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Abstract
In this paper, we study the boundedness and the compactness of weighted composition
operators between Besov-type spaces. Also, we give a Carleson measure characterization
of weighted composition operators on Besov spaces.
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1. Introduction
Let D be the open unit disc in the complex plane C. Denote by H(D) the class of

all complex-valued functions analytic on D. Suppose φ and ψ are holomorphic functions
defined on D such that φ(D) ⊆ D. The weighted composition operator Wφ,ψ induced by φ
and ψ on H(D) is defined by

Wφ,ψf(z) = ψ(z)f(φ(z)) = ψ(z)Cφ(f),
for all f ∈ H(D) and z ∈ D. When ψ(z) ≡ 1, the composition operator Wφ,1 is denoted
by Cφ, i.e.,

Wφ,1f(z) = f(φ(z)) = Cφ(f),
for all f ∈ H(D) and z ∈ D. For the study of composition operators one can refer to [7]
and [11].

Fix any a ∈ D and let σa(z) be the Mobius transform defined by

σa(z) = a− z

1 − az
, z ∈ D.

We denote the set of all Mobius transformations on D by G. The inverse of σa under
composition is again σa for a ∈ D. Further, we have

|σ′
a(z)| = 1 − |a|2

|1 − az|2
(1.1)

and
1 − |σa(z)|2 = (1 − |a|2)(1 − |z|2)

|1 − az|2
= (1 − |z|2)|σ′

a(z)|, (1.2)

for every a, z ∈ D.
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For 1 ≤ p < ∞, Lp(D, dA) will denote the Banach space of Lebesgue measurable
functions f on D with

∥f∥p =
(∫

D
|f(z)|pdA(z)

) 1
p

< +∞,

where dA(z) denote the Lebesgue area measure on D.
For p = +∞, L∞(D, dA) will denote the Banach space of Lebesgue measurable functions
f on D with

∥f∥∞ = ess sup{|f(z)| : z ∈ D} < +∞.

For 1 ≤ p < ∞, the Bergman space Ap, is defined to be the subspace of Lp(D, dA)
consisting of analytic functions, i.e. Ap(D) = Lp(D) ∩ H∞(D). The Bergman spaces are
Banach spaces.

For 1 6 p < +∞ and −1 < r < +∞, the (weighted) Bergman space Apr = Apr(D) of the
disc is the space of analytic functions in Lp(D, dAr), where

dAr(z) = (r + 1)(1 − |z|2)rdA(z).
If f is in Apr , we write

∥f∥Apr =
(∫

D
|f(z)|pdAr(z)

) 1
p

.

When 1 6 p < +∞, the space Apr is a Banach space with the above norm.
For 1 < p < +∞ and −1 < r < ∞, an analytic function f on D is said to belong to the

Besov-type space Bp,r if

∥f∥Bp,r =
(∫

D
|f ′(z)|p(1 − |z|2)rdA(z)

) 1
p

< ∞, (1.3)

where dA(z) denote the Lebegue area measure on D. Also, if we take 1 < p < ∞ and
r = p − 2 in (1.3), then we get analytic Besov space, simply denoted by Bp. We can see
that |f(0)| + ∥f∥Bp,r is a norm on Bp,r, that makes it a Banach space. Moreover, we can
observe that, for f to be in Bp,r, it is necessary that the derivative of f belong to the
weighted Bergman spaces Apr .

Definition 1.1. Let µ be a positive measure on D. Then the space Dp(µ) is defined as
the space of all holomorphic functions f ∈ H(D) for which f ′ ∈ Lp(D, µ). Also, the norm
on Dp(µ) is defined as

∥f∥pDp(µ) =
∫
D

|f ′(z)|pdµ(z).

Take 0 < p < ∞. A positive measure µ on D is called a p-Carleson measure in D if

sup
I⊆∂D

µ(S(I))
|I|p

< ∞, (1.4)

where |I| denotes the arc length of I and S(I) denotes the Carleson square based on I,

S(I) = {z ∈ D : 1 − |I| ≤ |z| < 1, z
|z|

∈ I}.

