros.

 ac_coeff: The FSM receives the 63 AC coefficients Zij
* one by one, and there are several scenarios

to handle:

 If Zij
* is not the last coefficient:

 If Zij
* is zero, run_length counter is incremented by one. If this is the sixteenth consecutive

zero (run_length=15), zrl_symbol counter is also incremented by one.

 If Zij
* is non-zero, there are two cases: If zrl_symbol counter is zero, {1’b0, run_length, Zij

*}

is copied into the output buffer, and run_length=0. Otherwise, the FSM goes to insert_zrl

state.

 If Zij
* is the last coefficient:

 If Zij
* is zero, {1’b0, 4’b0000, 11’h000} is put into the buffer, where {0, 0} is a special code

known as EOB (end-of-block) symbol, and it goes to dc_coeff state.

dout

dout

din

6

6

1 0

6

O
u

tp
u

t
B

u
ff

er

11 11

Round

R
eg

is
te

r

24

 RAM

12

Q
ij

*

12

24

Mult

C
o

u
n
ter

12

Zigzag

Table

Quantization

Table

chrom

read

Figure 3. Quantization in zigzag order architecture

Doğan and San / Eskişehir Technical Univ. J. of Sci. and Tech. A – Appl. Sci. and Eng. 19 (3) – 2018

693

 If Zij
* is non-zero, there are two cases again: If zrl_symbol counter is zero, {1’b0, run_length,

Zij
*} is copied into the output buffer, run_length=0, and it goes to dc_coeff state. Otherwise,

the FSM goes to insert_zrl state.

 insert_zrl: While zrl_symbol counter is non-zero, {1’b0, 4’b1111, 11’h000} is inserted into the

buffer, where {15, 0} is a special code known as ZRL (zero run length) symbol, and zrl_symbol is

decremented by one. Once zrl_symbol is zero, {1’b0, run_length, Zij
*} is sent to the buffer, and the

FSM goes to ac_coeff if Zij
* is not the last AC coefficient. Otherwise, it goes to dc_coeff for the

next block.

According to this FSM, it takes 64 clock cycles at best or 70 clock cycles at worst to run length code 64

coefficients, which is sufficient enough to support a fully-pipelined operation without any stall clock

cycles.

2.4.2. Huffmann coding

The output of RLC is a 16-bit word in the form of {1-bit DC flag, 4-bit run length, 11-bit DC/AC

coefficent}. The Huffmann coding architecture proposed in Figure 4 receives such run length coded

words and provides the Huffmann codes in a pipelined fashion as follows:

 Stage-1 (Receive): When a new output word is available from RLC, the registers in the first stage

of pipeline latches the new word as zrl= 4-bit run length, Zij
*=11-bit DC/AC coefficient, dc=1-bit

DC flag. In addition to these received signals, 11-bit diff and 1-bit lumin signals are computed by

the differential coder and the chrominance block marker architectures, respectively, and sent to the

first stage.

According to the JPEG specification, the DC components must be first differentially coded by a

simple subtraction between the DC component (Z00
*) of the current 8×8 block and the DC

component (prevZ00
*) of the previous block from the same source image component (Y, Cb, Cr).

Even though it is not shown in Figure 4, the differential coder architecture consists of one adder

and three registers in order to store the previous DC components of luminance and chrominance

components. As a result, when the reception of a new DC component is signaled by asserting 1-bit

dc signal, diff = Z00
*- prevZ00

* and Z00
* is written into the related register.

On the other hand, the luminance block marker is a simple counter that asserts its lumin output

signal only if the current block being processed by the Huffmann coder is a luminance source image

component.

 Stage-2 (Category Selection): The differentially coded DC coefficients and AC coefficients are

passed through an encoder shown as the cat (category selection) block in Figure 4. That is, the cat

block receives 11-bit coefficients and encodes them to 4-bit numbers according to the JPEG

standard, where a 4-bit number indicates how many bits are significand in the current coefficient.

 Stage-3 (Huffmann coding): According to the JPEG standard, Zij
* (x in Figure 4) is decremented by

one if Zij
* is negative (signx=0 in Figure 4); otherwise, it is kept the same. For any DC coefficient,

its 4-bit category value is 15-bit Huffmann coded (11-bit Huffmann code and 4-bit Huffmann code

length) by means of either the luminance DC Table or the chrominance DC table selected by lumin2

signal. On the other hand, for each AC coefficient, its 4-bit run-length and 4-bit category value are

first concatenated to form an 8-bit signal. Then, this 8-bit signal is 20-bit Huffmann coded (16-bit

Huffmann code and 4-bit Huffmann code length) based on either the luminance AC Table or the

chrominance AC table chosen by lumin2 signal. Note that all DC and AC tables used are taken

from the JPEG standard document [1].

 Stage-4 (Send): The output buffer is written by the following signals: 11-bit Zij
+ (Zij

+ =Z ij* if Z ij* ≥

0; otherwise, Zij
+ =Z ij

*-1), 4-bit category, 16-bit Huffmann code, and 5-bit Huffmann code length.

