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Abstract 

In this paper, we examine the initial value problem for a linear first order Volterra integro-differential equation. 

In order to solve the problem computationally, we present a novel finite difference method, which is based on 

the method of integral identities with the use of the basis functions and interpolating quadrature rules with 

remainder term in integral form. Furthermore, as a consequence of error analysis the method is proved to be 

first-order convergent in the discrete maximum norm. Finally, an example is provided to support our theoretical 

results. 

Keywords: Error Estimate, Finite Difference Method, Initial Value Problem, Volterra Integro-Differential 

Equation 

 

Volterra İntegro-Diferansiyel Denklem İçin Bir Çözüm Yöntemi 

Öz 
Bu çalışmada, lineer birinci mertebeden Volterra integro-diferansiyel denklem içeren başlangıç değer 

problemini ele almaktayız. Bu problemi nümerik olarak çözmek için yeni bir sonlu fark metodu veriyoruz. Bu 

metot, kalan terimi integral biçiminde olan interpolasyon quadratür formülleri ve üstel baz fonksiyonunu içeren 

integral özdeşliklerinden meydana gelmektedir. Ayrıca, bu metodun hata analizinin bir sonucu olarak, ayrık 

maksimum normda birinci mertebeden yakınsaklığı ispatlandı. Son olarak, elde edilen teorik sonuçları 

destekleyen nümerik örnek verildi. 

Anahtar Kelimeler: Başlangıç-Değer Problemi, Hata Değerlendirmesi, Sonlu Fark Metodu, Volterra İntegro-

Diferansiyel Denklem 

1. Introduction 

In this work, we are concerned with the 

following Volterra integro-differential initial 

value problem:  

Lu ≔ u′(t) + a(t)u(t) = f(t) 

     + ∫ K(t, s)u(s)ds
t

0
, t ∈ I,        (1.1) 

u(0) = A         (1.2) 

where I = (0, T] and A is a given constant. 

a(t), f(t) and K(t, s) are given sufficiently 

smooth functions on I̅ = [0, T]_and I̅ × I,̅ 

respectively and moreover 

a(t) ≥ α > 0. 

 

Volterra integro-differential equations 

(VIDEs) arise widely in physics, chemistry, 

biology and engineering applications 

modelled by initial value problems (Jerri, 

1999; Gaetano and Arino, 2000; Song and 

Baker, 2004). In recent years, it seems that 

the studies on these problems are being taken 

more and more into consideration, both in 

terms of modeling and solution of them. 

Existence and uniqueness of solution to 

VIDEs is discussed in books Volterra (1959); 

Hackbusch (1995); Lakshmikantham and 

Rao (1995); Jerri (1999); Burton (2005) and 

the references therein. Furthermore, there are 

many researchers who have investigated 

asymptotic expansion and numerical 
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approaches for this type equations (Chang, 

1982; Hackbusch, 1995; Lakshmikantham 

and Rao, 1995; Kythe and Puri, 2002; 

Rahman, 2007; Babolian and Shamloo, 2008; 

Mehdiyeva et al., 2011; Wazwaz, 2011). The 

authors in Hoppensteadt et al. (2007); Fazeli 

and Hojjati (2015); Okayama (2018) are 

studied the numerical solutions of VIDEs by 

using various methods, such as collocation 

method, Runge-Kutta method, Sinc-Nyström 

method. Nevertheless, authors in Amiraliyev 

and Sevgin (2006); Amiraliyev and Yilmaz 

(2014); Kudu et al. (2016) are suggested 

numerical solutions of VIDEs by using fitted 

difference method. In this paper, we are 

present a novel finite-difference scheme on a 

uniform mesh to approximate (1.1-(1.2). This 

approach based on the method of integral 

identities with the use of interpolating 

quadrature rules with the weight and 

remainder terms in integral form. As a 

consequence of the method, in local 

truncation errors contain only first order 

derivative of the exact solution and hence 

eases analysis of the convergence. Our aim 

of this paper is to approximate for solving 

(1.1)-(1.2) using a numerical method based 

on the technique in work of Amiraliyev and 

Yilmaz (2014). The remainder paper is 

organized as follows. In Section 2, we put 

forward a priori estimates of the exact 

solution of (1.1)-(1.2). In Section 3, we 

introduce finite difference discretization of 

the problem (1.1)-(1.2). The error analysis of 

the approximate solution of the problem is 

present in Section 4. Furthermore, we prove 

convergence of our method in the discrete 

maximum norm. The algorithm for solving 

the difference problem and the numerical 

results is formulated in Section 5. Finally, a 

summary of the main conclusions of the 

paper are also given. 

