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Abstract: In this study, a fractional order sliding mode controller (FOSMC) and adaptive fuzzy fractional order sliding mode controller 

(AFFOSMC) are designed for speed control of the Brushless DC motor and the performance of the controllers have been tested in real 

time. Experimental studies were performed to compare the performance of the reference tracking and error elimination of both controllers, 

and the graphs of the results were presented. 
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1. Introduction 

BLDC motors are widely used in many areas of industry, 

especially in applications requiring speed and position control. 

Due to the nonlinear structure of systems that perform speed and 

position control using BLDC motors, control is difficult. The 

controllers designed for this reason are required to respond to this 

difficulty and need to work efficiently. There are many studies in 

the literature for speed control of BLDC motors.  Yu and Rey-Chue 

used LQR method to find the optimum parameters of PID speed 

controller [1]. Sathyan et al. introduced a new digital control 

concept for BLDC motors and developed a low-cost controller for 

inefficient single-phase induction motors. Also under dynamic 

load conditions, the proposed controller was indicated to be 

capable of regulating speed without the use of an observer [2]. Liu 

et al. presented a control system with a new speed estimation 

approach based on model reference adaptive control (MRAC) for 

low cost brushless dc motor drives with low resolution hall sensor 

[3]. In the proposed method, a speed estimation algorithm based 

on MRAC was used to correct the speed error calculated using 

EMF. Ahmed et al. [4] they have compared PI speed controller and 

fuzzy PI speed controller performance in their simulation studies. 

They also stated that the performance of the fuzzy PI controller is 

generally better than the PI speed controller. In the simulation work 

presented by Mulljik [5], it was stated that BLDC's speed control 

using Fuzzy Logic Controller has a better performance than PI and 

PID controllers. Kumari et al. presented a Genetic Algorithm (GA) 

based design of a PID controller for the speed control of a BLDC 

motor [6].  

In real dynamical systems, sliding mode control method, which has 

the ability to remove the effects of uncertainties caused by model 

errors and undesirable disturbing effects that affect the system 

response, has been widely used and modified. Choi et al. [7] 

proposed Global SMC to control second-order time-varying 

systems with parameter uncertainties and disruptive effects. The 

proposed controller has applied to the BLDC motor with 

indeterminate loads. Experimental results of the proposed 

controller are very similar to the results of the simulated and closed 

form equation and they show that best performance compared to 

other SMCs. In [8], an SMC-fuzzy speed control approach is 

proposed.  A constantly changing term is used instead of the "sgn" 

function to remove the effect of the chattering. A fuzzy control 

term has been used to improve the dynamic response of the system 

and to reduce the steady state error in the boundary layer. 

Experimental results, compared with the results of conventional 

PID, confirm that the proposed sliding mode controller can provide 

good tracking performance and is robust against uncertainties and 

disturbances. To test the speed of an electromechanical system, 

Eker İ. was tested a sliding-mode control approach that is described 

in the form of sliding surface ‘PID’ [9]. It has also been noted that 

the chattering effect is exceeded by using a hyperbolic function for 

the sliding surface. Xiaojuan and Liu[10] introduced a new 

adaptive fuzzy sliding mode control approach. Two types of 

sliding mode control methods have been used in their work, which 

are based on equivalent control and based on the reaching phase of 

the AFSMC algorithm. It is also stated that the output value of the 

sliding mode controller is changed according to the value range of 

the switching function and the system stability is improved by 

removing the chattering effect. Simulation results comparing the 

fuzzy sliding mode control scheme to show the effectiveness of the 

proposed structure and the improvement of the dynamic 

performance of the system are given. Wang et al. proposed Hybrid 

terminal sliding mode control method for sensorless position 

control of an electric vehicle using a brushless DC motor [11].  In 

the method they used, the back EMF sensing approach were 

analyzed and improved. Improvement efforts have not only 

removed the chattering effect of a zero crossing signal but also it 

was improved reliability and stability. The dynamic performance 

of the proposed structure was tested with experimental results and 

efficiency was shown in terms of stability and energy saving. 

In this study, a BLDC motor was tested for speed control for low 

and medium speeds. Fractional order sliding mode control and 

adaptive fuzzy fractional order sliding mode control methods are 

applied separately. Experimental results show that the adaptive 

fuzzy fractional sliding mode controller has better performance 

than the fractional sliding mode control. 

