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Abstract

In this paper we examine subclasses of the class of starlike functions defined by the set
of zeros of Schwarz functions. Distortion and the growth theorems are shown. Bounds of
the classical coefficient functionals are also computed.
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1. Introduction

Let H be the class of all analytic functions in the unit disk D := {z € C : |z| < 1}
and A its subclass of all standardly normalized functions f by f(0) := 0 and f/(0) := 1.
Subclasses of H, particularly subclasses of univalent functions in A, are the basic subject
to study in the geometric function theory. Many of subfamilies of A have an analytical
description expressed in term of Carathéodory class of functions, i.e., the family P of
functions p € H normalized by p(0) := 1 having a positive real part. Based on famous
Riesz Theorem on the factorization of functions in the Hardy classes, so in particular, of
Schwarz functions, i.e., of analytic self mappings of D with a fixed point at the origin,
forming the class denoted here by Bg, we can distinguish subclasses of Bg related to the
Blaschke product. Since there is a one-to-one relationship between the class P and the
class By, the factorization of the class By can be transferred to the class P, so in the next
step to the subclasses of A which are related to class P. Such is the class 8* introduced
by Alexander [1], whose elements are all starlike functions, i.e., f € A belongs to 8 if
it univalently maps D onto a domain f(D) starlike with respect to the origin. It means
that [0,w] C f(D) for each w € f(D). Therefore the distribution of zero sets of Schwarz
functions plays a fundamental role for related subfamilies in 8*.

In this paper we study the basic properties of subclasses in 8* defined by the mentioned
method. We prove growth and distortion theorems (Theorems 3.3 and 3.4). In the last
section we show that the estimates of some coefficient functionals over such defined sub-
classes of 8* can be expressed in term of a given set of of zeros and that the new results
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are more detailed than the classical. In this matter, our computing is restricted to the
case when the Blaschke product is reduced to one factor. In other words, Schwarz func-
tions defining an appropriate subclasses of 8* are considered with one distinguished zero
different from the origin.

Given m € N, let A, of be the subset of H of all f of the form

fz)=z+ Z ap12"t, zeD. (1.1)

k=m
Let 8 be the class of all univalent functions in A. Given m € N, let
8, =8 NAn.

Given r € (0,1), let T, := {z € C: |2|] = r} and let T := Ty. Let B be the class of all
w € K such that |w(z)| < 1 for z € D, and B° be its subclass of non-vanishing functions
in D.

Let D? := D\ {0}. Given k € N, let Ay := (D). Let Ag := {0}! and A, = (D°)>. Let

keNU{0,00}
Given a € D, let
Z—«
=— e D,
#al2) 1—-az ®

denote the Blaschke factor. A sequence of points A = (ax) € A is said to satisfy the

Blaschke condition if
[oe)

> (1= Ja]) < o0,
k=1
which guaranties convergence of the product

By(z) == H _|ak|cpak(z), z € D.
keN Ok
A function B(z) := 2™Bj(z), z € D, with m € NU {0}, is called the Blaschke product.
When A(N) =0, set By(z) :=1, z € D, and then
Bp(z) =2", z € D.

2. Definition of the class §*(m, A)

For f € 3 let Z(f) denote the set of all zeros of f in D? counting with their multiplicities.
Clearly, Z(f) € A. It is known, that the sequence Z(w) of each bounded analytic function
w, so in particular, of each Schwarz function, satisfies the Blaschke condition. By Riesz
Theorem (e.g., [5, p. 283], [2, p. 20]) each w € B( has a unique canonical factorization

w(z) - szZ(w)SD(Z)v z €D,

where m € N and ¢ € BY. Thus B(z) = 2™ By(,)(z) for z € D, is the Blaschke product
with the same zeros as the function w. Vice versa, each function

w(z) == 2"Ba(2)p(z), zeD, (2.1)

with m € N, A € A satisfying the Blaschke condition and ¢ € B°, is a Schwarz function.
This is a starting point for further considerations.

Definition 2.1. Let m € N and let A € A satisfy the Blaschke condition. By B(m, A) we
denote the class of functions of the form (2.1), where ¢ € B.