Note that 4-bit Huffmann code length for each AC code word is kept as the decremented by one

from its real code length in the AC tables to optimize the area usage. In order compensate this

Doğan and San / Eskişehir Technical Univ. J. of Sci. and Tech. A – Appl. Sci. and Eng. 19 (3) – 2018

694

decrementation, the 4-bit Huffmann code length for each AC code word is incremented by one

before writing into the output buffer.

2.4.3. Assembler

The assembler in Figure 5 is used to convert the variable length compressed data coming from the

Huffmann coder into a stream of 32-bit compressed data.

The assembler works as follows. In the first stage of pipeline, an OR-mask circuit is used to set the

insignificant bits of 11-bit coefficient (Zij
+) to zero according to 4-bit category (cat) of this coefficient.

Meanwhile, 16-bit Huffman code (Hij) is variably left shifted a number of times according to the same

category value by a Shifter in order to bit align the Huffman code with the masked coefficient data.

Finally, the left shifted Huffman code is ORed with the masked coefficient data, and the result is written

in register A. On the other hand, the total length of the Huffmann code and coefficient, which is the sum

of category (cat) and Huffmann code length (len), is placed into register length-A. Note that the result

length cannot exceed 27 bits since the maximum length of the Huffman code is 16 bits and the coefficient

is 11 bits.

In the second stage of pipeline, the content of register B is first variably left shifted a number of times

according to length-A by another Shifter in order to bit align with the content of register A, which

currently keeps {Huffman code, masked category}. Then, the left shifted register B is ORed with register

A, and the result and its total length are stored into register B and register length-B, respectively. Note

Figure 4. Huffmann coding in a pipelined fashion

Doğan and San / Eskişehir Technical Univ. J. of Sci. and Tech. A – Appl. Sci. and Eng. 19 (3) – 2018

695

that the next state of register length-B can be length-A+length-B (output buffer cannot accept a new

word), length-B-32 (no new data is available from register A), or length-A+length-B-32 (output buffer

accepts a new word and register A has new data).

In the third and final stage of the pipeline, a new 32-bit data word is written into the output port whenever

the length-B is equal to or greater than 32 and the output buffer is not full. In order to find out the next

32-bit word to be sent, register B is variably right shifted a number of times according to (length-B-32).

3. IMPLEMENTATION RESULTS

The JPEG IP core architecture proposed in the article is captured with Verilog HDL with a device

independent form, simulated and verified by a series of testbenches using Xilinx ISim. It is synthesized

using Xilinx ISE 14.7 for several Xilinx FPGAs including Xilinx Spartan 3 (XC3S1000-5FG320),

Spartan 3E (XC4VSX35-12FF668), and Spartan 6 (XC6SLX75T-3FFG676) FPGA devices.

Table 1 summarizes the synthesis results for the JPEG IP core and its three main modules for Spartan 3

and Spartan 6 FPGAs. According to Table 1, the entropy coder uses the most of FPGA’s LUT and FF

resources, followed by 2-D DCT and quantizer modules. FFs utilizations are similar on both Spartan 3

and Spartan 6 FPGAs, while LUTs utilizations are lower on Spartan 6 FPGA. This is due to the fact that

Spartan 6 equipped with 6-input LUTs (as compared to 4-input LUTs of Spartan 3) provides more

efficient combinational logic implementation. Furthermore, the AC Huffmann tables are mapped to two

BRAMs on Spartan 6 instead of a LUT-based implementation on Spartan 3. The 2-D DCT module has

the lowest operation frequency among three modules and defines the maximum operation frequency

(Fmax) of the JPEG IP core. Finally, since Spartan 6 is a newer technology than Spartan 3, the complete

design and all individual modules achieve better maximum operation frequencies.

Table 1. Synthesis results of the JPEG IP core for color images

Spartan 3 Spartan 6

 LUTs FFs BRAMs Multipliers Fmax LUTs FFs BRAMs Multipliers Fmax

2-D DCT 655 356 -- 4 74.32 491 351 -- 4 108.34

Quantizer 225 40 -- 1 90.63 112 35 -- 1 124.79

Entropy coder 1684 445 -- -- 96.87 970 461 2 -- 167.64

JPEG IP Core 2485 810 -- 5 74.32 1439 812 2 5 111.92

Figure 5. Assembler architecture in a pipelined fashion

Doğan and San / Eskişehir Technical Univ. J. of Sci. and Tech. A – Appl. Sci. and Eng. 19 (3) – 2018

696

Remember that it takes at most 144 clock cycles for the computation of all 2-D coefficients.

Furthermore, the fully pipelined design of the JPEG IP core allows it to process an 8×8 block of pixels

in 144 clock cycles in a pipelined fashion. Thus, the JPEG IP core, when mapped to a Spartan 6 FPGA,

reaches a minimum period of 1.28 µs and processing rates up to 49.74 Msamples/s. This processing rate

is sufficient for compressing more than 143 and 71 SDTV frames per second with 720×480 gray scale

and color pixels per frame, respectively. Furthermore, the IP core proposed can compress more than 53

and 26 HD Ready TV frames per second with 1280×720 gray scale and color pixels per frame,

respectively. These results indicate that the JPEG IP core proposed implemented on a low cost FPGA

like Xilinx Spartan 6 can be deployed as an IP core of an M-JPEG video compressor directed to both

SDTV and HD Ready TV applications.