Again, µ is called a vanishing p-Carleson measure if

lim
|I|→0

µ(S(I))
|I|p

= 0. (1.5)

Take h ∈ (0, 1) and θ ∈ [0, 2π). If we set
S(h, θ) = {z ∈ D : |z − eiθ| < h},

then we can see that (1.4) and (1.5) are equivalent to

sup
h∈(0,1),θ∈[0,2π)

µ(S(h, θ))
hp

< ∞ (1.6)



80 H. Vaezi and S. Houdfar

and
lim
h→0

sup
θ∈[0,2π)

µ(S(h, θ))
hp

= 0, (1.7)

respectively.

Suppose φ is a holomorphic mapping defined on D. Let φ(D) ⊆ D and ψ ∈ Bq,r be such
that ψ(z)φ′(z) ∈ Lq(D, dAr). We define the measures µq,r and νq,r on D by

µq,r(E) =
∫
φ−1(E)

|ψ(z)φ′(z)|q(1 − |z|2)rdA(z) (1.8)

and
νq,r(E) =

∫
φ−1(E)

|ψ′(z)|q(1 − |z|2)rdA(z), (1.9)

where E is a measurable subset of the unit disc D.

If ψ ∈ Aqr, then we can define the measure νq,ψ,r on D by

νq,ψ,r(E) =
∫
φ−1(E)

|ψ(z)|q(1 − |z|2)rdA(z). (1.10)

Definition 1.2. Take 1 < p < +∞ and −1 < r < ∞. Let µ be a positive measure on D.
Then the measure µ is (p, r)-Carleson measure for Bp,r if there is a constant K > 0 such
that ∫

D
|f ′(w)|pdµ(w) 6 K∥f∥pBp,r ,

for all f ∈ Bp,r. That is, the inclusion operator i : Bp,r → Dp(µ) is bounded. Further, the
measure µ is a vanishing p-Carleson measure for Bp,r if the inclusion operator i : Bp,r →
Dp(µ) is compact.

The following characterization of (p, r)−Carleson measures can be obtained easily from
[1].

Theorem 1.3. Take 1 < p < ∞ and −1 < r < ∞. Let µ be a positive measure on D.
Then the following statements are equivalent:

(1) The measure µ is a (p, r)-Carleson measure for Bp,r.
(2) There exists a constant K < ∞ such that

µ(S(h, θ)) ≤ Khp

for all θ ∈ [0, 2π) and h ∈ (0, 1).
(3) There exists a constant C < ∞ such that∫

D
|σ′
a(z)|pdµ(z) ≤ C

for all a ∈ D.

Using ([6], Lemma 2.1) and ([8], page 163), the following lemma can be proved easily.

Lemma 1.4. Let φ be a holomorphic mapping defined on D such that φ(D) ⊆ D. Take
ψ ∈ Bq,r such that ψ(z)φ′(z) ∈ Lq(D, dAr). Then∫

D
gdµq,r =

∫
D

|ψ(z)φ′(z)|q(g ◦ φ)(z)(1 − |z|2)rdA(z) (1.11)

and ∫
D
gdνq,r =

∫
D

|ψ′(z)|q(g ◦ φ)(z)(1 − |z|2)rdA(z). (1.12)

where g is an arbitrary measurable positive function in D.
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We use the following lemma for compactness of the weighted composition operators
on Besov-type spaces. The proof of this lemma follows by similar lines as in the case of
composition operators on Besov spaces ([12], Lemma 3.8).

Lemma 1.5. Given 1 6 p, q < ∞, −1 < r < ∞, let φ be a holomorphic mapping
defined on D with φ(D) ⊆ D and ψ ∈ Bq,r be such that Wφ,ψ : Bp,r → Bq,r is bounded.
Then Wφ,ψ : Bp,r → Bq,r is compact (weakly compact) if and only if whenever {fn} is
a bounded sequence in Bp,r converging to zero uniformly on compact subsets of D, then
∥Wφ,ψ(fn)∥Bq,r → 0 (respectivly, {Wφ,ψ(fn)} is a weak null sequence in Bq,r).

