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Abstract

In this paper, we study the boundedness and the compactness of weighted composition
operators between Besov-type spaces. Also, we give a Carleson measure characterization
of weighted composition operators on Besov spaces.
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1. Introduction

Let D be the open unit disc in the complex plane C. Denote by H(D) the class of
all complex-valued functions analytic on . Suppose ¢ and 1 are holomorphic functions
defined on D such that ¢(D) C D. The weighted composition operator W, 4 induced by ¢
and ¥ on H(D) is defined by

W f(2) = 1(2)f(0(2)) = ¢¥(2)Co(f),
for all f € H(D) and z € D. When 9(z) = 1, the composition operator W, is denoted
by Cy, i.e.,
Wi f(z) = f(e(2)) = Cu(f),
for all f € H(D) and z € D. For the study of composition operators one can refer to [7]
and [11].
Fix any a € D and let 0,(z) be the Mobius transform defined by
a—z
oa(2) = T, eD.
We denote the set of all Mobius transformations on D by G. The inverse of ¢, under
composition is again o, for @ € . Further, we have

1—|af®
o0 (2)| = 1 ap (1.1)

and
(1 —aP)(@ —[2[*)

1 - ‘Ua(z)‘Q = 1 —EZ|2 =(1- |Z’2)’0'(/1(Z)’, (1.2)

for every a, z € D.
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For 1 < p < oo, LP(D,dA) will denote the Banach space of Lebesgue measurable
functions f on D with

17l = ([ 1eaac)) < o

where dA(z) denote the Lebesgue area measure on D.
For p = +o0, L*(ID,dA) will denote the Banach space of Lebesgue measurable functions
f on D with
[flloo = esssup{[f(2)] : 2 € D} < +o0.

For 1 < p < oo, the Bergman space AP, is defined to be the subspace of LP(ID,dA)
consisting of analytic functions, i.e. AP(D) = LP(D) N H*>*(D). The Bergman spaces are
Banach spaces.

For 1 < p < 400 and —1 <7 < 400, the (weighted) Bergman space AP = AP(D) of the
disc is the space of analytic functions in LP(ID, dA, ), where

dA.(2) = (r + 1)(1 — |2]*)"dA(2).

If fisin AP, we write

[ fllaz = (/D !f(z)lpdA,«(z));,

When 1 < p < 400, the space AP is a Banach space with the above norm.
For 1 < p < 400 and —1 < r < oo, an analytic function f on ID is said to belong to the
Besov-type space B, if

191, = ([ 17 GP0- 2Prda)” <o, (13)

where dA(z) denote the Lebegue area measure on D. Also, if we take 1 < p < oo and
r=p—2in (1.3), then we get analytic Besov space, simply denoted by B,. We can see
that |f(0)[ + || f||B,., is a norm on B,,, that makes it a Banach space. Moreover, we can
observe that, for f to be in B, ,, it is necessary that the derivative of f belong to the
weighted Bergman spaces AP.

Definition 1.1. Let x4 be a positive measure on . Then the space Dy(u) is defined as
the space of all holomorphic functions f € H(D) for which f € LP(D, u). Also, the norm
on Dy, (p) is defined as

171,50 = [ 19/ Pdu(o)

Take 0 < p < co. A positive measure p on D is called a p-Carleson measure in D if

pSw) _ )

sup
rcop [P

where |I| denotes the arc length of I and S(I) denotes the Carleson square based on I,

S(I):{zeﬂ):l—m§|z|<1,éel}.
Again, p is called a vanishing p-Carleson measure if
I
pSU) _ (1.5)

[1j—o I[P
Take h € (0,1) and 0 € [0,27). If we set
S(h,0)={zeD:|z—e" < h},
then we can see that (1.4) and (1.5) are equivalent to

sup (S (h, 6)) < 00 (1.6)

he(0,1),0€[0,2) hp
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and

: 1
lim sup ————= =0, 1.7
h=0pci02r) 1P (L.7)

respectively.

Suppose ¢ is a holomorphic mapping defined on D. Let p(D) C D and ¢ € By, be such
that ¢(2)¢'(z) € LY(D, dA,). We define the measures jiq, and v4, on D by

tanr(E) = /_ [W(2)¢ (2)9(1 — |2[*)"dA(2) (1.8)
e~ 1(E)

and
Vg (E) = /7 ¢ (2)|%(1 = |2[*)"dA(2), (1.9)
v HE)

where F is a measurable subset of the unit disc D.

