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Abstract
Let R be a ring with an endomorphism σ. We introduce the notion of σ-J-rigid rings as
a generalization of σ-rigid rings, and investigate its properties. It is proved that a ring R
is σ-J-rigid if and only if R[[x; σ]] is σ̄-J-rigid, while the σ-J-rigid property is not Morita
invariant. Moreover, we prove that every ring isomorphism preserves J-rigid structure,
and several known results are extended.
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1. Introduction
Throughout this paper, R denotes an associative ring with identity and σ is an en-

domorphism of R. We denote the set of invertible elements of R, the Jacobson radical,
the upper nil radical (i.e., the sum of all nil ideals), the set of all nilpotent elements of
R and the ring of n-by-n matrices over R, by U(R), J(R), niℓ∗(R), niℓ(R) and Mn(R),
respectively. In what follows, Z denotes the ring of integer numbers and for a positive
integer n, Zn is the ring of integers modulo n.

According to Krempa [10], an endomorphism σ of a ring R is said to be rigid if aσ(a) =
0 implies a = 0 for a ∈ R. Later a ring R is called σ-rigid if there exists a σ-rigid
endomorphism of R in Hong et al.’s article [7]. We recall that a ring is said to be reduced
if it has no non-zero nilpotent element. Note that any rigid endomorphism of a ring
is monomorphism and σ-rigid rings are reduced by Hong et al. [7]. In this work, we
introduce and study σ-J-rigid rings as a generalization of rigid rings. A ring R with an
endomorphism σ is called σ-J-rigid if for each a ∈ R, aσ(a) = 0 implies a ∈ J(R). Among
of the results, we show that local rings are σ-J-rigid for an endomorphism σ. We also
study some famous extensions of σ-J-rigid rings. Suppose that the endomorphism σ is
monomorphism. We say that an over-ring A of R is a Jordan extension of R if σ can
be extended to an automorphism of A and A = ∪∞

k=0σk(R). Jordan showed with the
technique of left localization to the Ore extension R[x; σ] with respect to the set of powers
of x, that for any pair (R; σ), such an extension A always exists. In this paper, we prove
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that for a ring R with a monomorphism σ and some additional conditions, σ-J-rigidity
and some related properties transfer from R to A and viceversa.

2. Some properties of J-rigid rings
Definition 2.1. A ring R with an endomorphism σ is called σ-J-rigid if for each a ∈ R,
aσ(a) = 0 implies that a ∈ J(R), and a subring S of R is called σ-J-rigid if S satisfies the
same condition as R and σ(S) ⊆ S.

For J-semisimple rings, the concepts of σ-rigid and σ-J-rigid are equivalent. Also, σ-
rigid rings are σ-J-rigid, but the following example shows that the converse is not true, in
general.

Example 2.2. Let R =
(

F F

0 F

)
, where F is a field and σ : R → R be an endomorphism

defined by σ(
(

a b

0 c

)
) =

(
a 0
0 c

)
. Then it can be seen that R is a σ-J-rigid ring. But, since:( 0 a

0 0

)
σ(

( 0 a

0 0

)
) =

( 0 0
0 0

)
and

( 0 a

0 0

)
̸=

( 0 0
0 0

)
,

then R is not σ-rigid.

Now, let R is a σ-J rigid ring and I a σ-ideal (i.e., σ(I) ⊆ I), then I is also σ-J-rigid.
In fact, for any a ∈ I with aσ(a) = 0, then we have a ∈ I ∩ J(R) = J(I). Using this fact
to R =

∏
i∈I Ri, if R is σ-J rigid, then so is every Ri as an ideal of R. Conversely, if every

Ri is σ-J rigid, then clearly so is R =
∏

i∈I Ri. In particular we have:

Corollary 2.3. Let e be a non-zero central idempotent of a ring R. Then eR and (1−e)R
are σ-J-rigid rings if and only if so is R.