Notation: Henceforth, C indicates a generic 

positive constant. In addition, some particular 

fixed constants of this type are denoted by 

subscripting C. We shall use ‖g‖∞ =

max
t∈I̅

|g(t)|, for any g ∈ C(I)̅. 

2. The Properties of The Exact Solution 

Here, we give some important properties for 

the solution of our problem, which are 

needed in later sections for the analysis of 

appropriate the numerical solution. 

Lemma 2.1: Let a(t), f(t) ∈ C(I)̅ and K(t, s) ∈
C(I̅ × I)̅. Then for the solution u of the problem 

(1.1)-(1.2) the following estimates hold: 

‖u‖∞ ≤ C0,         (2.1) 

‖u′‖∞ ≤ C          (2.2) 

where 

 C0 = (|A| + α−1‖f‖∞)eα−1K̅T, 

 K̅ = max
I̅×I̅

|K(t, s)|. 

Proof: From (1.1), we have 

 u(t) = u(0)e− ∫ a(η)dη
t

0  

+ ∫ [f(s)+ ∫ K(s, ξ)u(ξ)dξ
s

0
]e− ∫ a(η)dη

t

s ds
t

0
, 

 |u(t)| ≤ |u(0)|e−αt + 

∫ [|f(s)|+ ∫ |K(s, ξ)||u(ξ)|dξ
s

0

]e−α(t−s)ds
t

0

 

 ≤ |A|e−αt + α−1‖f‖∞(1 − e−αt) 

     +α−1K̅(1 − e−αt) ∫ |u(ξ)|dξ
t

0
 

         ≤ |A| + α−1‖f‖∞ + α−1K̅ ∫ |u(ξ)|dξ
t

0
. 

Now, applying the Gronwall's inequality to this 

inequality, we get 

|u(t)| ≤ (|A| + α−1‖f‖∞)eα−1K̅t 

which leads to (2.1). Also, from (1.1) we have 

 |u′(t)| ≤ |a(t)||u(t)| + |f(t)| 

      + ∫ |K(t, s)||u(s)|ds
t

0
 

 ≤ ‖a‖∞C0 + ‖f‖∞ + K̅C0 ∫ ds
t

0
 

 ≤ ‖f‖∞ + C0(‖a‖∞ + K̅T) 

which immediately leads to (2.2) 

3. The Difference Scheme 

We introduce the uniform mesh on the I: 

ωN = {ti = iτ, i = 1,2, … , N;  τ = T/N},  

 ω̅N = ωN ∪ {0}. 

In order to simplify the notation, we define gi =
g(ti) for any function g(t) and yi represents an 

approximation of u(t) at ti also gi−1
2

= g(ti −
τ

2
). 

Also, for any mesh function gi defined on ωN we 

use 
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gt̅,i =
gi−gi−1

τ
,  

‖g‖∞,ωN
= max

1≤i≤N
|gi|.  

 We give the difference approximation of 

Eq. (1.1), by using the following identity: 

 

 τ−1 ∫ Lu(t)φi(t)dt
ti

ti−1
= τ−1 ∫ [f(t)

ti

ti−1
 

       + ∫ K(t, s)u(s)ds
t

0
]φi(t)dt, 1 ≤ i ≤ N 

           (3.1) 

with the basis functions 

φi(t) = e− ∫ a(s)ds
ti

t , ti−1 ≤ t ≤ ti 

which is the solution of the problem 

 

{
−φi′(t) + a(t)φi(t) = 0, ti−1 < t ≤ ti,

 φi(ti) = 1.                                               
  

           (3.2) 

The relation (3.1) is rewritten by taking into 

account the equation (1.1), we get 

τ−1 ∫ u′(t)φi(t)dt
ti

ti−1
  

+τ−1 ∫ a(t)u(t)φi(t)dt
ti

ti−1
  

= τ−1 ∫ f(t)φi(t)dt
ti

ti−1
  

+τ−1 ∫ [∫ K(t, s)u(s)ds
t

0
]φi(t)dt

ti

ti−1
.  