 

 

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

1 Department of Computer Engineering, Faculty of Engineering, Erzincan 

University, TURKEY 

* Corresponding Author: Email: korman@erzincan.edu.tr 



International Journal of Applied Mathematics Electronics and Computers (IJAMEC) IJAMEC, 2018, 6(4), 45–52  |  46 

2. BLDC Motor Model   

Taking into account the DC motor equations, the transfer function 

of the BLDC motor is obtained. DC motor voltage equations can 

be expressed as follows. 

EiR
dt

di
LV ++=                                    (1) 

dt

d
KE e


=                       (2) 

If Eq. (2) is substituted in Eq. (1) and the current expression is 

denoted by Eq. (1); 

dt

d
KiRV

dt

di
L e


−−=                                                 (3) 

is obtained. The expression of the mechanical part of the BLDC 

motor; 
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and, If equation (3) and equation (4) are rewritten in s-form to 

obtain the transfer function, 
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is obtained. Using this equation in Eq. (6) 
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is obtained. If equation (11) is rewritten using )()( sss  =   
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The expression is obtained. Thus, the transfer function of the DC 

motor can be written as follows. 
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 Equation (13) is simplified under the following assumptions, 

1. 
mB  tends to go too small and even zero, 

2. LBRJ mm   

3. 
met RBKK   

and very small values are neglected, the transfer function 

expressed in Eq. (13) can be written as in Eq. (14). 
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Eq. (14) is multiplied by the following expression, 
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and the transfer function is rewritten; 
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is obtained. Where ‘Kt’ is torque constant (mNm/A), ‘Ke’ is 

electrical torque  (Vsec/rad), ‘Bm’ is friction coefficient 

(Nm/(rad/sec)), ‘R’ is resistance between phases (Ω), ‘L’ phase 

inductance (mH)  and ‘Jm’ motor inertia (Kgm2).  

Mechanical and the electrical time constants; 
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m
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if the expressions are written in Eq. (15) 
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equality is achieved. Equations (16) show the difference between 

DC motor and BLDC motor. The mechanical and electrical time 

constants in the motor model are very important. 

 

Figure 1. Typical BLDC Motor drive 

From the symmetrical structure of BLDC motor shown in fig.1, 

Eq. (16) is obtained as follows. 
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Since there are 3 phases in symmetrical structure, mechanical and 

electrical constants; 
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It is specified by the equations. In addition, the relationship 

between electrical and mechanical torques can be expressed by 
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using the electric energy and mechanical power equations as 

follows: 
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2.1. Brushless DC motor (Maxon motor - EC 32) 

The mathematical model of the BLDC motor was obtained 

according to the values given in Tables 1 and 2. Ke, τm and τe values 

require calculation. 

Table 1: Maxon BLDC motor operation features [12] 

S. No. Parameter (unit) Specification 

1 Nominal voltage - V 24 

2 No load speed - rpm 11000 

3 No load current - mA 286 

4 Nominal speed - rpm 9510 

5 Nominal torque - mNm 43.6 

6 Nominal current - A 3.37 

7 Stall torque - mNm 355 

8 Starting current - A 17.3 

9 Maximum efficiency 76% 

Table 2: Characteristic features of Maxon BLDC motor [12] 

S. No. Parameter (unit) Specification 

1 Terminal resistance 
phase to phase - Ω 

1.39 

2 Terminal inductance 

phase to phase - mH 
0.226 

3 Torque constant - 

mNm/A 
20.5 

4 Speed constant - rpm/V 465 
5 Speed/torque gradient - 

rpm/mNm 
31.5 

6 Mechanical time 

constant - ms 
6.59 

7 Rotor inertia- gcm2 20 

If the following calculations are made according to the values 

given above; 
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These values are substituted in Eq. (17) and G (s) is obtained as 

follows. 
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Equation (27) indicates the transfer function of the BLDC 

motor used. 

3. Control 

In this section, the mathematical equations designed controllers 

and their block diagrams are given.  