Proposition 2.4. Let σ be an endomorphism of R such that σ(eRe) ⊆ eRe and R be a
σ-J-rigid ring. Then eRe is σ-J-rigid for any e2 = e of R.

Proof. If (ere)σ(ere) = 0, then ere ∈ J(R) by σ-J-rigidity of R. So ere = e(ere)e ∈
eJ(R)e = J(eRe), as desired. �

Although σ-rigid rings are reduced by Hong [7], the above example shows that σ-J-rigid
rings are not necessarily reduced. Also, reduced rings are not necessarily σ-J-rigid, by the
following examples.

Example 2.5. Let S be any ring and R = S × S. Define σ(a, b) = (b, a) for all (a, b) ∈ R,
each S as subring of R is not σ-subring (i.e., σ(S) * S) and so is not σ-J-rigid. So we get
the desired conclusion by taking R be any reduced ring.

Example 2.6. Let R = {(a, b) ∈ Z × Z | a ≡ b (mod 2)} be a ring with additive and
multiplicative pairwise. Then R is a commutative reduced ring. Suppose σ : R → R
is an endomorphism defined by σ((a, b)) = (b, a). We have (2, 0)σ((2, 0)) = (0, 0) and
(2, 0) /∈ J(R), since R is J-semisimple.

For an ideal I of a ring R with an endomorphism σ, if I is a σ-ideal (i.e. σ(I) ⊆ I),
then σ̄ : R/I → R/I defined by σ̄(r + I) = σ(r) + I is an endomorphism of R/I.

Proposition 2.7. Let R be a ring with an endomorphism σ and I be a σ-ideal of R such
that I ⊆ J(R). If R/I is σ̄-J-rigid, then R is σ-J-rigid.

Proof. Suppose rσ(r) = 0. Therefore, r̄σ̄(r̄) = 0̄. Since R/I is σ̄-J-rigid, then r̄ ∈ J(R/I)
and so r ∈ J(R). �

In the following, we state an example of rings which satisfies the condition of Proposition
2.7.
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Example 2.8. Let T (R) be the ring of countably infinite upper triangular matrices over
a σ-J-rigid ring R with σ̄((aij)) = (σ(aij)) for each A = (aij) ∈ T (R) and I be the
ideal of T (R) with all diagonal elements zero. It is easy to see that I ⊆ J(T (R)). Also,
T (R)/I ∼=

∏
i∈N R is σ̄-J-rigid. So T (R) is σ̄-J-rigid, by above proposition.

The converse of Proposition 2.7 is not true with help of the next example.

Example 2.9. Let R denote the localization of Z at 3Z. Consider the ring of quater-
nions Q over the ring R, that is, a free R-module with basis 1, i, j, k. Then Q is a non-
commutative domain and J(Q) = 3Q. So Q is σ-J-rigid for any monomorphism σ of
Q. On the other hand, Q/J(Q) is isomorphic to 2 × 2 full matrix ring over Z3 via an
isomorphism f defined by

f(a0
b0

+ a1
b1

i + a2
b2

j + a3
b3

k + 3Q) =
( a0b−1

0 +a1b−1
1 −a2b−1

2 a1b−1
1 +a2b−1

2 −a3b−1
3

a1b−1
1 +a2b−1

2 +a3b−1
3 a0b−1

0 −a1b−1
1 +a2b−1

2

)
,

where the entries of the matrix are read modulo the ideal < 3 > of Z. Define σ̄ : M2(Z3) →
M2(Z3) such that

σ̄(
(

a b

c d

)
) =

( σ(a) σ(b)

σ(c) σ(d)

)
.

Then M2(Z3) is not σ̄-J-rigid and so is not Q/J(Q).

According to Hang et al. [7], for a ring R with an endomorphism σ, a σ-ideal I is called
σ-rigid if for each a ∈ R, aσ(a) ∈ I implies that a ∈ I.

Proposition 2.10. Let I be a σ-rigid ideal of a σ-J-rigid ring R. Then R/I is σ̄-J-rigid.