Boundededness and compactness of the weighted composition operators on spaces of an-
alytic functions has been studied by many authors. For example we refer to [2–5,9,10,13].

In this article, by using the Carleson measure, we characterize the boundeness and
compactness of Wφ,ψ on Besov-type spaces, in section 2. The Carleson measure charac-
terization of Wφ,ψ acing on Besov spaces is given in section 3.

2. Bounded and compact weighted composition operators on Besov-type
spaces

In this section, we characterize the boundeness and compactness of Wφ,ψ on Besov-type
spaces by using Carleson measures.

Theorem 2.1. Take 1 < p 6 q < ∞ and −1 < r < ∞. Let φ ∈ Bp,r be such that
φ(D) ⊆ D, ψ ∈ Aqr and the measure νq,ψ,r is a vanishing (q, r)-Carleson measure for Bq,r.
Then Wφ,ψ defines a bounded operator from Bp,r into Aqr. Moreover, Wφ,ψ : Bp,r → Aqr is
compact.

Proof. We prove the compactness only. Let {fn} be a bounded sequence in Bp,r such
that fn → 0 uniformly on compact subsets of D. Since the measure νq,ψ,r is a vanishing
(q, r)−Carleson measure for Bq,r, the inclusion map i : Bq,r → Lq(D, νq,ψ,r) is compact.
Since Bp,r ⊂ Bq,r, we have ∥fn∥Lq(D,νq,ψ,r) → 0 as n → ∞. Therefore, by Lemma 1.4, we
have

∥Wφ,ψ(fn)∥q
Aqr

=
∫
D

|ψ(z)|q|(fn ◦ φ)(z)|q(1 − |z|2)rdA(z)

=
∫
D

|fn(z)|qdνq,ψ,r(z) → 0, as n → ∞. (2.1)

Thus, Wφ,ψ : Bp,r → Aqr is compact. �

Theorem 2.2. Take 1 < p 6 q < ∞ and −1 < r < ∞. Let φ,ψ ∈ Bp,r be such that
φ(D) ⊆ D and the measure νq,r is a vanishing (q, r)-Carleson measure for Bq,r. Then
Wφ,ψ is a bounded operator from Bp,r into Bq,r if and only if Wφ,ψφ′ is a bounded operator
from Apr into Aqr.

Proof. Suppose that Wφ,ψ : Bp,r → Bq,r is bounded. Then there exists a constant C > 0
such that

∥Wφ,ψ(g)∥Bq,r 6 C∥g∥Bp,r

for all g ∈ Bp,r. Also, by Theorem 2.1, we can find a constant M > 0 such that

∥Wφ,ψ′(g)∥Aqr 6M∥g∥Bp,r , g ∈ Bp,r.
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Take f ∈ Apr and let the function g ∈ Bp,r be such that g′ = f and g(0) = 0. Then,

∥Wφ,ψφ′(f)∥Aqr = ∥ψφ′f ◦ φ∥Aqr
= ∥ψφ′f ◦ φ+ ψ′g ◦ φ− ψ′g ◦ φ∥Aqr
6 ∥(ψg ◦ φ)′∥Aqr + ∥ψ′g ◦ φ∥Aqr
= ∥ψg ◦ φ∥Bq,r + ∥ψ′g ◦ φ∥Aqr
6 C∥g∥Bp,r +M∥g∥Bp,r
= (C +M)∥g∥Bp,r
= (C +M)∥f∥Apr .