Let B(m, A) be the class of functions of the form (2.1), where ¢ € BP.

When By = 1, i.e., when A(N) = ), we will write B(m) and B°(m) instead of B(m, A)
and B°(m, A), respectively.
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Definition 2.2. Let m € N and let A € A satisfy the Blaschke condition. By P(m, A) we
denote the class of functions of the form

14 w(z)

= —" D 2.2
pe) = oo, €D (22

where w € B(m, A), i.e., of the form
_ 142" Ba(2)e(z) zeD, p € B. (2.3)

P = T Bae) ()’

Let P°(m, A) be the class of functions of the form (2.2), where w € B%(m, A).

When By = 1, we will write P(m) and P°(m) instead of P(m, A) and P°(m, A), respec-
tively.

The classes P(m, A) were introduced in [8], where their basic properties have been
proved also.

By using the classes P(m, A) we now define the corresponding classes of starlike func-
tions. Let us recall that f € 8* if and only if

2f'(z) = f(2)p(2), =z €D, (2.4)
for some p € P (see [10], [3, p. 41]).

Definition 2.3. Let m € N and let A € A satisfy the Blaschke condition. By 8*(m, A)

we denote the class of functions f € A satisfying (2.4), where p € P(m, A), i.e., such that

1+ 2"By(2)e(2)

z ! zZ) = z )

f(=z) = f( )1—szA(z)<p(z)

Let §%%(m, A) be the class of the functions satisfying (2.4), where p € P%(m, A).
When A(N) = (), for short we will write 8*(m).

zeD, peB. (2.5)

It is clear that 8*(m, A) C 8%,.

Theorem 2.4. Let m € N and let A € A satisfy the Blaschke condition. A function f is
in 8*(m, A) if and only if

z m—1
f(z) = zexp <2/0 <" Ba(Q(<) dC), zeD, (2.6)

1 —(mBa(¢)e(C)
where ¢ € B.

Proof. By (2.5) we have

FE) 1 _pGE) -1 22" IBaz)e(x)

f(z) = z 1 —2mBy(2)p(z)’

Henee (2) "Ba(Q)¢ (<)
J(z) o [ " Ba(Q)e(C _
log - =2 1_<mBA(<)(P(C)d<7 z€eD, logl:=0,

which yields (2.6).
Conversely, since every f of the form (2.6) satisfies the condition (2.5), so it belongs to
8*(m, A). O

3. Growth and distortion theorems
Given r € (0,1) and f € H, let
M, (f) := max | £(2)].

ZET’V‘
Particularly, let M, (A) := M,(B,).
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Lemma 3.1. Let m € N and let A € A satisfy the Blaschke condition. If p € P(m, A),
then for z € T,, r € (0,1),

1+ 7™M, (A)
< 7 .
) < T (3.1)
and
1— ™M,
> .
Rep(2) = T0—mr (32)

Proof. Since p € P(m, A) is the form (2.3) with |p(2)] < 1, z € D, from (2.3) we have

|p(z)| 1= szA(Z)SD(Z)
1+[2mBa(2)p(2)| _ 14 r"M.(A)
L |2 BaG)o(z)] = 1— bty (4) €

> 1 Bl
2= T4 [ Ba(z)e ()|

)

1 — 7™M, (A)
> Y
14 rmM,(A)

which confirms the inequality (3.2) O

Directly from the above lemma we have the following theorem.

Theorem 3.2. Let m € N and let A € A satisfy the Blaschke condition. If f € 8*(m, A),
then for z € T,, r € (0,1),

2f'(2)
f(z)

1+ 7™M, (A)
—1—rmM.(A)’

and
z2f'(z) _ 1 —=r"M,(A)
Re =y = 10, ()

. (3.3)

The growth theorem for the class 8*(m, A) is as follows.

