

RESEARCH ARTICLE

Weighted composition operators between Besov-type spaces

Hamid Vaezi*, Sima Houdfar

Department of Pure Mathematics, Faculty of Mathematical Sciences University of Tabriz, Tabriz, Iran

Abstract

In this paper, we study the boundedness and the compactness of weighted composition operators between Besov-type spaces. Also, we give a Carleson measure characterization of weighted composition operators on Besov spaces.

Mathematics Subject Classification (2010). 47B33, 30H25

Keywords. (Weighted) composition operator, Besov-type space, Carleson measure

1. Introduction

Let \mathbb{D} be the open unit disc in the complex plane \mathbb{C} . Denote by $H(\mathbb{D})$ the class of all complex-valued functions analytic on \mathbb{D} . Suppose φ and ψ are holomorphic functions defined on \mathbb{D} such that $\varphi(\mathbb{D}) \subseteq \mathbb{D}$. The *weighted composition operator* $W_{\varphi,\psi}$ induced by φ and ψ on $H(\mathbb{D})$ is defined by

$$W_{\varphi,\psi}f(z) = \psi(z)f(\varphi(z)) = \psi(z)C_{\varphi}(f),$$

for all $f \in H(\mathbb{D})$ and $z \in \mathbb{D}$. When $\psi(z) \equiv 1$, the composition operator $W_{\varphi,1}$ is denoted by C_{φ} , i.e.,

$$W_{\varphi,1}f(z) = f(\varphi(z)) = C_{\varphi}(f),$$

for all $f \in H(\mathbb{D})$ and $z \in \mathbb{D}$. For the study of composition operators one can refer to [7] and [11].

Fix any $a \in \mathbb{D}$ and let $\sigma_a(z)$ be the Mobius transform defined by

$$\sigma_a(z) = \frac{a-z}{1-\overline{a}z}, z \in \mathbb{D}.$$

We denote the set of all Mobius transformations on \mathbb{D} by G. The inverse of σ_a under composition is again σ_a for $a \in \mathbb{D}$. Further, we have

$$|\sigma_a'(z)| = \frac{1 - |a|^2}{|1 - \overline{a}z|^2} \tag{1.1}$$

and

$$1 - |\sigma_a(z)|^2 = \frac{(1 - |a|^2)(1 - |z|^2)}{|1 - \overline{a}z|^2} = (1 - |z|^2)|\sigma_a'(z)|,$$
(1.2)

for every $a, z \in \mathbb{D}$.

^{*}Corresponding Author.

Email addresses: hvaezi@tabrizu.ac.ir (H. Vaezi), s.hoodfar@tabrizu.ac.ir (S. Houdfar) Received: 16.10.2017; Accepted: 11.09.2018

For $1 \leq p < \infty$, $L^p(\mathbb{D}, dA)$ will denote the Banach space of Lebesgue measurable functions f on \mathbb{D} with

$$||f||_p = \left(\int_{\mathbb{D}} |f(z)|^p dA(z)\right)^{\frac{1}{p}} < +\infty,$$

where dA(z) denote the Lebesgue area measure on \mathbb{D} . For $p = +\infty$, $L^{\infty}(\mathbb{D}, dA)$ will denote the Banach space of Lebesgue measurable functions f on \mathbb{D} with

$$||f||_{\infty} = ess \sup\{|f(z)| : z \in \mathbb{D}\} < +\infty.$$

For $1 \leq p < \infty$, the Bergman space A^p , is defined to be the subspace of $L^p(\mathbb{D}, dA)$ consisting of analytic functions, i.e. $A^p(\mathbb{D}) = L^p(\mathbb{D}) \cap H^\infty(\mathbb{D})$. The Bergman spaces are Banach spaces.

For $1 \leq p < +\infty$ and $-1 < r < +\infty$, the (weighted) Bergman space $A_r^p = A_r^p(\mathbb{D})$ of the disc is the space of analytic functions in $L^p(\mathbb{D}, dA_r)$, where

$$dA_r(z) = (r+1)(1-|z|^2)^r dA(z)$$

If f is in A_r^p , we write

$$||f||_{A_r^p} = \left(\int_{\mathbb{D}} |f(z)|^p dA_r(z)\right)^{\frac{1}{p}}.$$

When $1 \leq p < +\infty$, the space A_r^p is a Banach space with the above norm.