Proof. Suppose r̄σ̄(r̄) = 0̄. Therefore, rσ(r) ∈ I. So r ∈ I, since I is σ-rigid ideal and
hence, r̄ ∈ J(R/I). �

Now, we prove that the class of σ-J rigid rings contains local rings as a proper subclass.

Proposition 2.11. Let R be a local ring. Then R is σ-J rigid for any endomorphism σ
of R.

Proof. Let R be a local ring. Then J(R) = m in which m is the only maximal ideal of R.
Suppose that σ̄ is an endomorphism of R/m such that defined by σ̄(r̄) = σ(r) + m. Let
rσ(r) = 0 for r ∈ R. Then r̄σ̄(r̄) = 0̄. Since R/m is division ring, then r ∈ m or σ(r) ∈ m.
If σ(r) ∈ m, then σ(r) and consequently r are not invertible. Hence r ∈ m, as desired. �

The converse of the above proposition is not true by the following example.

Example 2.12. Let F be a field and R =
(

F F

0 F

)
. The only non-zero proper ideals of R

are
(

F F

0 0

)
,

( 0 F

0 0

)
and

( 0 F

0 F

)
. Hence, R is not a local ring, but R is a σ-J- rigid ring by

the Example 2.2.

Proposition 2.13. Let R be a ring with an endomorphism σ, S be a ring and α : R → S
be a ring isomorphism. Then R is σ-J-rigid if and only if S is ασα−1-J-rigid.

Proof. Suppose that R is σ-J-rigid. Let s(ασα−1)(s) = 0 for some s ∈ S. So
α−1(s)σ(α−1(s)) = 0 and thus α−1(s) ∈ J(R), since R is σ-J-rigid. Therefore, s =
α(α−1(s)) ∈ α(J(R)) = J(S). Conversely, suppose S is ασα−1-J-rigid. Let rσ(r) = 0.
Then α(r)α(σ(r)) = 0 and so α(r)α(σ(α−1(α(r))) = 0. Therefore, α(r) ∈ J(S). Thus
r ∈ α−1(J(S)) ⊆ J(R) and we are done. �
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3. Extensions of J-rigid rings
Let R and S be two rings with endomorphisms α and β, respectively and M be an

(R, S)-bimodule. Then

T (R, M, S) = R ⊕ M ⊕ S =
(

R M

0 S

)
=

{(
r m

0 s

)
: r ∈ R, m ∈ M, s ∈ S

}
is a ring by usual addition and the following multiplication:(

r m

0 s

)(
r′ m′

0 s′

)
=

(
rr′ rm′+ms′

0 ss′

)
.

Also,
σ(

(
r m

0 s

)
) =

( α(r) m

0 β(s)

)
.

is an endomorphism of T .

Theorem 3.1. Let R and S be two rings with endomorphisms α and β, respectively and
M be an (R, S)-bimodule. Then T =

(
R M

0 S

)
is σ-J-rigid if and only if R and S are

α-J-rigid and β-J-rigid, respectively.

Proof. Let R and S be α-J-rigid and β-J-rigid, respectively and
(

r m

0 s

)
∈ T with(

r m

0 s

)
σ(

(
r m

0 s

)
) = 0. Then we have rα(r) = 0 and sβ(s) = 0. This implies that r ∈ J(R)

and s ∈ J(S). Therefore,
(

r m

0 s

)
∈

( J(R) M

0 J(S)

)
= J(T ), as desired. Conversely, let

rα(r) = sβ(s) = 0 for some r ∈ R and s ∈ S. Thus
(

r 0
0 s

)
σ(

(
r 0
0 s

)
) = 0 and so(

r 0
0 s

)
∈ J(T ), by σ-J-rigidity of T . Hence, r ∈ J(R) and s ∈ J(S) and the result

follows. �
Corollary 3.2. Let R be a ring with an endomorphism σ. Then

(i) T (R, M) is a σ̄-J-rigid ring if and only if R is σ-J-rigid.
(ii) The trivial extension T (R, R) is σ̄-J-rigid if and only if R is σ-J-rigid.