Theorem 3.3. Let m € N and let A € A satisfy the Blaschke condition. If f € 8*(m, A),
then for z € T,, r € (0,1),

r gm—1
|f(2)] < rexp <2 i mdt>, (3.4)

and

r 4m—1
£(2)] = resp (—z 0 M&). 35)
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Proof. From (2.6) with z := rel’ 6 € R, we have

2 (" BA()e(C)
exéﬂl—mﬂmmm“)
r tmfleimgBA(teig)(p(teig) "

/0 1— tmeimGBA (teiB)SO(teiQ)

p
£ Bate!?)[|p(te?))|
< dt
Iexp < / ‘1 tmelmQBA( 619)90( el@)|

r 2t ML (A)
2 - N7
/0 T4

[f(2)] =|2]

which shows the inequality (3.4).
Let ¢ := te?, t € (0,7]. Using (3.3) we have
0
t— log

i0 6
o f(te?) t;r{{mg<ﬁ§)>}

tei@
(O L 1 ()
‘m{f@> %21+WMwn
-2,
14t M,

Hence

f(C)’ > _9 " tm_lMt(A)
- 0 1+tht(/1)

log dt,

which yields

r tmflMt(A)
|F(O)] > |¢] exp (—2 ; Htht(A)dt> .

Particularly, it holds for ¢ := z which shows the inequality (3.5). O
The distortion theorem for the class 8*(m, A) is the following.

Theorem 3.4. Let m € N and let A € A satisfy the Blaschke condition. If f € 8*(m, A),
then for z € T,, r € (0,1),

|f'(2)] < i::m exp (2 /Or mdt> (3.6)
and X
7(2)] > mexp (-2/0’" %dt) (3.7)
Proof. Since
7 =), en
both inequalities below (3.6) and (3.7) follow from (3.1) with (3.4), and from (3.2) with
(3.5), respectively. O

Below we present some statements which are particular cases of Theorems 3.3 and 3.4.

Theorem 3.5. Let m € N. If f € 8*(m), then for z € T,, r € (0,1),

1f(z)] < ——

_ (3.8)
(L—rmym
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and .
f(2)] > ——
(14 rm)m
Both inequalities are sharp with the extremal functions
flz) = %, z €D,
(1 2m)%
and ;
f(z)=——=, z€D,
(1+2m)%

for (3.8) and (3.9), respectively/

35

(3.10)

(3.11)

Proof. From (3.4) and (3.5) with My(A) = 1 for t € [0,7], for z € T,, r € (0,1), we

respectively have

r m—1
|f(2)| < rexp (2/0 1t_ tmdt)

2
=rexp (— log(1 — rm)> = %
m (1= rm)
i.e., the inequality (3.8), and
T M,
> -2 | ————dt
1= e (-2 [ )
2
—rexp (— o log(1 ™)) = T
m (14 7rm)m

i.e., the inequality (3.9).

Equalities in (3.8) and (3.9) hold, respectively, for the functions (3.10) and (3.11) at

Zi=T.
Theorem 3.6. Let m € N. If f € 8*(m), then for z € T,, r € (0,1),
14r™m
G ——
(1 —pm)m Tt
and L
—r
FE2
(I4rm)m

O

(3.12)

(3.13)

Both inequalities are sharp with the extremal functions (3.10) and (3.11), respectively for

(3.12) and (3.13).

Proof. From (3.6) and (3.7) with My(A) = 1 for t € [0,r], for z € T,, r € (0,1), we

respectively have

1+rm rogm—l
/
<
u<@1_1_ﬂm¢mp<zé 1_ﬁnw>
1 m 2 1 m
= Tm exp <—10g(1 - Tm)) = Lﬂm
1—7r m (1 —rm)=m

i.e., the inequality (3.12), a

, 1—rm Ttml
TICIE ( 01+wﬂt

1—7’ ))_ l_rm
m (1 +rm) 5

= 1_'_rmexp

[\D
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i.e., the inequality (3.13).
Sharpness of (3.12) and (3.13) is clear. O

When A = («), where a € DY, then

t+ o
M,(A) =
1(4) 1+ |aft’

te(0,1).