For $1 and <math>-1 < r < \infty$, an analytic function f on \mathbb{D} is said to belong to the Besov-type space $B_{p,r}$ if

$$||f||_{B_{p,r}} = \left(\int_{\mathbb{D}} |f'(z)|^p (1-|z|^2)^r dA(z)\right)^{\frac{1}{p}} < \infty,$$
(1.3)

where dA(z) denote the Lebegue area measure on \mathbb{D} . Also, if we take 1 and <math>r = p - 2 in (1.3), then we get analytic Besov space, simply denoted by B_p . We can see that $|f(0)| + ||f||_{B_{p,r}}$ is a norm on $B_{p,r}$, that makes it a Banach space. Moreover, we can observe that, for f to be in $B_{p,r}$, it is necessary that the derivative of f belong to the weighted Bergman spaces A_r^p .

Definition 1.1. Let μ be a positive measure on \mathbb{D} . Then the space $\mathbb{D}_p(\mu)$ is defined as the space of all holomorphic functions $f \in H(\mathbb{D})$ for which $f' \in L^p(\mathbb{D}, \mu)$. Also, the norm on $\mathbb{D}_p(\mu)$ is defined as

$$||f||_{\mathbb{D}_p(\mu)}^p = \int_{\mathbb{D}} |f'(z)|^p d\mu(z).$$

Take $0 . A positive measure <math>\mu$ on \mathbb{D} is called a *p*-Carleson measure in \mathbb{D} if

$$\sup_{I \subseteq \partial \mathbb{D}} \frac{\mu(S(I))}{|I|^p} < \infty, \tag{1.4}$$

where |I| denotes the arc length of I and S(I) denotes the Carleson square based on I,

$$S(I) = \{ z \in \mathbb{D} : 1 - |I| \le |z| < 1, \frac{z}{|z|} \in I \}.$$

Again, μ is called a *vanishing p-Carleson measure* if

$$\lim_{|I|\to 0} \frac{\mu(S(I))}{|I|^p} = 0.$$
(1.5)

Take $h \in (0, 1)$ and $\theta \in [0, 2\pi)$. If we set

$$S(h,\theta) = \{ z \in \mathbb{D} : |z - e^{i\theta}| < h \},\$$

then we can see that (1.4) and (1.5) are equivalent to

$$\sup_{h \in (0,1), \theta \in [0,2\pi)} \frac{\mu(S(h,\theta))}{h^p} < \infty$$
(1.6)

and

$$\lim_{h \to 0} \sup_{\theta \in [0, 2\pi)} \frac{\mu(S(h, \theta))}{h^p} = 0,$$
(1.7)

respectively.

Suppose φ is a holomorphic mapping defined on \mathbb{D} . Let $\varphi(\mathbb{D}) \subseteq \mathbb{D}$ and $\psi \in B_{q,r}$ be such that $\psi(z)\varphi'(z) \in L^q(\mathbb{D}, dA_r)$. We define the measures $\mu_{q,r}$ and $\nu_{q,r}$ on \mathbb{D} by

$$\mu_{q,r}(E) = \int_{\varphi^{-1}(E)} |\psi(z)\varphi'(z)|^q (1-|z|^2)^r dA(z)$$
(1.8)

and

$$\nu_{q,r}(E) = \int_{\varphi^{-1}(E)} |\psi'(z)|^q (1 - |z|^2)^r dA(z), \qquad (1.9)$$

where E is a measurable subset of the unit disc \mathbb{D} .

If $\psi \in A_r^q$, then we can define the measure $\nu_{q,\psi,r}$ on \mathbb{D} by

$$\nu_{q,\psi,r}(E) = \int_{\varphi^{-1}(E)} |\psi(z)|^q (1-|z|^2)^r dA(z).$$
(1.10)

Definition 1.2. Take $1 and <math>-1 < r < \infty$. Let μ be a positive measure on \mathbb{D} . Then the measure μ is (p, r)-Carleson measure for $B_{p,r}$ if there is a constant K > 0 such that

$$\int_{\mathbb{D}} |f'(w)|^p d\mu(w) \leqslant K ||f||_{B_{p,r}}^p.$$

for all $f \in B_{p,r}$. That is, the inclusion operator $i : B_{p,r} \to \mathbb{D}_p(\mu)$ is bounded. Further, the measure μ is a vanishing *p*-Carleson measure for $B_{p,r}$ if the inclusion operator $i : B_{p,r} \to \mathbb{D}_p(\mu)$ is compact.