In Proposition 2.4, we proved that if R is a σ-J-rigid ring, then so is eRe. In the
following, we give an example which shows that σ-J-rigidity of R does not transfer to the
full matrix ring Mn(R) and so J-rigid property is not Morita invariant.

Example 3.3. Let k be a field with monomorphism σ. Then k is σ-J-rigid. Now, let
R = M2(k) and define σ̄ : R → R such that:

σ̄(
(

a b

c d

)
) =

( σ(a) σ(b)

σ(c) σ(d)

)
.

Then ( 0 1
0 0

)
σ̄(

( 0 1
0 0

)
) =

( 0 0
0 0

)
,

( 0 1
0 0

)
/∈ J(R) = 0

and consequently R is not σ̄-J-rigid.

Let F ∪ {0} be the free monoid generated by U = {u1, . . . , ut} with 0 added, and M
be a factor of F by setting certain monomial in U to 0. In fact for some positive integer
n ≥ 2, M ′n = 0, where M ′ = M\{e} and e is the identity of M . In [5] the authors defined
and studied the skew monoid ring R[M ; α], by taking its elements to be finite formal
combinations

∑
g∈M rgg with usual addition and multiplication subject to the relation

uir = α(r)ui for each 1 ≤ i ≤ t. Clearly for any endomorphism σ of R, if ασ = σα,
then σ̄ : R[M ; α] → R[M ; α] with σ̄(

∑
g∈M rgg) =

∑
g∈M σ(rg)g is an endomorphism of

R[M ; α].

Theorem 3.4. The ring R is σ-J-rigid if and only if R[M ; α] is σ̄-J-rigid.
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Proof. Let R be σ-J-rigid and (
∑

g∈M rgg)σ̄(
∑

g∈M rgg) = 0. Then reσ(re) = 0 and so
re ∈ J(R), by σ-J-rigidity of R. Thus (

∑
g∈M rgg) ∈ J(R[M ; α]), by [5, Theorem 2.9].

Conversely, let R[M ; α] be σ̄-J-rigid and for r ∈ R we have rσ(r) = 0. So (re)(σ(r)e) = 0.
Therefore (re)σ̄(re) = 0 and so re ∈ J(R[M ; α]). Then r ∈ J(R), by [5, Theorem 2.9] and
the proof is complete. �

Let R be a ring and α denotes an endomorphism of R with α(1) = 1. In [2] Chen
et al. introduced skew triangular matrix ring as a set of all triangular matrices with
addition point-wise and a new multiplication subject to the condition Eijr = αj−i(r)Eij

and denoted it by Tn(R, α). The subring of the skew triangular matrices with con-
stant main diagonal is denoted by S(R, n, α); and the subring of the skew triangular
matrices with constant diagonals is denoted by T (R, n, α). It is well-known that
T (R, n, α) ∼= R[x; α]/(xn), where R[x; α] is the skew polynomial ring with multiplication
subject to the condition xr = α(r)x for each r ∈ R, and (xn) is the ideal generated
by xn. The rings S(R, n, α) and T (R, n, α) fit into the structure introduced above with
U = {E12, E23, . . . , En−1,n} and U = {E12 + E23 + · · · + En−1,n}, respectively.

We consider the following two subrings of S(R, n, α), as follow (see [6, Page 13]).

A(R, n, α) =
⌊ n

2 ⌋∑
j=1

n−j+1∑
i=1

ajEi,i+j−1 +
n∑

j=⌊ n
2 ⌋+1

n−j+1∑
i=1

ai,i+j−1Ei,i+j−1;

B(R, n, α) = {A + rE1k | A ∈ A(R, n, α) and r ∈ R} n = 2k ≥ 4.

In [12] showed that A(R, n, α) and B(R, n, α) are also fit into the structure R[M ; α]. If
σ is an endomorphism of R such that ασ = σα, then σ̄ : S(R, n, α) → S(R, n, α), given
by σ̄((aij)) = (σ(aij)) is an endomorphism of S(R, n, σ). Now, as a corollary of Theorem
3.4, we have the following result.