Then Theorems 3.3 and 3.4 reduce respectively to
Theorem 3.7. Let m € N and a € DU. If f € 8*(m;(a)), then for z € T,, r € (0,1),

r "t + |al)
1f(2)] < rexp (2/0 D T 1dt> (3.14)

and

r m—1 a
|f(2)] > rexp (—2/0 tm(t (t + |o]) dt). (3.15)

t+ o))+ ot +1

Theorem 3.8. Let m € N and o € D°. If f € 8*(m; (), then for z € Ty, r € (0,1),
m 1 r m—1
<t (r+ |a]) + |ar + b (2/ tmt (t+ |a)) dt) (3.16)
0 —

—rm(r +lal) + lafr +1 (t +lal) + laft +1

and
" 1 r t'mfl t
r(r+laf) +lajr +1 o t"(t+lal) +aft +1
In particular, when m = 1 we have the following results.
Theorem 3.9. Let a € D°. If f € 8*(1, (), then for z € T, r € (0,1),
r
< .
|f(2)‘ —_ (1 o ’I“)l—HO"(l + 7‘)1_|O‘| (3 18)
and
r
> 3.19
)= 1+ 2|alr + r? (3.19)

Proof. From (3.14) and (3.15) for z € T,, r € (0,1), we respectively have
1 T lalt 41
<= -2 | ————dt
1)< pesn (<2 [ o ar)
1
= _exp (2logr — (1 + |a])log(1 — r) + (|oof — 1) log(1 + 7))
(14 7)ot
(1 N T,)|oz\+1

i.e., the inequality (3.18), and
1 T at+1
— 2 dt
rexp( /o (2 + 2lalt + 1) )

1
= —exp (2 log  — log(r? + 2|a|r + 1))
r
”
(1 _ 7n)14r|01|(1 + ,r.)lf\od )
i.e., the inequality (3.19). O

v

£ (2)]
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Theorem 3.10. Let a € DU. If f € 8*(1,(a)), then for z € T,., v € (0,1),
1+ 2|alr + r?

/
< .
‘f <Z)| — (1 _ T)2+|a|(1 _|_ 7“)27|a‘ (3 20)
and )
1—r
"(2)] > ) 3.21
&2 a1 (3.21)
Proof. From (3.16) and (3.17) for z € T,, r € (0,1), we respectively have
2
, e+ 2]alr +1 ( /7“ lajt +1 )
< -2 ——dt
PRI =an (2, te =
r2 +2alr +1
= 742(1’_’712exp 2lnr —(1+|a))In(1 —7r) 4+ (o] = 1) In(1 + 7))
B 1+ 2|alr + 12
(1= r)2Hal(1 4 r)2-lal
i.e., the inequality (3.20), and
1—r? r laft +1
"(2)| > 2/ dt)
FEN 2 ar e 1) &P ( o tE™ T+ Jaftm + Jaft + 1)
1— 72
= 207 2ol 1 1) exp (2 In7 — In(r? + 2|alr + 1))
_ 1—1r?
(1 +2lalr +1r2)2°
i.e., the inequality (3.21). O

4. Coefficients functionals

In this section we discuss some basic coefficients problems for the class 8*(m, («)), where
m € Nand a € D%, Let f € 8*(m, (a)). Then

2f'(2) (1 = 2"(2)pa(2)) = f(2) (L +27¢(2)pa(2)), 2 €D, (4.1)

for some ¢ € B, i.e., equivalently
2f'(2) (1 —az — 2™p(2)(z — @) = f(2) (1 —az+ 2"p(2)(z — a)), =z €D.

Substituting into the above equation the series (1.1) and the series

o0
p(z) = Z bp2", zeD, (4.2)
n=0
by comparing the corresponding coefficients we get
Mamt1 = —2abg. (4.3)
and when m > 1,
(M + 1)ami2 = —2ab; + 2(1 — |al*)bo. (4.4)

Moreover, when m = 1, then for n > 2,
(n—1)a, + [naby — (n — 2)@] ap—1 + (n — 1)(aby — bp)an—2
+ (n —2)(ab2 — by)an—3 + -+ + 4(aby—g — by_5)as + 3(aby—3 — by_4)as
= —2aby,—9 + 2b,,_3.
Thus particularly,
az = —aby + 3a%b3 + (1 - |a|2> bo, (4.5)
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and
2 2 2
ay = — gOébQ + g(l —|al)b1 + gaa — laf*)bo
5 " (4.6)
+ §a2b0b1 — 40{31)3 - ga(l - |a|2)b(2J'