The following characterization of (p, r)-Carleson measures can be obtained easily from [1].

Theorem 1.3. Take $1 and <math>-1 < r < \infty$. Let μ be a positive measure on \mathbb{D} . Then the following statements are equivalent:

- (1) The measure μ is a (p, r)-Carleson measure for $B_{p,r}$.
- (2) There exists a constant $K < \infty$ such that

$$\mu(S(h,\theta)) \le Kh^p$$

for all $\theta \in [0, 2\pi)$ and $h \in (0, 1)$.

(3) There exists a constant $C < \infty$ such that

$$\int_{\mathbb{D}} |\sigma_a'(z)|^p d\mu(z) \leq C$$

for all $a \in \mathbb{D}$.

Using ([6], Lemma 2.1) and ([8], page 163), the following lemma can be proved easily.

Lemma 1.4. Let φ be a holomorphic mapping defined on \mathbb{D} such that $\varphi(\mathbb{D}) \subseteq \mathbb{D}$. Take $\psi \in B_{q,r}$ such that $\psi(z)\varphi'(z) \in L^q(\mathbb{D}, dA_r)$. Then

$$\int_{\mathbb{D}} g d\mu_{q,r} = \int_{\mathbb{D}} |\psi(z)\varphi'(z)|^q (g \circ \varphi)(z)(1-|z|^2)^r dA(z)$$
(1.11)

and

$$\int_{\mathbb{D}} g d\nu_{q,r} = \int_{\mathbb{D}} |\psi'(z)|^q (g \circ \varphi)(z) (1 - |z|^2)^r dA(z).$$
(1.12)

where g is an arbitrary measurable positive function in \mathbb{D} .

80

We use the following lemma for compactness of the weighted composition operators on Besov-type spaces. The proof of this lemma follows by similar lines as in the case of composition operators on Besov spaces ([12], Lemma 3.8).

Lemma 1.5. Given $1 \leq p, q < \infty$, $-1 < r < \infty$, let φ be a holomorphic mapping defined on \mathbb{D} with $\varphi(\mathbb{D}) \subseteq \mathbb{D}$ and $\psi \in B_{q,r}$ be such that $W_{\varphi,\psi} : B_{p,r} \to B_{q,r}$ is bounded. Then $W_{\varphi,\psi} : B_{p,r} \to B_{q,r}$ is compact (weakly compact) if and only if whenever $\{f_n\}$ is a bounded sequence in $B_{p,r}$ converging to zero uniformly on compact subsets of \mathbb{D} , then $\|W_{\varphi,\psi}(f_n)\|_{B_{q,r}} \to 0$ (respectively, $\{W_{\varphi,\psi}(f_n)\}$ is a weak null sequence in $B_{q,r}$).

Boundededness and compactness of the weighted composition operators on spaces of analytic functions has been studied by many authors. For example we refer to [2-5,9,10,13].

In this article, by using the Carleson measure, we characterize the boundeness and compactness of $W_{\varphi,\psi}$ on Besov-type spaces, in section 2. The Carleson measure characterization of $W_{\varphi,\psi}$ acing on Besov spaces is given in section 3.

2. Bounded and compact weighted composition operators on Besov-type spaces

In this section, we characterize the boundeness and compactness of $W_{\varphi,\psi}$ on Besov-type spaces by using Carleson measures.

Theorem 2.1. Take $1 and <math>-1 < r < \infty$. Let $\varphi \in B_{p,r}$ be such that $\varphi(\mathbb{D}) \subseteq \mathbb{D}, \psi \in A_r^q$ and the measure $\nu_{q,\psi,r}$ is a vanishing (q, r)-Carleson measure for $B_{q,r}$. Then $W_{\varphi,\psi}$ defines a bounded operator from $B_{p,r}$ into A_r^q . Moreover, $W_{\varphi,\psi} : B_{p,r} \to A_r^q$ is compact.