3.1. Sliding Mode Control 

The system controlled by the sliding mode controller and the error 

signal can be defined as follows;  

 

𝑚�̈�(𝑡) + 𝑏�̇�(𝑡) + 𝑘𝑥(𝑡) = 𝑢      (28) 

𝜀(𝑡) = 𝑥𝑟𝑒𝑓(𝑡) − 𝑥(𝑡)       (29) 

 
If this system given from the second order is transformed into a 

first order system with �̇� = 𝑣 transformation; 

 

 �̈� = �̇� =
1

𝑚
(𝑢 − 𝑏𝑣 − 𝑘𝑥)                      (30) 

[
�̇�
�̇�
] = [

0 1
−𝑘

𝑚

−𝑏

𝑚

] [
𝑥
𝑣
] + [

0
1

𝑚

] 𝑢                   (31) 

 

If the sliding surface is defined as follows: 

 

𝑠 = {𝑥: 𝜎(𝑥, 𝑡) =0}                           

(32) 

 

and the sliding function (𝜎) can be determined as follows,  

 

𝜎 = 𝐺(𝑥𝑟𝑒𝑓 − 𝑥 ) = 𝐺𝜀 = 𝜙(𝑡) − 𝜑(𝑥)                  (33)  

 
𝜙(𝑡) = 𝐺𝑥𝑟𝑒𝑓

𝜑(𝑥) = 𝐺𝑥
𝑑𝜑(𝑥)

𝑑𝑥
= 𝐺 }

 

 
       (34) 

 

The solution to be obtained if the sliding function is derived and 

equated to zero is called the equivalent control. If the derivative of 

the equation (33); 

 
𝑑𝜎

𝑑𝑡
=

𝑑𝜙(𝑡)

𝑑𝑡
−

𝑑𝜑(𝑥)

𝑑𝑥
 
𝑑𝑥

𝑑𝑡
      (35) 

 

is obtained. 

 
𝑑𝑥

𝑑𝑡
= �̇� = 𝑓(𝑥, 𝑡) + 𝐵𝑢                   (36) 

 

If Equation (34) and Equation (36) are written in Equation (35); 

 

 
𝑑𝜎

𝑑𝑡
=

𝑑𝜙(𝑡)

𝑑𝑡
− 𝐺(𝑓(𝑥, 𝑡) + 𝐵𝑢)                   (37) 

 

The (𝑢 = 𝑢𝑒𝑞) value, which makes the equation (37) zero, is equal 

to the equivalent control.   

 
𝑑𝜎

𝑑𝑡
|
𝑢=𝑢𝑒𝑞

=
𝑑𝜙(𝑡)

𝑑𝑡
− 𝐺(𝑓(𝑥, 𝑡) + 𝐵𝑢𝑒𝑞) = 0   (38) 

 

𝐺𝐵𝑢𝑒𝑞 =
𝑑𝜙(𝑡)

𝑑𝑡
− 𝐺(𝑓(𝑥, 𝑡)                  (39) 

 

If a Lyapunov function is selected as follows; 

 

𝑉 =
1

2
𝜎𝑇𝜎 > 0           and          �̇� = 𝜎𝑇�̇�                 (40) 

 



International Journal of Applied Mathematics Electronics and Computers (IJAMEC) IJAMEC, 2018, 6(4), 45–52  |  48 

for stability; 

 

�̇� = −𝜎𝑇𝐷𝜎 < 0      (41) 

 

and if the derivatives in Equation (40) and Equation (41) are 

equalized, 

 

𝜎𝑇�̇� = −𝜎𝑇𝐷𝜎                    (42) 

 

In the solution of this equation 

 

�̇� + 𝐷𝜎 = 0                     (43) 

 

is obtained. Here (D) determines the speed of approach of the 

system states to the sliding surface. 

If (�̇�) in Equation (35) is replaced by Equation (43) to obtain the 

control signal, 

 

 
𝑑𝜙(𝑡)

𝑑𝑡
− 𝐺(𝑓(𝑥, 𝑡) + 𝐵𝑢) + 𝐷𝜎 = 0    (44) 

 

If Equation (44) is rewritten using Equation (39); 

 

𝐺𝐵𝑢𝑒𝑞 − 𝐺𝐵𝑢 + 𝐷𝜎 = 0      (45) 

 

As a result of a short mathematical operation, the control signal is 

obtained as follows. 

 

𝑢 = 𝑢𝑒𝑞 +𝐾𝜎        (46) 

 

where 𝐾 = (𝐺𝐵)−1. In this way, the effect of the chattering in the 

system will be removed by adding the (𝐾𝜎) sign, which is a 

continuous sign to the equivalent control signal (𝑢𝑒𝑞). However, 

to eliminate the difficulties that may arise during the calculation of 

the equivalent control expression (𝑢𝑒𝑞) the equivalent controller 

estimate can be used instead of the equivalent control expression 

(𝑢𝑒𝑞).  