Thus, Wφ,ψφ′ : Apr → Aqr is bounded.
Conversely, suppose Wφ,ψφ′ : Apr → Aqr is bounded. Again, by Theorem 2.1,

Wφ,ψ′ : Bp,r → Aqr

is bounded. Take f ∈ Bp,r such that f(0) = 0. Then, we have

∥Wφ,ψ(f)∥Bq,r = ∥(ψf ◦ φ)′∥Aqr
= ∥ψφ′f ′ ◦ φ+ ψ′f ◦ φ∥Aqr
6 ∥Wφ,ψφ′(f ′)∥Aqr + ∥Wφ,ψ′(f)∥Aqr < +∞.

The theorem is proved. �

Theorem 2.3. Take 1 < p 6 q < ∞ and −1 < r < ∞. Let φ,ψ ∈ Bp,r be such that
φ(D) ⊆ D and the measure νq,r is a vanishing (q, r)-Carleson measure for Bq,r. Then
Wφ,ψ is a compact operator from Bp,r into Bq,r if and only if Wφ,ψφ′ is a compact operator
from Apr into Aqr.

Proof. Suppose that Wφ,ψ : Bp,r → Bq,r is compact. Let {fn} be a bounded sequence
in Apr such that fn → 0 uniformly on compact subsets of D. For each n, there exists a
function gn ∈ Bp,r such that g′

n = fn and gn(0) = 0. The sequence {gn} also converges to
zero uniformly on compact subsets of D as n → ∞. Further, since Wφ,ψ : Bp,r → Bq,r is
compact, so ∥Wφ,ψ(gn)∥Bq,r → 0 as n → ∞. Again, by Theorem 2.1, Wφ,ψ′ : Bp,r → Aqr is
compact, so ∥Wφ,ψ′(gn)∥Aqr also converges to zero as n → ∞. We have

∥Wφ,ψφ′(fn)∥Aqr = ∥ψφ′fn ◦ φ∥Aqr
6 ∥ψφ′fn ◦ φ+ ψ′gn ◦ φ∥Aqr + ∥ψ′gn ◦ φ∥Aqr
= ∥(ψgn ◦ φ)′∥Aqr + ∥Wφ,ψ′(gn)∥Aqr
= ∥Wφ,ψ(gn)∥Bq,r + ∥Wφ,ψ′(gn)∥Aqr → 0, as n → ∞.

Therefore, Wφ,ψφ′ : Apr → Aqr is compact.
Conversely, suppose Wφ,ψφ′ : Apr → Aqr is compact. Again, by Theorem 2.1, Wφ,ψ′ : Bp,r →
Aqr is compact. Let {gn} be the same sequence as in the direct part. Then,

∥Wφ,ψ(gn)∥Bq,r = ∥(ψgn ◦ φ)′∥Aqr
= ∥ψφ′g′

n ◦ φ+ ψ′gn ◦ φ∥Aqr
∥Wφ,ψφ′(fn)∥Aqr + ∥Wφ,ψ′(gn)∥Aqr → 0, as n → ∞.

Thus, Wφ,ψ : Bp,r → Bq,r is compact. �

Theorem 2.4. Take 1 < p < ∞ and −1 < r < ∞. Let φ,ψ ∈ Bp,r be such that
φ(D) ⊆ D and the measure νp,r is a vanishing (p, r)−Carleson measure for Bp,r. Then
Wφ,ψ is a bounded (compact) operator from Bp,r into Bp,r if and only if µp,r is a bounded
(vanishing) (p, r)−Carleson measure for Bp,r.

Proof. We only prove the boundedness. Suppose first that Wφ,ψ : Bp,r → Bp,r is bounded.
Then by Theorem 2.2, Wφ,ψφ′ is a bounded operator on Apr . Let f ∈ Bp,r be such that
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f(0) = 0. Then, by using Lemma 1.4, we have

∥Wφ,ψφ′(f ′)∥p
Apr

=
∫
D

|ψ(z)φ′(z)|p|f ′(φ(z))|p(1 − |z|2)rdA(z)

=
∫
D

|f ′(w)|pdµp,r(w).