Proof. We prove the compactness only. Let $\{f_n\}$ be a bounded sequence in $B_{p,r}$ such that $f_n \to 0$ uniformly on compact subsets of \mathbb{D} . Since the measure $\nu_{q,\psi,r}$ is a vanishing (q,r)-Carleson measure for $B_{q,r}$, the inclusion map $i: B_{q,r} \to L^q(\mathbb{D}, \nu_{q,\psi,r})$ is compact. Since $B_{p,r} \subset B_{q,r}$, we have $\|f_n\|_{L^q(\mathbb{D},\nu_{q,\psi,r})} \to 0$ as $n \to \infty$. Therefore, by Lemma 1.4, we have

$$\|W_{\varphi,\psi}(f_n)\|_{A^q_r}^q = \int_{\mathbb{D}} |\psi(z)|^q |(f_n \circ \varphi)(z)|^q (1 - |z|^2)^r dA(z) = \int_{\mathbb{D}} |f_n(z)|^q d\nu_{q,\psi,r}(z) \to 0, \quad \text{as} \quad n \to \infty.$$
(2.1)

Thus, $W_{\varphi,\psi}: B_{p,r} \to A_r^q$ is compact.

Theorem 2.2. Take $1 and <math>-1 < r < \infty$. Let $\varphi, \psi \in B_{p,r}$ be such that $\varphi(\mathbb{D}) \subseteq \mathbb{D}$ and the measure $\nu_{q,r}$ is a vanishing (q, r)-Carleson measure for $B_{q,r}$. Then $W_{\varphi,\psi}$ is a bounded operator from $B_{p,r}$ into $B_{q,r}$ if and only if $W_{\varphi,\psi\varphi'}$ is a bounded operator from A_r^p into A_r^q .

Proof. Suppose that $W_{\varphi,\psi}: B_{p,r} \to B_{q,r}$ is bounded. Then there exists a constant C > 0 such that

$$||W_{\varphi,\psi}(g)||_{B_{q,r}} \leq C ||g||_{B_{p,r}}$$

for all $g \in B_{p,r}$. Also, by Theorem 2.1, we can find a constant M > 0 such that

$$\|W_{\varphi,\psi'}(g)\|_{A^q_r} \leqslant M \|g\|_{B_{p,r}}, \qquad g \in B_{p,r}.$$

Take $f \in A_r^p$ and let the function $g \in B_{p,r}$ be such that g' = f and g(0) = 0. Then,

$$\begin{split} \|W_{\varphi,\psi\varphi'}(f)\|_{A_r^q} &= \|\psi\varphi'f \circ \varphi\|_{A_r^q} \\ &= \|\psi\varphi'f \circ \varphi + \psi'g \circ \varphi - \psi'g \circ \varphi\|_{A_r^q} \\ &\leqslant \|(\psi g \circ \varphi)'\|_{A_r^q} + \|\psi'g \circ \varphi\|_{A_r^q} \\ &= \|\psi g \circ \varphi\|_{B_{q,r}} + \|\psi'g \circ \varphi\|_{A_r^q} \\ &\leqslant C\|g\|_{B_{p,r}} + M\|g\|_{B_{p,r}} \\ &= (C+M)\|g\|_{B_{p,r}} \\ &= (C+M)\|g\|_{B_{p,r}} \end{split}$$

Thus, $W_{\varphi,\psi\varphi'}: A^p_r \to A^q_r$ is bounded.

Conversely, suppose $W_{\varphi,\psi\varphi'}: A_r^p \to A_r^q$ is bounded. Again, by Theorem 2.1,

$$W_{\varphi,\psi'}: B_{p,r} \to A_r^q$$

is bounded. Take $f \in B_{p,r}$ such that f(0) = 0. Then, we have

$$\begin{aligned} \|W_{\varphi,\psi}(f)\|_{B_{q,r}} &= \|(\psi f \circ \varphi)'\|_{A^q_r} \\ &= \|\psi \varphi' f' \circ \varphi + \psi' f \circ \varphi\|_{A^q_r} \\ &\leqslant \|W_{\varphi,\psi\varphi'}(f')\|_{A^q_r} + \|W_{\varphi,\psi'}(f)\|_{A^q_r} < +\infty. \end{aligned}$$

The theorem is proved.