Corollary 3.5. Let R be a ring with endomorphisms α and σ such that ασ = σα. Then
the following statements are equivalent.

(i) R is σ-J-rigid.
(ii) S(R, n, α) is σ̄-J-rigid.
(iii) A(R, n, α) is σ̄-J-rigid.
(iv) B(R, n, α) is σ̄-J-rigid.
(v) T (R, n, α) is σ̄-J-rigid.
(vi) R[x; α]/(xn) is σ̄-J-rigid.

Let R be a ring with endomorphism α and σ such that ασ = σα. Recall that σ̄ :
R[[x; α]] → R[[x; α]] given by σ̄(

∑∞
i=0 aix

i) =
∑∞

i=0 σ(ai)xi is an endomorphism.

Proposition 3.6. R is a σ-J-rigid ring if and only if R[[x; α]] is a σ̄-J-rigid ring.

Proof. First, suppose that R is σ-J-rigid and f(x)σ̄(f(x)) = 0, where f(x) =
∑∞

i=0 aix
i.

Therefore a0σ(a0) = 0 and hence a0 ∈ J(R). Next, let g(x) =
∑∞

i=0 bix
i be an arbitrary

element of R[[x; α]]. Thus 1 − a0b0 is invertible and so 1 − f(x)g(x) is an invertible series
of R[[x; α]]. So f(x) ∈ J(R[[x; α]]). The converse is proved by the similar method. �

Corollary 3.7. A ring R is σ-J-rigid if and only if R[[x]] is σ̄-J-rigid.

Let R be a ring with endomorphism σ. A subring S of R is called σ-subring if σ(S) ⊆ S.
In the following we give two examples which show that σ-subrings of a σ-J-rigid ring need
not be σ-J-rigid.
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Example 3.8. Let F be a field. We note that F [x] is a subring of F [[x]]. Define an
endomorphism σ : F [[x]] → F [[x]] by σ(f(x)) = f(0) for f(x) ∈ F [[x]]. We consider
f(x) = ax for a ̸= 0. We have f(x)σ(f(x)) = 0, but f(x) ̸∈ J(F [x]). Then F [x] is not σ-J-
rigid. Now we show that F [[x]] is σ-J-rigid. Let f(x)σ(f(x)) = 0 where f(x) =

∑∞
i=0 aix

i.
Then aia0 = 0 for i ≥ 0. It is clear that 1 − f(x)g(x) is an invertible series of F [[x]] for
each g(x) ∈ F [[x]]. So f(x) ∈ J(F [[x]]) and we are done.

Example 3.9. For any countable field K, there exists a nil algebra S over K such that
S[x] is Jacobson radical (i.e. J(S[x]) = S[x]) but niℓ∗(S[x]) = 0 by [3, Lemma 2.5].
Let R = K + S. Then R is a local ring, and so are R[[x]] and R[[x]][[y]]. This means
that R[[x]][[y]] is σ-J-rigid for any endomorphism σ. We claim that subring R[x][y] of
R[[x]][[y]] is not σ-J-rigid. In fact, J(R[x][y]) ⊆ niℓ∗(R[x])[y] = niℓ∗(S[x])[y] = 0 holds
by [3, Lemma 2.4]. Indeed, this result is duo to Amitsur [1]. If R[x][y] is σ-J-rigid, then
it is σ-rigid, and so is reduced. This is an obvious contradiction.

Recall that an algebra over a commutative ring S is just a ring R equipped with a
specified ring homomorphism ϕ from S to the center of R. Then ϕ is used to define
products of elements of S with elements of R. In fact for s ∈ S and r ∈ R, we set sr equal
to ϕ(s)r. Using this product, we can view R as an S-module.