Since Wφ,ψφ′ is bounded on Apr , therefore we can find a constant C > 0 such that

∥Wφ,ψφ′(f ′)∥p
Apr

6 C∥f ′∥p
Apr
.

Hence, ∫
D

|f ′(w)|pdµp,r(w) 6 C∥f∥pBp,r .

That is, the inclusion operator i : Bp,r → Dp,r(µ) is bounded. Thus the measure µp,r is a
bounded (p, r)−Carleson measure for Bp,r.
Conversely, suppose that µp,r is a bounded (p, r)−Carleson measure for Bp,r. We want to
show that Wφ,ψ : Bp,r → Bp,r is bounded. We have

(ψ(f ◦ φ)′) = ψφ′(f ′ ◦ φ) + ψ′(f ◦ φ). (2.2)

Take f ∈ Bp,r. So by Lemma 1.4,∫
D

|ψ(z)φ′(z)|p|f ′(φ(z))|p(1 − |z|2)rdA(z) =
∫
D

|f ′(w)|pdµp,r(w) < +∞. (2.3)

Also, by using Theorem 2.1, we get∫
D

|ψ′(z)|p|f(φ(z))|p(1 − |z|2)rdA(z) = ∥Wφ,ψ′(f)∥p
Apr

< +∞. (2.4)

By using (2.2), (2.3) and (2.4), Wφ,ψ : Bp,r → Bp,r is bounded.
Compactness of Wφ,ψ can be proved by using the Theorems 2.1 and 2.3, which we omit
its proof. �

3. Carleson measure characterization of the weighted composition oper-
ators on Besov spaces

In this section, we give a Carleson measure charecterization of Wφ,ψ on Besov space.

Let 1 < p, q < ∞, φ be a holomorphic mapping defined on D such that φ(D) ⊆ D and
ψ ∈ Bq be such that ψ(z)φ′(z)(1 − |z|2) ∈ Lq(D, dλ) (where dλ(z) = (1 − |z|2)−2dA(z) is
the Mobius invariant measure on D). For f ∈ Bp there exists a constant Cq such that

∥Wφ,ψ(f)∥qBq =
∫
D

|(ψCφf)′(z)|q(1 − |z|2)q−2dA(z)

6 Cq

∫
D

|ψ′(z)|q|(Cφf)(z)|q(1 − |z|2)q−2dA(z)

+Cq
∫
D

|ψ(z)|q|φ′(z)|q|f ′(φ(z))|q(1 − |z|2)q−2dA(z).

By using Lemma 1.4, we have

∥Wφ,ψ(f)∥qBq 6 Cq

∫
D

|f(w)|qdνq(w) + Cq

∫
D

|f ′(w)|qdµq(w). (3.1)

Since Wφ,ψ : Bp → Bq is a bounded operator if and only if there exists a positive constant
C such that

∥Wφ,ψ(f)∥qBq ≤ C∥f∥qBp ,
so, the following theorem holds.
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Theorem 3.1. Let 1 < p < ∞, φ be a holomorphic mapping defined on D such that
φ(D) ⊆ D and ψ ∈ Bp be such that ψ(z)φ′(z)(1−|z|2) ∈ Lp(D, dλ). If the measure µp is a p-
Carleson measure and νp is a vanishing p-Carleson measure for Bp, then Wφ,ψ : Bp → Bp
is a bounded operator.

Proof. Suppose that µp is a p-Carleson measure for Bp. By Definition 1.2, there exisits
a constant C1 such that ∫

D
|f ′(w)|pdµp(w) ≤ C1∥f∥pBp . (3.2)

Let νp is a vanishing p-Carleson measure for Bp. By using Theorem 2.1 for r = p − 2,
there exisits a constant C2 such that

∥Wφ,ψ′(f)∥pAp =
∫
D

|ψ′(z)|p|f ◦ φ|p(1 − |z|2)p−2dAz

=
∫
D

|f(w)|pdνp(w)

≤ C2∥f∥pBp . (3.3)

By using (3.2) and (3.3), from (3.1) the theorem is proved. �
Theorem 3.2. Suppose 1 < p 6 q < ∞ and φ is a holomorphic mapping defined on D.
Let φ(D) ⊆ D and ψ ∈ Bq be such that ψ(z)φ′(z)(1 − |z|2) ∈ Lq(D, dλ). If the measures
νq and µq are vanishing q-Carleson measures for Bq, then Wφ,ψ : Bp → Bq is a compact
operator.