Theorem 2.3. Take $1 and <math>-1 < r < \infty$. Let $\varphi, \psi \in B_{p,r}$ be such that $\varphi(\mathbb{D}) \subseteq \mathbb{D}$ and the measure $\nu_{q,r}$ is a vanishing (q, r)-Carleson measure for $B_{q,r}$. Then $W_{\varphi,\psi}$ is a compact operator from $B_{p,r}$ into $B_{q,r}$ if and only if $W_{\varphi,\psi\varphi'}$ is a compact operator from A_r^p into A_r^q .

Proof. Suppose that $W_{\varphi,\psi}: B_{p,r} \to B_{q,r}$ is compact. Let $\{f_n\}$ be a bounded sequence in A_r^p such that $f_n \to 0$ uniformly on compact subsets of \mathbb{D} . For each n, there exists a function $g_n \in B_{p,r}$ such that $g'_n = f_n$ and $g_n(0) = 0$. The sequence $\{g_n\}$ also converges to zero uniformly on compact subsets of \mathbb{D} as $n \to \infty$. Further, since $W_{\varphi,\psi}: B_{p,r} \to B_{q,r}$ is compact, so $\|W_{\varphi,\psi}(g_n)\|_{B_{q,r}} \to 0$ as $n \to \infty$. Again, by Theorem 2.1, $W_{\varphi,\psi'}: B_{p,r} \to A_r^q$ is compact, so $\|W_{\varphi,\psi'}(g_n)\|_{A_r^q}$ also converges to zero as $n \to \infty$. We have

$$\begin{split} \|W_{\varphi,\psi\varphi'}(f_n)\|_{A^q_r} &= \|\psi\varphi'f_n\circ\varphi\|_{A^q_r} \\ &\leqslant \|\psi\varphi'f_n\circ\varphi+\psi'g_n\circ\varphi\|_{A^q_r} + \|\psi'g_n\circ\varphi\|_{A^q_r} \\ &= \|(\psi g_n\circ\varphi)'\|_{A^q_r} + \|W_{\varphi,\psi'}(g_n)\|_{A^q_r} \\ &= \|W_{\varphi,\psi}(g_n)\|_{B_{q,r}} + \|W_{\varphi,\psi'}(g_n)\|_{A^q_r} \to 0, \quad \text{as} \quad n \to \infty \end{split}$$

Therefore, $W_{\varphi,\psi\varphi'}: A^p_r \to A^q_r$ is compact.

Conversely, suppose $W_{\varphi,\psi\varphi'}: A^p_r \to A^q_r$ is compact. Again, by Theorem 2.1, $W_{\varphi,\psi'}: B_{p,r} \to A^q_r$ is compact. Let $\{g_n\}$ be the same sequence as in the direct part. Then,

$$\begin{split} \|W_{\varphi,\psi}(g_n)\|_{B_{q,r}} &= \|(\psi g_n \circ \varphi)'\|_{A^q_r} \\ &= \|\psi \varphi' g'_n \circ \varphi + \psi' g_n \circ \varphi\|_{A^q_r} \\ &\|W_{\varphi,\psi\varphi'}(f_n)\|_{A^q_r} + \|W_{\varphi,\psi'}(g_n)\|_{A^q_r} \to 0, \quad \text{as} \quad n \to \infty \end{split}$$

Thus, $W_{\varphi,\psi}: B_{p,r} \to B_{q,r}$ is compact.

Theorem 2.4. Take $1 and <math>-1 < r < \infty$. Let $\varphi, \psi \in B_{p,r}$ be such that $\varphi(\mathbb{D}) \subseteq \mathbb{D}$ and the measure $\nu_{p,r}$ is a vanishing (p,r)-Carleson measure for $B_{p,r}$. Then $W_{\varphi,\psi}$ is a bounded (compact) operator from $B_{p,r}$ into $B_{p,r}$ if and only if $\mu_{p,r}$ is a bounded (vanishing) (p,r)-Carleson measure for $B_{p,r}$.