Since |bg| = |¢(0)| <1 (e.g., [4, Vol. I, pp. 84-85]), from (4.3) we get
Theorem 4.1. Let m € N and o € D°. If f € 8*(m, () is of the form (1.1), then

2
ol < Zlal. 47
amii] < 2ol (4.7
The result is sharp. The equality in (4.7) holds for the function f given by (4.1) with
0 =—e % where § := Arga € [0,27).
Given m € N and A € R, consider the functional
D (f) = lamsz — Aat |

over the class 8" of functions f of the form (1.1). Particularly, the functional ®) := ®;
plays a fundamental role in many extremal coefficients problem. Keogh and Merkes [6,
Theorem 1] proved that for the whole class 8* the following result holds:

3—4\, A€ (—00,1/2]U[l,+00)
—\ 2 < ’ ) ) ) 9 4.
‘“3 “2’ —{ 1, Ae1/2,1]. (4.8)

We compute first the upper bound of @) in the class 8*(1, («)). It should be expected
that the result is more detailed then the estimates in (4.8) and so is.

Theorem 4.2. Let o € D° and f € 8*(1, () be of the form (1.1). If |a| € (0,+/2 — 1],

then
jas = Aa3| < [a? (3-4A - 1) +1, A€R. (4.9)
If o] € (V2 —1,1), then
‘ag — )\a%’ (4.10)
5o —2 1 7laf* +2]al — 1
a2 (]34 — 1) + 1, A< Bl =2lof 41,y TlalP+2laf =1
< 2 3 %‘04 2 81al
=] (o +1)* =43 = 4)\| || 5lal* —2|al+1 T|al*+2|a] -1
Alaf (1 —af[3—4A) ~ 8alf’ ’ 8 |af®
Particulary, for|a| € (0,1),
las| < 2]al® + 1, (4.11)
1
az — §a§ <1, (4.12)
3 9 1—|204|2, ’06’6(0,\/5—1],
_ 22 < 1)2 4.13
4o
and
jag — a3| < 1. (4.14)

The result is sharp. Let a := |ale’, 0 € [0,27). Equality in (4.9) and in the first
inequality in (4.10) holds for the function f given by (4.1) with ¢ = +e~2%. Equality in
the second inequality in (4.10) holds for the function f given by (4.1) with
-6, _

(2) = +e 20 S

L 2T e, 4.15
1 —e 022 : (4.15)
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where o2
1—-|o
xo 1= . (4.16)
2|l (1 — |af[3 — 4A])
Proof. Since
|b| < 1= [bo|?, (4.17)
(see e.g., [4, Vol. II, p. 78]), from (4.3) for m =1 and (4.5) we have
’ag - )\ag‘ = ’—abl + (3 — 4\) b3 + (1 - |a|2) bo‘
< laf (1= [bof) + (1~ [af?) [bo] + laf? |3 — 47 bo[? (4.18)
= la (Jaf [3 = 4X] = 1) [bol” + (1 = [af?) [bo| + o = ¥(Jbo]),
where
(@) = o] (jof 3= 4\ = 1) 2® + (1= |a?) 2 + o], =€ [0,1].
(a) For |a|[3 =4\ —1 >0, i.e., for
3la) -1 3lal+1 >
A — U
¢ (-o0, i Ju] o)
we have 7/(z) > 0, z € [0,1], and hence
Y@) <9(1) = [P (B- 4 1) +1, ze0,1] (4.19)
(b) Let now |a] |3 —4A\| —1 <0, i.e., let
3lal -1 3]04]4-1)
A . 4.20
< (Her "1 20

Note that 7/(x) = 0 only for = := x, where zg is given by (4.16). Thus z¢ > 1 if and only
if
|a|? 4+ 2]a| — 1

20?7
which in view of (4.20) holds: when |a| € (0,42 — 1] for A as in (4.20), and when
la € (V2 —1,1) for

3lal =1 5|af* —2]a| +1
Ae : 5
4o 8

13— 4\ >

(4.21)