 

If the matrices of 𝑓(𝑥, 𝑡) and B in the equivalent controller 

equation expressed by Eq. (39) are not known at all, or if little is 

known, it is impossible to calculate (𝑢𝑒𝑞)or will be very different 

from real (𝑢𝑒𝑞). For the estimation of (𝑢𝑒𝑞); moving from the 

physical meaning of the effect of the equivalent controller, it can 

be said that the equivalent control is the average value of the total 

control. In this case, the equivalent control would be appropriate to 

design with a low pass filter which determines the average of the 

entire signal instead of the rapidly varying high frequency 

components in the total control signal. 

 

𝑢 = 𝑢𝑒𝑞 + ∆𝑢 + 𝐾𝜎                    (47) 

 

Where 𝑢𝑒𝑞  is the component of the mean value of the total control 

signal and ∆𝑢 is the high frequency component of the total control 

signal. 

In this case a filter such as the following can be designed for the 

estimated equivalent controller (�̂�𝑒𝑞).  

 

�̂� = �̂�𝑒𝑞 + 𝜏�̂�𝑒𝑞     and       �̂�𝑒𝑞 =
1

1+𝜏𝑠
𝑢                 (48) 

 

where 1 τ⁄  denotes the value of the cut-off frequency of the filter. 

The main purpose of a low-pass filter design is that the 

characteristics of a control system are determined by low-

frequency components. High frequency components come from 

generally modeled components. 

If Equations (48) are rewritten using Equations (46) in the light of 

these definitions, 

 

𝑢 = �̂�𝑒𝑞 + 𝐾𝜎  ,                𝑢 =
1

1+𝜏𝑠
𝑢 + 𝐾𝜎   (49) 

 

it is necessary to check the speed of error and error in order to 

obtain a robust control. In this case (𝜎) can be determined as 

follows. 

 

 𝜎 = 𝜀̇ + 𝐺𝜀                    (50) 

 

By substituting Equation (50) in Equation (49), the control signal 

of the sliding mode control (SMC) obtained as follows. 

 

𝑢 =
1

1+𝜏𝑠
𝑢 + 𝐾(𝜀̇ + 𝐺𝜀)                   (51) 

 

3.2. Fractional Order Sliding Mode Control 

Fractional calculation is a generalization of derivatives and 

integrals with a notation such as 𝐷𝑎
 
𝑡
𝑝
 for non-integer parts. The 

continuous integro-differential definition of this notation is as 

follows.  


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− 0:)(

0:1

0:

pd

p

p
dt

d

D
t

a

p

p

p

p
ta
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                                                   (52) 

In this notation, a and t are the bounds of the operation and 𝑝 ∈ 𝑅.  

There are several mathematical definitions for fractional derivative 

and integral [13],[14]. Among these definitions, the definition of 

Grünwald-Letnikov (GL) and the definition of Riemann-Liouville 

(RL) are more widely used. The definition of GL is as follows; 









 −

=

− −−
→

=

h

at

j

jpp
ta jhtf

j

p
h

h
tfD

0

)()()1(
0

lim
)(                    (53) 

 

In the equation, [.] Refers to the integer part, and the RL definition 

is as follows. (n-1 <p <n); 

 





d

t

f

dt

d

pn
tfD

t

a npn

n
p

ta  +−−−
=

1)(

)(

)(

1
)(                         (54) 

 

In equation, Γ(.) represents the Euler gamma function. If the 

sliding mode control signal obtained from Equation (51) is written 

as follows using fractional calculation, 

 

𝑢 =
1

1+𝜏𝑠
𝑢 + 𝐾( 𝐷𝑎

 
𝑡
𝑝
𝜀 + 𝐺𝜀 )                   (55) 

 

the control signal of the fractional order sliding mode control is 

obtained in this way. 

3.3. Adaptive Fuzzy Fractional Order Sliding Mode Control 

The design parameter (G) defined in Equation (34) must have an 

optimum value. The inputs of the fuzzy identification algorithm 

are (ε) and (ε̇). The membership value are determined according 

to the Fuzzy sets. Ĝf(k + 1) will be calculated using these 
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membership values based on how much (Gf) needs to increase or 

decrease. At the last stage, Ĝf(k + 1) will be calculated by an 

adaptation law and an adaptive fuzzy fractional order sliding mode 

controller (AFFOSMC), which is the final control approach, will 

be obtained. The parameters of the fuzzy identifier are set using a 

recursive least square (RLS) recursive method. The block diagram 

of the adaptive fuzzy fractional order sliding mode controller is 

given in Fig.2 

 

Figure 2. Structure of Adaptive fuzzy fractional order sliding mode control 

(AFFOSMC) 

The table of rules for the designed fuzzy controller is as in Table 3 

and the membership functions of the inputs are given in Table 4. 
 