Proof. We only prove the boundedness. Suppose first that $W_{\varphi,\psi}: B_{p,r} \to B_{p,r}$ is bounded. Then by Theorem 2.2, $W_{\varphi,\psi\varphi'}$ is a bounded operator on A_r^p . Let $f \in B_{p,r}$ be such that

f(0) = 0. Then, by using Lemma 1.4, we have

$$\begin{split} \|W_{\varphi,\psi\varphi'}(f')\|_{A^p_r}^p &= \int_{\mathbb{D}} |\psi(z)\varphi'(z)|^p |f'(\varphi(z))|^p (1-|z|^2)^r dA(z) \\ &= \int_{\mathbb{D}} |f'(w)|^p d\mu_{p,r}(w). \end{split}$$

Since $W_{\varphi,\psi\varphi'}$ is bounded on A_r^p , therefore we can find a constant C > 0 such that

$$\|W_{\varphi,\psi\varphi'}(f')\|_{A^p_r}^p \leqslant C \|f'\|_{A^p_r}^p$$

Hence,

$$\int_{\mathbb{D}} |f'(w)|^p d\mu_{p,r}(w) \leqslant C ||f||_{B_{p,r}}^p$$

That is, the inclusion operator $i: B_{p,r} \to \mathbb{D}_{p,r}(\mu)$ is bounded. Thus the measure $\mu_{p,r}$ is a bounded (p,r)-Carleson measure for $B_{p,r}$.

Conversely, suppose that $\mu_{p,r}$ is a bounded (p,r)-Carleson measure for $B_{p,r}$. We want to show that $W_{\varphi,\psi}: B_{p,r} \to B_{p,r}$ is bounded. We have

$$(\psi(f \circ \varphi)') = \psi\varphi'(f' \circ \varphi) + \psi'(f \circ \varphi).$$
(2.2)

Take $f \in B_{p,r}$. So by Lemma 1.4,

$$\int_{\mathbb{D}} |\psi(z)\varphi'(z)|^p |f'(\varphi(z))|^p (1-|z|^2)^r dA(z) = \int_{\mathbb{D}} |f'(w)|^p d\mu_{p,r}(w) < +\infty.$$
(2.3)

Also, by using Theorem 2.1, we get

$$\int_{\mathbb{D}} |\psi'(z)|^p |f(\varphi(z))|^p (1-|z|^2)^r dA(z) = \|W_{\varphi,\psi'}(f)\|_{A^p_r}^p < +\infty.$$
(2.4)

By using (2.2), (2.3) and (2.4), $W_{\varphi,\psi}: B_{p,r} \to B_{p,r}$ is bounded. Compactness of $W_{\varphi,\psi}$ can be proved by using the Theorems 2.1 and 2.3, which we omit its proof.

3. Carleson measure characterization of the weighted composition operators on Besov spaces

In this section, we give a Carleson measure characterization of $W_{\varphi,\psi}$ on Besov space.

Let $1 < p, q < \infty$, φ be a holomorphic mapping defined on \mathbb{D} such that $\varphi(\mathbb{D}) \subseteq \mathbb{D}$ and $\psi \in B_q$ be such that $\psi(z)\varphi'(z)(1-|z|^2) \in L^q(\mathbb{D}, d\lambda)$ (where $d\lambda(z) = (1-|z|^2)^{-2}dA(z)$ is the Mobius invariant measure on \mathbb{D}). For $f \in B_p$ there exists a constant C_q such that

$$\begin{split} \|W_{\varphi,\psi}(f)\|_{B_q}^q &= \int_{\mathbb{D}} |(\psi C_{\varphi} f)'(z)|^q (1-|z|^2)^{q-2} dA(z) \\ &\leqslant \quad C_q \int_{\mathbb{D}} |\psi'(z)|^q |(C_{\varphi} f)(z)|^q (1-|z|^2)^{q-2} dA(z) \\ &+ C_q \int_{\mathbb{D}} |\psi(z)|^q |\varphi'(z)|^q |f'(\varphi(z))|^q (1-|z|^2)^{q-2} dA(z). \end{split}$$

By using Lemma 1.4, we have

$$\|W_{\varphi,\psi}(f)\|_{B_q}^q \leqslant C_q \int_{\mathbb{D}} |f(w)|^q d\nu_q(w) + C_q \int_{\mathbb{D}} |f'(w)|^q d\mu_q(w).$$
(3.1)

Since $W_{\varphi,\psi}: B_p \to B_q$ is a bounded operator if and only if there exists a positive constant C such that

$$||W_{\varphi,\psi}(f)||_{B_q}^q \le C ||f||_{B_p}^q,$$

so, the following theorem holds.