7Tla? +2]al —1 3|a]+1
8|al® ©odlel )
Hence and by the case (a) it follows that +/(z) > 0 for = € [0, 1], so the inequality (4.19)
holds: when |a| € (0,12 — 1] for all A € R, and when |a| € (v/2 —1,1) for ) as in (4.21).
This and (4.18) prove that the inequality (4.9) and the first inequality in (4.10) are true.
The second inequality in (4.10) is a consequence of the inequality

la|* =43 —4)||a]® +2]|a)* + 1
x) < ~v(xp) =

which holds for

e 5la* =2l +1 7la)®* +2]a] —1
8laf* 7 8l

The inequalities (4.11)-(4.14) are particular cases of the inequalities (4.9) and (4.10) for
A=0,A=1/2, A=3/4 and X\ = 1, respectively.

It remains to discuss the sharpness. Let o := |ale?, 8 € [0,27). It is easy to verify that
the equality in (4.9) and in the first inequality in (4.10) holds for the function f given by
(4.1) either with ¢ = e~ 2% or with p = —e~%%. Let \ < 3/4. For

i0

—92i0 e 'z —xo

o(z) = — —e Wy —(1—a)e24..., zeD,

1 —e 242
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we have
jas = Ma3| = |—aby + (1~ Jaf”) by + 0*(3 — 4013

= ‘|a|(1 —28)e ™ + (1 - |a]?) moe™2? + (3 — 4N)|af2afe 2

= lal(1 = 23) + (1= [af?) 20 + (3 — 4N)|aa3,

which yields equality in the second inequality in (4.10). The case A > 3/4 follows in a
similar way. O

Remark 4.3. One can be checked that the upper bounds in (4.9) and (4.10) do not exceed
of the upper bounds in (4.8). Setting |a| = 1 the inequalities (4.9) and (4.10) reduce to
the inequality (4.8).

We consider now the case m > 1.

Theorem 4.4. Let « € D°, m > 1 and f € 8*(m,()) be of the form (1.1). If |a| €
(0,2 — 1], then

4| M| 2 2
2 A4 2, 4
’aerg—)\amH’g <m2 m+1)|oz| +m+1’ A eR. (4.22)
If |a] € (V2 —1,1), then
]amﬁ — A, +1‘ (4.23)
(4’)\’_ 2 )|Oz|2+ 2 ’)\|> mz(‘a‘2+2‘a‘_l)
< m?2  m+1 m+1’ - 4\af(m+1) ’
T mA(le)? + D2 =8 (m+1)|A[af’ 3 < ™laf” +2]a] 1)
2(m+1)laf (m? =2(m+1) || ]A])’ dlaf*(m+1)
Particularly,
2
m(l—\aIQ), lal € (0,v2 1],
‘am—l—Q‘ < (’a‘Q + 1)2 (424)
T 2-1,1

and for |a] € (0,1),
m? 9 < 2
2(m+1) ™ =1
The result is sharp. Equality in (4.22) and in the first inequality in (4.23) holds for the
function f given by (4.1) with ¢ = +e 2% where 0 := Arga € [0,2n). Equality in the
second inequality in (4.23) holds for the function f given by (4.1) with ¢ given by (4.15)
where

am+2 — (425)

(1 — |af*)m?

= . 4.26
™0 = 3ol (m2 = 2(m + D]al]\] (4.26)
Proof. From (4.3), (4.4) and (4.17) we have

2 4\ 2

‘am+2 — )\aan’ = ‘_m n 1ab1 — 72@253 + p—— (1 — ]042) bo

2 2 2 2 4|/\| 2 2
< 1-— — (1 -
< g lal (L= 1bol*) + = (1= o) [bol + - 5 fal® [t (427

|

2|\ 1 2
= 2| <m2 al — - 1> |bo|? + —T (1 - |a|2> |bo| +

+ m+1
=:7([bol),
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where for z € [0, 1],
.f 2|\ LY 2, 2 2 2
1(@)i=2lal (23 lal = —=g ) o+ 2 (1= JalP) o+ —= Jal.
(a) For 2|A||a|/m? —1/(m +1) >0, i.e., for
—m2 m2
Ae | —o0, U ,+oo |,
< 2ol (m+1) [2|a|(m+1) )

we have +/(z) > 0 for z € [0,1], and consequently

_ AL 2 2
W) <y() = —Flaf + == (1-laf), zeo.1]. (4.28)
(b) Let now 2|\|ja|/m? —1/(m +1) <0, i.e., let
—m2 m2
\e , . 4.29
<2|ay(m+1) 2|a|(m+1)> (4.29)