Table 3: Fuzzy Logic Rule Table 

ε/ε̇ NB NM NS Z PS PM PB 

NB 7 7 7 6 6 5 4 

NM 7 7 6 6 5 4 3 

NS 7 6 6 5 4 3 2 

Z 6 6 5 4 3 2 2 

PS 6 5 4 3 2 2 1 

PM 5 4 3 2 2 1 1 

PB 4 3 2 2 1 1 1 

 

Note: The numbers in the table indicate the rule numbers. 

 

Table 4: Memberships function for ε and ε̇ 

 
i th  rule that determines the output function of identifier model is; 

 

IF  𝑥(𝑘) = �̃�𝑖 Then  �̂�𝑓𝑖(𝑘 + 1) = 𝑎𝑖𝑥(𝑘) + 𝑏𝑖𝐺𝑓(𝑘)  (56)

  

Where 𝑥(𝑘) is the system output and 𝐺𝑓(𝑘) is the fuzzy design 

parameter. 𝑎𝑖 and 𝑏𝑖 (𝑖 = 1,2,… , 𝑅) are the parameters of the 

results. �̃�𝑖  is  linguistic value, �̂�𝑓𝑖(𝑘 + 1)  identifier model output 

for only rule 𝑖.  By using Center-Average Defuzzification, the 

following descriptive model output is obtained: 

 

�̂�𝑓𝑖(𝑘 + 1) =
∑ �̂�𝑓𝑖(𝑘+1) 
𝑅
𝑖=1 𝜇𝑖

∑ 𝜇𝑖
𝑅
𝑖=1

                   (57) 

 

In order to simplify this expression, the following definition is 

made. 

 

𝜆𝑖 =
𝜇𝑖

∑ 𝜇𝑖
𝑅
𝑖=1

                      (58) 

 
Then general model; 

 

�̂�𝑓(𝑘 + 1) = 𝜎𝑇𝜆                    (59) 

 

where �̂�𝑓(𝑘 + 1) is the identifier model output. σ and λ  are 

defined as,  

 

𝜎 = [𝑎𝑖 …𝑎𝑅  𝑏𝑖 …𝑏𝑅]
𝑇                                (60) 

 

𝜆 = [𝑥(𝑘)𝜆𝑖 …𝑥(𝑘)𝜆𝑅   𝐺𝑓(𝑘)𝜆𝑖 …𝐺𝑓(𝑘)𝜆𝑅]
𝑇
           (61) 

 
The RLS algorithm and update formula are given below. 

 

𝑔(𝑘) = 𝑃(𝑘)𝜆[𝜌𝐼 + 𝜆𝑇𝑃(𝑘)𝜆]−1                  (62) 

 

𝑃(𝑘 + 1) = (1 𝜌⁄ )(𝐼 − 𝑔(𝑘)𝜆𝑇)𝑃(𝑘)                  (63) 

 

𝜎(𝑘 + 1) = 𝜎(𝑘) + 𝑔(𝑘)(𝑥(𝑘 + 1) − 𝜆𝑇𝜎(𝑘))       (64) 

 

If the rule of Equation (56) is rewritten; 

 

IF 𝑥(𝑘) =  �̃�𝑖 Then  𝐺𝑓𝑖(𝑘) = 𝑘1𝑖𝑥𝑟𝑒𝑓(𝑘) − 𝑘2𝑖𝑥(𝑘)  (65) 

 

Where 𝐺𝑓𝑖(𝑘) is the identifier model output for only rule 𝑖.    Our 

controllers that are tuned are given by, 

 

𝐺𝑓(𝑘 + 1) =
∑ 𝐺𝑓𝑖(𝑘+1) 
𝑅
𝑖=1 𝜇𝑖

∑ 𝜇𝑖
𝑅
𝑖=1

                    (66) 

 

where, the certainty of the premise membership function for a rule 

implies the certainty of the membership function because of the 

existence of a single entry.  

 

𝜇𝑖(𝑥(𝑘)) = 𝜇(𝑥(𝑘))                    (67) 

 

For the fuzzy controller a certainty equivalence approach is used. 

If the system operates according to the i.th rule and there is little or 

no influence from the other rules, then 𝑥(𝑘) = 𝑥𝑖(𝑘).  