Dorroh [4] introduced the Dorroh extension of R by S in which R is an algebra over a
non-zero commutative ring S. In fact D = R × S is the ring with operators

(r1, s1) + (r2, s2) = (r1 + r2, s1 + s2) , (r1, s1)(r2, s2) = (r1r2 + s1r2 + s2r1, s1s2),
where ri ∈ R, si ∈ S.

For an S-endomorphism σ of R and the Dorroh extension D of R by S, the non-zero
map σ̄ : D → D defined by σ̄((r, s)) = (σ(r), s) is an S-algebra homomorphism.

Theorem 3.10. Let D = R × S be the Dorroh extension of R by S such that S is a
reduced ring. Then R is σ-J-rigid if and only if D is σ̄-J-rigid.

Proof. Let R be σ-J-rigid and (r, s)σ̄((r, s)) = 0. Then s2 = rσ(r) + sr + sσ(r) =
0. Thus, s = 0 and consequently rσ(r) = 0. Therefore, r ∈ J(R). We claim that
(r, s) = (r, 0) ∈ J(D). Proving this, we need to show that if r1 ∈ R and s ∈ S, then
(0, 1) − (r, 0)(r1, s) = (−rr1 − sr, 1) ∈ U(D); equivalently, we need to prove that there
exists r2 ∈ R such that (−rr1 −sr, 1)(r2, 1) = (0, 1). Since r ∈ J(R), then (1−rr1) ∈ U(R)
and (−sr) ∈ J(R). Therefore, (1 − rr1 − sr) ∈ U(R). Put r2 = (1 − rr1 − sr)−1 − 1.
So (1 − rr1 − sr)(1 + r2) = 1 and consequently −rr1r2 − srr2 − rr1 − sr + r2 = 0. This
implies that (−rr1 − sr, 1)(r2, 1) = (0, 1) and the claim is proved. Hence D is ᾱ-J-rigid.
Conversely, let D be σ̄-J-rigid and r ∈ R with rσ(r) = 0. Then (r, 0)(σ(r), 0) = 0 and so
(r, 0)σ̄((r, 0)) = 0. Since D is σ̄-J-rigid, then we have (r, 0) ∈ J(D). Now, we claim that
r ∈ J(R). Let r1 be an arbitrary element of R. Thus there exist r2 ∈ R and s ∈ S such
that ((0, 1)− (r, 0)(r1, 0))(r2, s) = (0, 1). Therefore s = 1 and hence −rr1r2 − rr1 + r2 = 0.
So (1 − rr1)r2 = rr1 and consequently (1 − rr1)(1 + r2) = 1. Thus (1 − rr1) ∈ U(R) and
hence r ∈ J(R). This implies R is σ-J-rigid and the proof is complete. �

Now, we consider Jordan’s construction of the ring A(R, σ). Let A = A(R, σ) be the
subset

{x−irxi | r ∈ R, i ≥ 0}
of the skew Laurent polynomial ring R[x, x−1; σ]. For each j ≥ 0,

x−irxi = x−(i+j)σj(r)x(i+j).

It follows that the set of all such elements forms a subring of R[x, x−1; α] with

x−irxi + x−jsxj = x−(i+j)(σj(r) + σi(s))x(i+j)
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and
(x−irxi)(x−jsxj) = x−(i+j)(σj(r)σi(s))x(i+j)

for r, s ∈ R and i, j ≥ 0. Note that, σ(x−irxi) = x−iσ(r)xi is actually an automorphism
of A(R, σ).

Lemma 3.11. Let σ be an endomorphism of R with σk = idR for some k > 2. Then
J(R) = J(A) ∩ R.