Theorem 3.1. Let $1 , <math>\varphi$ be a holomorphic mapping defined on \mathbb{D} such that $\varphi(\mathbb{D}) \subseteq \mathbb{D}$ and $\psi \in B_p$ be such that $\psi(z)\varphi'(z)(1-|z|^2) \in L^p(\mathbb{D}, d\lambda)$. If the measure μ_p is a p-Carleson measure and ν_p is a vanishing p-Carleson measure for B_p , then $W_{\varphi,\psi} : B_p \to B_p$ is a bounded operator.

Proof. Suppose that μ_p is a *p*-Carleson measure for B_p . By Definition 1.2, there exisits a constant C_1 such that

$$\int_{D} |f'(w)|^{p} d\mu_{p}(w) \leq C_{1} ||f||_{B_{p}}^{p}.$$
(3.2)

Let ν_p is a vanishing *p*-Carleson measure for B_p . By using Theorem 2.1 for r = p - 2, there exisits a constant C_2 such that

$$\|W_{\varphi,\psi'}(f)\|_{A^{p}}^{p} = \int_{D} |\psi'(z)|^{p} |f \circ \varphi|^{p} (1-|z|^{2})^{p-2} dAz$$

$$= \int_{D} |f(w)|^{p} d\nu_{p}(w)$$

$$\leq C_{2} \|f\|_{B_{p}}^{p}.$$
 (3.3)

By using (3.2) and (3.3), from (3.1) the theorem is proved.

Theorem 3.2. Suppose $1 and <math>\varphi$ is a holomorphic mapping defined on \mathbb{D} . Let $\varphi(\mathbb{D}) \subseteq \mathbb{D}$ and $\psi \in B_q$ be such that $\psi(z)\varphi'(z)(1-|z|^2) \in L^q(\mathbb{D}, d\lambda)$. If the measures ν_q and μ_q are vanishing q-Carleson measures for B_q , then $W_{\varphi,\psi} : B_p \to B_q$ is a compact operator.

Proof. Let $\{f_n\}$ be a bounded sequence in B_p such that $f_n \to 0$ uniformly on compact subsets of \mathbb{D} . Then the mean value property for the holomorphic function yields

$$f'_{n}(w) = \frac{4}{\pi(1-|w|)^{2}} \int_{|w-z| < \frac{1-|w|}{2}} f'_{n}(z) dA(z).$$
(3.4)

Therefore by Jensen's inequality,

$$|f'_n(w)|^q \le \frac{4}{\pi(1-|w|)^2} \int_{|w-z|<\frac{1-|w|}{2}} |f'_n(z)|^q dA(z).$$
(3.5)

Since the measure ν_q is a vanishing q-Carleson measure for B_q , by using Theorem 2.1(relation (2.1)), we have

$$\int_{D} |f_n(w)|^q d\nu_q(w) \to 0, \quad \text{as} \quad n \to \infty.$$
(3.6)

By using (3.1), (3.5), (3.6) and Fubini's Theorem,

$$\begin{split} \|W_{\varphi,\psi}(f_n)\|_{B_q}^q &\leq C_q \int_D |f_n(w)|^q d\nu_q(w) + C_q \int_D |f_n'(w)|^q d\mu_q(w) \\ &\leq C_q \int_D \frac{4}{\pi (1 - |w|)^2} \left(\int_{|w-z| < \frac{1 - |w|}{2}} |f_n'(z)|^q dA(z) \right) d\mu_q(w) \\ &\leq C_q \frac{4}{\pi} \int_D |f_n'(z)|^q \left(\int_D \frac{1}{(1 - |w|)^2} \chi_{\{z:|w-z| < \frac{1 - |w|}{2}\}}(z) d\mu_q(w) \right) dA(z). \end{split}$$

Note that if $|w-z| < \frac{1-|w|}{2}$, then $w \in S(2(1-|z|), \theta)$, where $z = |z|e^{i\theta}$, since

$$|w - e^{i\theta}| \le |z - w| + |e^{i\theta} - z| < \frac{1 - |w|}{2} + |\frac{z}{|z|} - z| < 2(1 - |z|).$$