As a result, the following equation is achieved. 

 

�̂�𝑓𝑖(𝑘) = 𝐺𝑓𝑖(𝑘 + 1) = 𝑎𝑖𝑏𝑖(𝑘) + 𝑏𝑖[𝑘1𝑖𝑥𝑟𝑒𝑓(𝑘) −

𝑘2𝑖𝑥𝑖(𝑘)]                                     (68) 

 

If we choose k1i and k2i for i = 1,2,… , R, then the pole of the 

closed loop system is at 0.1 and the steady state error between 

xref(k) and x(k)becomes zero. If the z-transforms of xi(k) and 

xref(k) are Xi(k) and Xref(k) respectively, 

 
𝑋𝑖(𝑧)

𝑋𝑟𝑒𝑓(𝑧)
=

𝑏𝑖𝑘1𝑖

𝑧+𝑏𝑖𝑘2𝑖−𝑎𝑖
                    (69) 

 

The indirect adaptive scheme to be used for the controller can be 

determined as follows. 

 

𝑘2𝑖 =
𝑎𝑖−0.1

𝑏𝑖
        (70) 
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Here, for each 𝑖 = 1,2, … , 𝑅, the ai and bi estimates determined by 

the identifier are used. In order to make the steady state error zero, 

k must be large and 𝐺𝑓𝑖(𝑘 + 1) = 𝐺𝑓𝑖(𝑘) and  𝑥𝑖(𝑘 + 1) =

𝑥𝑖(𝑘) = 𝑥𝑟𝑒𝑓(𝑘) for (i = 1,2, ..., R). From Equation (68); 

 

k1i =
0.1−ai+bik2i

bi
                                 (71) 

 

Equation (70) and Equation (71) can be used to design a controller 

that includes an indirect adaptive scheme. 𝑎𝑖 and 𝑏𝑖 for each i. will 

be determined by the identifier and 𝑘1𝑖  and 𝑘2𝑖   will be updated for 

each i. 

4. Experimental Result 

In this section, the controllers are compared in terms of the rise 

time, reference tracking and the ability to reduce the error. The 

square and trapezoidal speed references for the speed control of the 

BLDC motor are used and the experimental results are given in 

Figures 3-10.  In the first experimental study, 10 rpm square speed 

reference is chosen for testing FOSMC and AFFOSMC. As shown 

in Fig. 3 and Fig.5, FOSMC has a faster rise time than the 

AFFOSMC at the start of BLDC motor movement.  

 

 

Figure 3. Fractional order sliding mode 10 rpm square ref. 

 

Figure 4. Fractional order sliding mode 1000 rpm square ref. 

 

 

 

However, when the square reference changes to the ±10 Rpm, 

AFFOSMC gives fast rise time and less overshoot.  In addition, the 

AFFOSMC has performed better than the FOSMC in terms of 

reference tracking. 

 

The results  for  square  speed reference  at  1000  rpm  are  given 

in  Fig. 4 and  Fig. 6. The rise time of the AFFOSMC for this 

reference is approximately 0.5 seconds. FOSMC's rise time is 

approximately 1.5 seconds and with having less overshoot. 

 

In the second experimental study, the trapeze speed reference with 

slow changes was chosen and the experimental results are given in 

Figure 7-10. As shown in Fig. 7 and Fig. 9, the AFFOSMC has a 

better rise time than the FOSMC for 10 rpm trapeze speed 

reference and is more successful in tracking the reference. In 

addition, the FOSMC controller has overshoot.  

 

Finally, the results for the 1000 rpm trapeze speed reference are 

given in Fig.8 and Fig.10. Although they have similar performance 

in terms of reference tracking, the AFFOSMC is faster than the 

FOSMC controller in terms of rise time. 

 

 

 

Figure 5. Adaptive fuzzy fractional order sliding mode 10 rpm square ref. 

 

Figure 6. Adaptive fuzzy fractional order sliding mode 1000 rpm square 

ref. 
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Figure 7. Fractional order sliding mode 10 rpm trapeze ref. 

 

 

Figure 8. Fractional order sliding mode 1000 rpm trapeze ref. 

 

5. Conclusions 

In this study, an adaptive fuzzy fractional order sliding mode 

controller was tested for the speed control of the brushless DC 

motor and the experimental results are presented. 

The experimental results show that the AFFOSMC shows  

better   performance  with smaller  speed  error, better  rise  

time and reference tracking when  it  compared  to  the  

responses  of  FOSMC.  
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