The proposed JPEG IP core is compared against four other competitive designs in Table 2. According

to Table 2, it is evident that the proposed IP core is clearly superior to [6] and [7] in terms of both

resource utilization and maximum operation frequency. Note that comparing Stratix IV with Virtex 5 is

slightly unfair for the proposed design since [14] reports that Stratix IV is 35% faster than Virtex 5 and

packs 1.8X more logic element than that of Virtex 5. The JPEG compressors of [3] and [5] are better

than the proposed one in terms of the LUTs utilization, which is due to implementing the tables on

BRAMs, and Fmax. On other hand, they tend to use more FF resources and multipliers. Thus, there is

no clear winner among [3,5] and the proposed design.

Table 2. A comparison of the JPEG IP core with other IP cores in the literature

 Technology LUTs FFs BRAMs Multipliers Fmax

[3] Spartan 3 1724 1275 2 11 80.00

[5] Spartan 3E 1671 2450 4 8 101.35

[6] Spartan 6 3020 2549 -- 3 83.33

[7] Stratix IV 1918 915 21 47 100.00

Proposed

Spartan 3 2486 810 -- 5 74.32

Spartan 3E 2459 816 -- 5 90.32

Spartan 6 1439 812 2 5 111.92

Virtex 5 1567 705 -- 5 184.15

 1 Approximately.

4. CONCLUSIONS

This article proposes a fully pipelined and low area JPEG encoder architecture. The key element of the

proposed methodology is to carefully design the pipeline stages in order to increase the resource sharing

and decrease the total clock cycles to complete the overall JPEG operation. Furthermore, we compare

the achieved implementation results of this study with four different competitive designs from the open

literature. In order to minimize the FPGA resource utilization as low as possible, the proposed

architecture employs the row-column decomposition technique for 2-D DCT transformation step in

JPEG encoding, which yields a saving of 1-D DCT resource utilization. The proposed low area design

achieves high processing rates that is well-suited to various image and video compressing applications.

ACKNOWLEDGEMENTS

This work has been supported by Anadolu University Scientific Research Projects under contract

number 1705F200.

Doğan and San / Eskişehir Technical Univ. J. of Sci. and Tech. A – Appl. Sci. and Eng. 19 (3) – 2018

697

REFERENCES

[1] The International Telegraph and Telephone Consultative Committee (CCITT). Information

Technology – Digital Compression and Coding of Continuous-Tone Still Images – Requirements

and Guidelines. Rec. T.81, 1992.

[2] Wallace GK. The JPEG still picture compression standard. IEEE T Consum Electr: 1992; 38: 18-

34.

[3] van Dyck W, Smodic R, Hufnagl H, Berndorfer T. High-speed JPEG coder implementation for a

smart camera. J Real-Time Image Pr 2006; 1: 63-68.

[4] Agostini LV, Silva IS, Bampi S. Multiplierless and fully pipelined JPEG compression soft IP

targeting FPGAs. Microprocess Microsy 2007; 31: 487-497.

[5] Pradeepthi T, Ramesh AP. Pipelined architecture of 2D-DCT, quantization and zigzag process for

JPEG image compression using VHDL. Int J VLSI Com (VLSICS) 2011; 2: 99-110.

[6] Swarna KSV, Raju YDS. Implementation of soft processor based SOC for JPEG compression on

FPGA. ICTACT J Microelectron 2015; 1: 1-7.

[7] Kishore B, Kumar BKS, and Patil CR. FPGA based Simple and Fast JPEG Encryptor. J Real-Time

Image Pr 2015; 10: 551-559.

[8] Kaddachi ML, Soudani A, Lecuire V, Torki K, Makkaoui L, Moureaux J-M. Low power hardware-

based image compression solution for wireless camera sensor networks. Comp Stand Inter 2012;

34: 14-23.

[9] Kovac M, Ranganathan N. JAGUAR: a fully pipelined VLSI architecture for JPEG image

compression standard. Proc IEEE 1995; 83: 247-258.

[10] Sun S-H, Lee S-J. A JPEG chip for image compression and decompression. J VLSI Signal Proc

2003; 35. 43-60.

[11] Hsia S-C, Wang S-H. Shift-register-based data transposition for cost-effective discrete cosine

transform. IEEE T VLSI Syst 2007; 15: 725-728.

[12] Doğan A. An efficient low area implementation of 2-D DCT on FPGA. 9th International

Conference on Electrical and Electronics Engineering (ELECO), 771-775.

[13] Sanjeevannanavar S, Nagamani N. Efficient design and FPGA implementation of JPEG encoder

using Verilog HDL. International Conference on Nanoscience, Engineering and Technology, 2011;

584-588.

[14] Altera White Paper. 40-nm FPGAs: Architecture and Performance Comparison. 2008.