Note that 7/(x) = 0 only for = := zy, where zg is given by (4.26). Thus z¢ > 1 if and only
if
m? (laf* + 2]a] — 1)

4m+ Va2 7
which in view of (4.29) holds: when |a| € (0,42 — 1] for A as in (4.29), and when
la| € (V2 —1,1) for

Al >

201 |2 2
m(|a|2—|—2|a| 1)§|)\‘< m ‘
4]al” (m+1) 2|al(m+1)
Hence and by the case (a) it follows that 7/(z) > 0 for € [0, 1], so the inequality (4.28),
holds when |a| € (0,+/2 — 1] for all A € R, and when |a| € (v/2 — 1,1) for A as in (4.30).
This and (4.27) prove the inequality (4.22) and the first inequality in (4.23).
The second inequality in (4.23) is a consequence of the inequality

m?(|af® +1)* =8 (m +1) [\ o/
2(m+1)|af (m? =2 (m+1) |af[A])

(4.30)

(@) < (o) =
which holds for
m’(ja|* + 2o — 1)
4af’ (m+1)
The inequalities (4.24) and (4.25) are particular cases of the inequalities (4.22) and
(4.23) for A =0, and A = m?/2(m + 1), respectively.
The sharpness follows analogously as in Theorem 4.2. O

Al <

The sharp bounds for the second and third coefficient in the class 8*(1, («)) for all
a € D° were given in (4.7) and (4.11), respectively. Now we will deal with the fourth
coefficient.

Theorem 4.5. Let a € DU and f € 8*(1,(c)) be of the form (1.1). If |a| € (0, o], where
o ~ 0.27248 is the unique zero of the polynomial (0,1) > t > Tt3 — 812 + 9t — 2, then

2
81]a]*(6]a| —5)
—3079|a|® — 297|af® + 1014|a|* + 5|al® — 90|a|* + 24|a| — 2

+\/v(la]) (86]al® - 230|af” + 36|al* + 66]af’
+28|al? — 16|a| + 2)] ,

lag| <

|~520]a(® + 807|af® + 2208|af”

(4.31)
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where
Y(lal) == 43|a|® — 115|al® + 18|a|* + 33|a|® + 14|a|? — 8|a| + 1. (4.32)
If |af € (ap, 1), then
as] < 4o, (4.33)
Proof. Let t :=|a| € (0,1). Since (see e.g., [4, Vol. II, p. 78] ) for k € N,
byl <1 [bol?, (4.34)
from (4.6) we have
2 -
a4 <3 tlo2| + (1 — t2)]br| + (1 — £%)[bo| + 5t*[bol[b1

+6¢%[bo* + 5¢(1 — 1) bo 2]

2 -
<z [t - [bo[?) + (1 = #2)(1 = [bo]?) + £(1 — %) |bo]
: (4.35)
+5¢2[bo|(1 = [bo[2) + 6t |bo[* + 5(1 — £2)[bo ?]
2 -
<3 t2(6t — 5)|bo|> 4 (=5t + 12 + 4t — 1)|bo|?
, 2
(=t 4562+ )[bo] — £+ £ 4 1] =2 Z((l)).
where
Ye(z) =t*(6t — 5)2° + (=5t° + 2 + 4t — 1)
(B35 4 e —t2 +t+1, z€l0,1]
For t = 5/6 we have
1
756(®) = 572 (2902 + 8052 + 246) <5, =€ [0,1]; (4.36)

Let t € I :==(0,1) \ {5/6}. Note that
(0) = —t2 +t+1>0, v(1)=6t>0, te(0,1),
and for z € (0,1),
vi(x) = 3t2(6t — 5)a* + 2(—5t> + 12 + 4t — 1)x + t(—t* + 5t + 1).
We have
A= 4gp(t) =4 (4315 — 11567 + 18¢* 4 336> + 1442 8t + 1), te .