Proof. Let r ∈ J(R). We show that 1 − rb ∈ U(A) for each b ∈ A. Let b = x−isxi. So,
1 − rb = x−i(1 − σi(r)s)xi. Since σk = idR for some k > 2 then σ is an epimorphism of
R. Therefore, σ(J(R)) ⊆ J(R). So 1 − σi(r)s ∈ U(R). Therefore, by [9, Proposition 3.1]
1 − rb ∈ U(A), as desired. Now, let a ∈ J(A) ∩ R. We show that 1 − ab ∈ U(R) for all
b ∈ R. Since R ⊆ A and a ∈ J(A), we have 1 − ab ∈ U(A). So there exists n ≥ 0 such
that σn(1 − ab) ∈ U(R), by [9, Proposition 3.1]. Since σk = idR for some k > 2, then
(1 − ab) ∈ U(R) and the result follows. �

Now, we state an example of rings which satisfies the condition of the above lemma.

Example 3.12. Let R be a ring and n be a positive integer number. Suppose that S =
⊕n

i=1Ri, where Ri = R for each 1 ≤ i ≤ n. Define σ : S → S, given by σ(a1, a2, . . . , an) =
(an, a1, a2, . . . , an−1). Then σ is a monomorphism and σn = idS .

Note that R is idR-J-rigid if and only if a2 = 0 implies that a ∈ J(R) for each a ∈ R.
According to [3] a ring R is called J-reduced if niℓ(R) ⊆ J(R). Clearly, J-reduced rings
are idR-J-rigid.

Theorem 3.13. Let σ be an endomorphism of R and with σk = idR for some k > 2.
Then R is an id-J-rigid ring if and only if so is A.

Proof. Let R be an idR-J-rigid ring and p2 = 0 for p ∈ A. We have (x−irxi)2 =
x−2iσi(r2)x2i = 0 for some i ≥ 0 and r ∈ R (as designed in [9]). Since σ is monomorphism,
then r2 = 0. Hence r ∈ J(R). Since σj(r) ∈ J(R) for each j ≥ 0, hence (1 − σj(r)σi(s)) ∈
U(R) for each s ∈ R. Therefore x−(i+j)(1 − σj(r)σi(s))x(i+j) ∈ U(R) for each j ≥ 0 and
s ∈ R, as desired. Conversely, let A be identity-J-reduced and r2 = 0 for r ∈ R. So
r ∈ J(A). By Lemma 3.11, r ∈ J(R). The proof is complete. �
Theorem 3.14. Let σ be an endomorphism of R with σk = idR for some k > 2. Then R
is a σ-J-rigid ring if and only if so is A.

Proof. Suppose R is σ-J-rigid and pσ(p) = 0 for p ∈ A. We claim that p ∈ J(A). For, we
prove 1−pq ∈ U(A) for each q ∈ A. Let p = x−irxi and q = x−jsxj such that r, s ∈ R. We
have 1 − pq = x−(i+j)(1 − σj(r)σi(s))xi+j . From (x−irxi)σ(x−irxi) = 0 and by extension
σ to a mapping from A (as designed in [9]), x−irσ(r)xi = 0. Hence, rσ(r) = 0. Therefore,
r ∈ J(R). Since J(R) is σ-ideal, hence σi(r) ∈ J(R). Thus (1 − σj(r)σi(s)) ∈ U(R). So,
by [9, Proposition 3.1], we have 1 − pq ∈ U(A), as desired. Conversely, by Lemma 3.11 is
trivial. �

According to [13], a ring R is said to be σ-J-skew Armendariz if whenever f(x)g(x) = 0,
where f(x) =

∑m
i=0 aix

i and g(x) =
∑n

j=0 bjxj in R[x; σ], then aiα
i(bj) ∈ J(R), for each i

and j.

Theorem 3.15. Let σ be an endomorphism of R with σk = idR for some k > 2. Then R
is σ-J-skew Armendariz if and only if so is A.