Moreover, if $|w - z| < \frac{1 - |w|}{2}$ then

$$\frac{1}{(1-|w|)^2} \le const. \frac{1}{(1-|z|)^2}.$$

Hence,

$$\begin{split} \|W_{\varphi,\psi}(f_n)\|_{B_q}^q &\leq \ const. \int_D \frac{|f_n'(z)|^q}{(1-|z|)^2} \left(\int_{S(2(1-|z|),\theta)} d\mu_q(w) \right) dA(z) \\ &= \ const. \left(\int_{|z|>1-\frac{\delta}{2}} + \int_{|z|\le 1-\frac{\delta}{2}} \frac{|f_n'(z)|^q}{(1-|z|)^2} \left(\int_{S(2(1-|z|),\theta)} d\mu_q(w) \right) dA(z) \right) \\ &= \ I + II \end{split}$$
(3.7)

for any $0 < \delta < 1$.

Fix $\epsilon > 0$ and let $\delta > 0$ be such that for any $\theta \in [0, 2\pi]$ and any $h < \delta$,

$$\mu_q(S(h,\theta)) < \epsilon h^q, \tag{3.8}$$

and so

$$\int_{S(h,\theta)} d\mu_q < \epsilon h^q$$

By (3.8),

$$I \leq const. \ 2^{q} \epsilon \int_{|z|>1-\frac{\delta}{2}} \frac{|f_{n}'(z)|^{q}}{(1-|z|^{2})^{2}} (1-|z|^{2})^{q} dA(z)$$

$$\leq const. \ \epsilon \|f_{n}\|_{B_{q}}^{q} < const. \ \epsilon.$$
(3.9)

For n large enough, since $f'_n \to 0$ uniformly on compact sets, we have

$$II \le const. \ \int_{|z|\le 1-\frac{\delta}{2}} |f'_n(z)|^q \left(\int_D d\mu_q\right) dA(z) < const. \ \epsilon.$$
(3.10)

Therefore, from (3.7), (3.9) and (3.10) we obtain

$$\|W_{\varphi,\psi}(f_n)\|_{B_q}^q < const.\epsilon.$$

Thus $||W_{\varphi,\psi}(f_n)||_{B_q}^q \to 0$ as $n \to \infty$, and from Lemma 1.5, $W_{\varphi,\psi}$ is compact.

References

- J. Arazy, S.D. Fisher and J. Peetre, *Mobius invariant function spaces*, J. Reine Angew. Math. 363, 110–145, 1985.
- [2] D. Blasi and J. Pav, A Characterization of Besov type spaces and applications to Hankel-type operators, Michigan Math. J. 56, 401–418, 2008.
- [3] F. Colonna and S. Li, Weighted Composition Operators from the Besov spaces into the Bloch space, Bull. Malays. Math. Sci. Soc. 36, 1027–1039, 2013.
- [4] F. Colonna and M. Tjani, Weighted Composition Operators from the Besov spaces into the weighted type space H[∞]_μ, J. Math. Anal. Appl. 402, 594–611, 2013.
- [5] F. Colonna and M. Tjani, Weighted Composition Operators from the analytic Besov spaces to BMOA, Oper. Theory Adv. Appl. 236, 133–157, 2014.
- [6] M.D. Contreras and A.G. Hernandez-Diaz, Weighted composition operators on Hardy spaces, J. Math. Anal. Appl. 263, 224–233, 2001.
- [7] C.C. Cowen and B.D. MacCluer, Composition operators on spaces of analytic functions, CRC Press, Boca Raton, New York, 1995.
- [8] P.R. Halmos, *Measure Theory*, Grad. Texts in Math., 18, Springer-Verlag, New York, 1974.
- [9] M. Hassanlou, J. Laitila and H. Vaezi, Weighted composition operators between weak spaces of vector-valued analytic functions, Analysis, 37, 39–45, 2017.
- [10] M. Hassanlou, H. Vaezi and M. Wang, Weighted composition operators on weak vectorvalued Bergman spaces and Hardy spaces, Banach J. Math. Anal. 9 (2), 35–43, 2015.
- J.H. Shapiro, Composition operators and classical function theory, Berlin, Germany, Springer- Verlag, 1993.

- [12] M. Tjani, Compact composition operators on Besov space, Trans. Amer. Math. Soc. 355 (11), 4683–4698, 2003.
- [13] W. Yang, Weighted composition operators from Bloch-type spaces to weighted-type spaces, Ars. Combin. 92, 415–423, 2009.