Proof. Let {fn} be a bounded sequence in Bp such that fn → 0 uniformly on compact
subsets of D. Then the mean value property for the holomorphic function yields

f ′
n(w) = 4

π(1 − |w|)2

∫
|w−z|< 1−|w|

2

f ′
n(z)dA(z). (3.4)

Therefore by Jensen’s inequality,

|f ′
n(w)|q ≤ 4

π(1 − |w|)2

∫
|w−z|< 1−|w|

2

|f ′
n(z)|qdA(z). (3.5)

Since the measure νq is a vanishing q-Carleson measure for Bq, by using Theorem 2.1(re-
lation (2.1)), we have ∫

D
|fn(w)|qdνq(w) → 0, as n → ∞. (3.6)

By using (3.1), (3.5), (3.6) and Fubini’s Theorem,

∥Wφ,ψ(fn)∥qBq ≤ Cq

∫
D

|fn(w)|qdνq(w) + Cq

∫
D

|f ′
n(w)|qdµq(w)

≤ Cq

∫
D

4
π(1 − |w|)2

(∫
|w−z|< 1−|w|

2

|f ′
n(z)|qdA(z)

)
dµq(w)

≤ Cq
4
π

∫
D

|f ′
n(z)|q

(∫
D

1
(1 − |w|)2χ{z:|w−z|< 1−|w|

2 }(z)dµq(w)
)
dA(z).

Note that if |w − z| < 1 − |w|
2

, then w ∈ S(2(1 − |z|), θ), where z = |z|eiθ, since

|w − eiθ| ≤ |z − w| + |eiθ − z| < 1 − |w|
2

+ | z
|z|

− z| < 2(1 − |z|).

Moreover, if |w − z| < 1 − |w|
2

then

1
(1 − |w|)2 ≤ const.

1
(1 − |z|)2 .
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Hence,

∥Wφ,ψ(fn)∥qBq ≤ const.

∫
D

|f ′
n(z)|q

(1 − |z|)2

(∫
S(2(1−|z|),θ)

dµq(w)
)
dA(z)

= const.

(∫
|z|>1− δ

2

+
∫

|z|≤1− δ
2

|f ′
n(z)|q

(1 − |z|)2

(∫
S(2(1−|z|),θ)

dµq(w)
)
dA(z)

)
= I + II (3.7)

for any 0 < δ < 1.
Fix ϵ > 0 and let δ > 0 be such that for any θ ∈ [0, 2π] and any h < δ,

µq(S(h, θ)) < ϵhq, (3.8)
and so ∫

S(h,θ)
dµq < ϵhq.

By (3.8),

I ≤ const. 2qϵ
∫

|z|>1− δ
2

|f ′
n(z)|q

(1 − |z|2)2 (1 − |z|2)qdA(z)

≤ const. ϵ∥fn∥qBq < const. ϵ. (3.9)

For n large enough, since f ′
n → 0 uniformly on compact sets, we have

II ≤ const.

∫
|z|≤1− δ

2

|f ′
n(z)|q

(∫
D
dµq

)
dA(z) < const. ϵ. (3.10)

Therefore, from (3.7), (3.9) and (3.10) we obtain
∥Wφ,ψ(fn)∥qBq < const.ϵ.

Thus ∥Wφ,ψ(fn)∥qBq → 0 as n → ∞, and from Lemma 1.5, Wφ,ψ is compact. �
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