Proof. Let R be a σ-J-skew Armendariz ring. Suppose f =
∑m

i=0 aix
i and g =

∑n
i=0 bjxj

are elements of A[x; σ] with fg = 0. We prove that aiσ
i(bj) ∈ J(A) for each 0 ≤ i ≤

m and 0 ≤ j ≤ n. So, we show that 1 − aiσ
i(bj)u ∈ U(A) for each u ∈ A. Since

A = ∪∞
k=0σ−k(R), hence σk(1 − aiσ

i(bj)u) ∈ R for some k ≥ 0. From fg = 0, we have
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σk(f)σk(g) = 0R[x;σ]. Therefore, σk(ai)σi+k(bj) ∈ J(R) for each 0 ≤ i ≤ m and 0 ≤ j ≤ n.
So 1 − σk(ai)σi+k(bj)r ∈ U(R) for all r ∈ R. Specially, 1 − σk(ai)σi+k(bj)σk(u) ∈ U(R).
So, there exists w ∈ R such that (1 − σk(ai)σi+k(bj)σk(u))w = 1. By construction of A,
there exists c ∈ A such that σk(c) = w. Therefore, σk((1−aiσ

i(bj)u)c) = 1 = σk(1). Thus
1 − aiσ

i(bj)u ∈ U(A), as desired. Conversely, by Lemma 3.11 is trivial. �
Next, we show that every σ-J-skew Armendariz is not σ-J-rigid, by the following example.

Example 3.16. Consider R = Z2[x], a commutative polynomial ring over the ring of
integers modulo 2. Let σ : R → R be an endomorphism defined by σ(f(x)) = f(0). We
show that R is σ-J-skew Armendariz. To see this, let p =

∑m
i=0 fiy

i and q =
∑n

j=0 gjyj ∈
R[y; σ]. Assume that pq = 0. Therefore,

∑m+n
l=0

∑
i+j=l fiσ

i(gj)xl = 0. Suppose that
fs ̸= 0 and f0 = · · · = fs−1 = 0, where 0 ≤ s ≤ m. So

∑s
i=0 fiσ

i(gs−i) = 0, implies that
fsσs(g0) = 0 and consequently fsg0(0) = 0. Thus, g0(0) = 0. Also, by considering the
equation

∑s+1
i=0 fiσ

i(gs+1−i) = 0, we obtain fsσs(g1)+fs+1σs+1(g0) = 0 and so fsg1(0) = 0.
This implies that g1(0) = 0. Continuing this process, we have

g0(0) = g1(0) = · · · = gn(0) = 0.

Thus, fiσ
i(gj) = 0 for each 0 ≤ i ≤ m and 0 ≤ j ≤ n. Therefore R is σ-J-skew

Armendariz. But R is not σ-J-rigid, because xσ(x) = 0, but x /∈ J(R).

The next example shows that there exists an id-J-rigid ring R such that R[x; id] is not
id-J-rigid.

Example 3.17. Let R be the ring as in Example 3.9. Clearly, R is a local ring with
J(R) = S, where S is nil algebra. So R is an idR-J-rigid ring. If R[x] is idR-J-rigid, then
we are done. Otherwise, we choose the ring R[x][y]. Since J(R[x][y]) = I[y] for some nil
ideal of R[x] and niℓ∗(R[x]) = niℓ∗(S[x]) and we have niℓ∗(S[x]) = 0 by [3, Lemma 2.5].
So J(R[x][y]) = 0. This implies that R[x][y] is not an idR-J-rigid ring. Assume on the
contrary, since J(R[x][y]) = 0 then it is an idR-rigid ring. So it is reduced by Hong et al.
[7], an obvious contradiction.

Matczuk investigated a characterization of σ-rigid rings in [11] and by using the
over-ring A, gave positive answer to the question posed in Hong et al. [8]. That is, he
proved that the following conditions are equivalent:
(1) σ is monomorphism, R is reduced and σ-skew Armendariz.
(2) R is σ-rigid.
(3) R[x; σ] is reduced.

We finish this article by a question on σ-J-rigid rings. Under which conditions or
properties, can we say σ-J-rigid rings and σ-J-skew Armendariz rings are equivalent?
Are the following conditions equivalent?
(1) σ is monomorphism, R is id-J-rigid and σ-J-skew Armendariz.
(2) R is σ-J-rigid.
(3) R[x; σ] is id-J-rigid.
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