           (3.3) 

Next, using formulas (2.1) and (2.2) from 

Amiraliyev and Mamedov (1995) on each 

interval (ti−1, ti) left hand side (3.3) and 

taking into account (3.2) we have following 

precise relation 

 

τ−1 ∫ u′(t)φi(t)dt
ti

ti−1
  

+τ−1 ∫ a(t)u(t)φi(t)dt
ti

ti−1
= Aiut̅,i + Biui. 

where 

 Ai = τ−1 ∫ φi(t)dt
ti

ti−1
 

                   +τ−1 ∫ (t − ti)a(t)φi(t)dt
ti

ti−1
, 

 Bi = τ−1 ∫ a(t)φi(t)dt.
ti

ti−1
       (3.4) 

For the integral term from (3.3), after applying 

the appropriate quadrature rules, we have 

 

      τ−1 ∫ [∫ K(t, s)u(s)ds
t

0
] φi(t)dt

ti

ti−1
 

  = τ−1 ∫ φi(t)dt
ti

ti−1
∫ K (ti−1

2
, s) u(s)ds

t
i−

1
2

0
 

       +Ri
(1)

  

 = [τ−1 ∫ φi(t)dt
ti

ti−1
]τ ∑ K (ti−1

2
, sj) uj

i−1
j=0  

      +Ri
(1)

+ Ri
(2)

 

where 

  Ri
(1)

= 

   τ−1 ∫ dtφi(t)
ti

ti−1
∫

∂

∂t
[∫ K(t, s)u(s)ds

t

0
]

ti

ti−1
 

    × [T0(s − t) − T0(ti−1
2

− t)]dt   (3.5) 

Ri
(2)

= ∑ ∫ [tj+1
2

− t − τT0(tj − t)]
t

j+
1
2

t
j−

1
2

i−1

j=1

× 

              ×
d

dt
[K (ti−1

2
, t) u(t)] dt    (3.6) 

and 

 T0(λ) = 1,  λ > 0; T0(λ) = 0, λ ≤ 0. 

 Hereby, we write the exact relation for 

u(ti): 

ℓui ≔ Aiut̅,i + Biui = Fi 

+  τCi ∑ K (ti−1
2
, tj) uj

i−1

j=0
+ Ri 

          (3.7) 

with 

Ci = τ−1 ∫ φi(t)dt
ti

ti−1
, 

Fi = τ−1 ∫ f(t)φi(t)dt
ti

ti−1
, 

Ri = Ri
(1)

+ Ri
(2)

 

where Ai, Bi and Ri
(k)

 (k = 1,2) are determined 

by (3.4), (3.5), (3.6), respectively. 

By virtue of (3.7) we suggest the following 

difference scheme for approximating (1.1)-(1.2): 

ℓyi ≔ Aiyt̅,i + Biyi = Fi 

+τCi ∑ K (ti−1
2
, tj) yj

i−1
j=0 ,       (3.8) 

y0 = A.          (3.9) 

4. Stability Bound and Convergence 

In order to examine the convergence of the 

method, the error function zi = yi − ui, (1 ≤
i ≤ N) which is the solution of the following 

discrete problem 

ℓzi = Ri, 1 ≤ i ≤ N,        (4.1) 

z0 = 0. .        (4.2) 
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Lemma 4.1: Let |Gi| ≤ G̅i and G̅i be a 

nondecreasing function. 

ℓvi: = Aivt̅,i + Bivi = Gi, 1 ≤ i ≤ N 

           (4.3) 

v0 = A .         (4.4) 

Then the solution of difference problem 

(4.3)-(4.4) holds: 

|vi| ≤ |A| + α−1G̅i, 1 ≤ i ≤ N. 

Proof: The proof is almost identical that of 

(Amiraliyev and Yilmaz, 2014).            ■ 

 

Lemma 4.2: Let K(t, s) ∈ C1(I̅ × I)̅. Then 

for the truncation error Ri, the following 

estimate holds 

 ‖R‖∞,ωN
≤ CN−1. 

Proof: Since 0 < φi(t) ≤ 1 

 

|Ri
(1)

| ≤ ∫ |
∂

∂t
[∫ K(t, s)u(s)ds

t

0
]|

ti

ti−1
dt  

 

and after applying Leibniz rule, we get 

|Ri
(1)

| ≤ ∫ |K(t, t)u(t)|
ti

ti−1
dt  

+ ∫ |[∫
∂

∂t
K(t, s)u(s)ds

t

0
]|

ti

ti−1
dt. 

Hence the estimate |Ri
(1)

| ≤ Cτ is easily 

obtained. 