Since A = 0 only for t =ty &~ 0.833709, so 7/, (x) = 3t§(6tg — 5)(x — to)* > 0 for = € [0,1].
Thus the function ~y, is increasing and therefore

Yo () < Y49(1) = 6tg, x € [0,1]. (4.37)

For ¢t € (tp,1) we have A < 0 and since ¢y > 5/6, it follows that v; > 0. Thus ; is an
increasing functions and therefore for ¢t € (to, 1),

ye(x) <y (1) =6t, x€][0,1]. (4.38)
Consider the case A = 44)(t) > 0, i.e., the case t € (0,tg) \ {5/6}. Then ~, extended to the

real axis has two zeros
513 — 12 — 4t + 15 /4 (?)
3t2(6t — 5) ’

r12 =
Note first that

563 2 —4t+1>0, te(0,t), (4.39)
and

563 —t2 —4t+1 <0, € (t,to), (4.40)
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where t; &~ 0.25440 is the unique zero of the polynomial (0,tg) > ¢ ~ 5¢3 — t2 — 4t + 1.
From (4.39) and (4.40) it follows that 21 < 0 for ¢t € (5/6,%p), and z1 > 0 for ¢ € [t1,5/6).
For t € (0,t1) the condition x; > 0 is equivalent to the inequality

(563 — 2 — 4t +1)% < 4315 — 11565 + 18t* + 33¢3 + 144% — 8t + 1,
which is equivalent to the true inequality
3t3(6t3 — 35t% + 19t + 5) > 0. (4.41)

Thus 21 > 0 for t € (0,5/6). Observe now that for ¢t € (0,5/6) the condition x; < 1 is
equivalent to

— 1363 4 1447 — 4t + 1> /9(2), (4.42)

which is obviously false for ¢ € [t2,5/6), where to ~ 0.81524 is the unique real zero of the
polynomial ¢ +— —13t3 4 14t — 4t 4 1. For t € (0,12) the inequality (4.42) is equivalent to

3t2(6t — 5) (7t — 8t + 9t — 2) > 0

which holds for ¢ € (0,t3), where t3 ~ 0.27248 is the unique real zero of the polynomial
t > 7t3 — 8t + 9t — 2. Summarizing, ¥, € (0,1) if and only if ¢ € (0,3).

Now we show that xo < 0 for t € (0,tp) \ {5/6}. Indeed, for t € (5/6,ty) the condition
xo < 0 in view of (4.39) is equivalent to

563 — 12 — 4t +1 < —/9Y(t),

which is equivalent to the true inequality
3t3(6t3 — 35t% + 19t + 5) < 0.

For ¢ € (0,¢;] the condition xo < 0 is true by (4.39). For t € (¢1,5/6) the condition xo < 0
is equivalent to the true inequality (4.41).
Since for t € (t3,5/6),

Y(0) = t(—t2 45t +1) >0, ~(1)="7t3—8t>+9t—2>0,

we conclude that ] > 0, so 7 is increasing for ¢ € (t3,5/6). Therefore for ¢t € (¢3,5/6) the
inequality (4.38) holds. For ¢ € (0, ¢3], the maximal value of the function ~; equals v;(z2).
Hence and from (4.35)-(4.38) the inequalities (4.31) and (4.33) follow. O

Remark 4.6. In this paper we deal with the classes 8*(m, A). The classes §*9(m, A) have
been defined also however they have not been examined. Although the results for the class
8*(m, A) are valid for the class 8*°(m, A), the detailed study of the class §*°(m, A) seems
to be more sophisticated based on knowledge on the class B® of bounded non-vanishing
analytic functions. Let us recall the famous Krzyz’s conjecture [7] for the class BY. Namely,
he supposed that

|by| <

oo

, meN]

for ¢ € BY of the form (4.2) with equality only for the function

on(2) = exp <z" - 1> 1 2

= -+ - D
2+ 1 e+ez+ 2 €D,

and its rotations (for further details see e.g., [9], [11]).
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