Next, from (3.6) 

|Ri
(2)

| ≤ 2τ ∑ ∫ [
d

dt
K (ti−1

2
, t) u(t)

t
j+

1
2

t
j−

1
2

i−1

j=1

+ K (ti−1
2
, t) u′(t)] dt 

taking into account Lemma 2.1, we have 

|Ri
(2)

| ≤ 2τ2(N − 1)(C0 |
∂

∂s
K(t, s)| + CK̅) 

≤ Cτ.     ■ 

 

Lemma 4.3: The solution of (4.1)-(4.2) 

satisfies the following estimate 

 ‖z‖∞,ωN
≤ C‖R‖∞,ωN

.       (4.5) 

Proof: From the solution of (4.1)-(4.2): 

ℓzi ≔ Aizt̅,i + Bizi 

= τCi ∑ K (ti−1
2
, tj) zj

i−1

j=0

+ Ri 

and taking account Lemma 4.1 

 |zi| ≤ α−1τ ∑ K̅|zj|
i−1
j=0 + α−1‖R‖∞. 

From here by using the difference analogue 

of Gronwall’s inequality, we get 

 |zi| ≤ α−1‖R‖∞eα−1K̅ti 

and this immediately leads to (4.5).            ■ 

 Finally, we give the main 

convergence result. 

 

Theorem 4.1: Let u be the solution of (1.1)-

(1.2) and y the solution (3.8)-(3.9). Then 

‖y − u‖∞,ω̅N
≤ CN−1. 

Proof: By combining the previous Lemmas 

4.2 and 4.3, we can immediately prove.       □ 

5. Algorithm and Numerical Results 

In this section, we present numerical results 

obtained by applying the numerical method 

(3.8)-(3.9) to the particular problem. We 

rewritten difference scheme (3.8) 

 yi =
Ai

Ai+τBi
yi−1 +

τFi

Ai+τBi
 

        + 
τ2Ci

Ai+τBi
∑ K (ti−1

2
, tj) yj

i−1
j=0  

from hence, for 1 ≤ i ≤ N with together y0 = A, 

we get any yi. 

Example 5.1 Now, we consider the test problem 

u′(t) + 2u(t) = 1 − t 

+ ∫ (t − s)u(s)ds
t

0
, t ∈ (0,1], 

u(0) = 1. 

The exact solution is given by 

u(t) = e−t. 

We define the exact error Ei
N, the computed 

maximum pointwise error EN as follows, 

respectively: 

Ei
N = |yi − ui|, E

N = max
0≤i≤N

Ei
N 

where y is the numerical approximation to u for 

various values of N. For Example 5.1 the 

computational results obtained by present method 

are given in the Tables 1-3. 
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Table 1. Computational results for N = 64 

 

ti u(ti) y(ti) Ei
N 

0.000 1.0 1.0 0.0 

0.125 0.8824969 0.8825552 5.83341E-5 

0.250 0.7788008 0.7790124 2.11611E-4 

0.375 0.6872893 0.6877284 4.39125E-4 

0.500 0.6065307 0.6072557 7.25078E-4 

0.625 0.5352614 0.5363190 1.05760E-3 

0.750 0.4723666 0.4737945 1.42799E-3 

0.875 0.4168620 0.4186921 1.83006E-3 

1.000 0.3678794 0.3701391 2.25968E-3 

Table 2. Computational results for N = 128 

 

ti u(ti) y(ti) Ei
N 

0.000 1.0 1.0 0.0 

0.125 0.8824969 0.8825256 2.86513E-5 

0.250 0.7788008 0.7789057 1.04941E-4 

0.375 0.6872893 0.6875077 2.18464E-4 

0.500 0.6065307 0.6068919 3.61281E-4 

0.625 0.5352615 0.5357889 5.27430E-4 

0.750 0.4723666 0.4730791 7.12533E-4 

0.875 0.4168620 0.4177755 9.13484E-4 

1.000 0.3678794 0.3690076 1.12820E-3 

 

Table 3. Maximum pointwise errors for Example 

5.1 

N EN N EN 

32 4.53203E-3 256 5.63682E-4 

64 2.25968E-3 512 2.81736E-4 

128 1.12820E-3 1024 1.40842E-4 

 

6. Conclusions 

In this work, we have developed a novel 

method for approximating solution of the 

initial-value problem for a linear first order 

Volterra integro-differential equation. The 

method was based on an exponentially 

difference scheme on a uniform mesh. As 

results from the method, first order 

convergence in the discrete maximum norm 

was obtained. However, using the method, 

we were solved a numerical and the obtained 

results were displayed in Tables 1-3. These 

results were achieved to show the efficiency 

and accuracy of the our method. Theoretical 

results represented undergoing research more 

complicated Volterra integro-differential 

equations, such as delay Volterra integro-

differential equation.  
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