If ¢ € A4, then we can define the measure v, , on D by
vaur(B) = [ @10 - |2 dAG). (110)
e H(E)

Definition 1.2. Take 1 < p < 400 and —1 < r < co. Let u be a positive measure on D.
Then the measure 4 is (p,7)-Carleson measure for B,,, if there is a constant K > 0 such
that

L1 @) < K115, .

for all f € B, ,. That is, the inclusion operator i : By, — D,(¢) is bounded. Further, the
measure /4 is a vanishing p-Carleson measure for B, , if the inclusion operator i : B, —
D, (p) is compact.

The following characterization of (p,r)—Carleson measures can be obtained easily from
[1]-

Theorem 1.3. Taoke 1 < p < o0 and —1 < r < co. Let p be a positive measure on D.
Then the following statements are equivalent:

(1) The measure i is a (p, r)-Carleson measure for By .
(2) There exists a constant K < oo such that

p(S(h,0)) < Kh?
for all § € [0,27) and h € (0,1).
(3) There exists a constant C' < oo such that
[ louPdu(z) < €
D
for all a € D.
Using ([6], Lemma 2.1) and ([8], page 163), the following lemma can be proved easily.

Lemma 1.4. Let ¢ be a holomorphic mapping defined on D such that (D) C D. Take
Y € By, such that ¢(z)¢'(z) € LY(D,dA,). Then

[ gduar = [ 100 (2) (g0 9)(2)(1 12 dA(2) (111)
D D
and
[ gdvar = [ 10110 @)1 = s dA(). (112
D D

where g is an arbitrary measurable positive function in D.
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We use the following lemma for compactness of the weighted composition operators
on Besov-type spaces. The proof of this lemma follows by similar lines as in the case of
composition operators on Besov spaces ([12], Lemma 3.8).

Lemma 1.5. Given 1 < p,q < o0, —1 < r < o0, let ¢ be a holomorphic mapping
defined on D with (D) C D and ¢ € By, be such that Wy, = By, — By, is bounded.
Then Wy @ By, — By, is compact (weakly compact) if and only if whenever {f,} is
a bounded sequence in By, converging to zero uniformly on compact subsets of I, then
[Wo.w(fo)ll B, — 0 (respectivly, {W,y(fn)} is a weak null sequence in By ).

Boundededness and compactness of the weighted composition operators on spaces of an-
alytic functions has been studied by many authors. For example we refer to [2-5,9,10,13].

In this article, by using the Carleson measure, we characterize the boundeness and
compactness of W, on Besov-type spaces, in section 2. The Carleson measure charac-
terization of W, acing on Besov spaces is given in section 3.

2. Bounded and compact weighted composition operators on Besov-type
spaces

In this section, we characterize the boundeness and compactness of W, ,, on Besov-type
spaces by using Carleson measures.

Theorem 2.1. Take 1 < p < g < o0 and —1 < r < oco. Let ¢ € By, be such that
p(D) C D, ¢ € A% and the measure vy, is a vanishing (q, r)-Carleson measure for By .
Then W, defines a bounded operator from By, into Af. Moreover, Wy : By, — Al is
compact.

Proof. We prove the compactness only. Let {f,} be a bounded sequence in B, such
that f, — 0 uniformly on compact subsets of ID. Since the measure v, , is a vanishing
(g,r)—Carleson measure for By, the inclusion map i : Bg, — LY(D, v,,y.) is compact.
Since By, C By, we have || fullLe,y, ) — 0 as n — oo. Therefore, by Lemma 1.4, we
have

IWesfllhy = [ @I 0 )71 = s dA()

= /D‘fn(zﬂqdl/q,w,r(z) —0, as n— oo. (2.1)

Thus, Wy : By, — A is compact. O

Theorem 2.2. Take 1 < p < qg < oo and -1 <r < co. Let p,9 € By, be such that
o(D) € D and the measure vy, is a vanishing (q, r)-Carleson measure for By ,. Then

Wy is a bounded operator from By, into By, if and only if W, o is a bounded operator
from AP into Al.

Proof. Suppose that W, : By, — By is bounded. Then there exists a constant C' > 0
such that

Weu(9)l B, < Cllglls,.

for all g € B, ,. Also, by Theorem 2.1, we can find a constant M > 0 such that

W (@llag < MllgllB,.. 9 € Bpr
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Take f € AP and let the function g € B,, be such that ¢ = f and ¢g(0) = 0. Then,

W, () a2 10" f o ol| az

[’ fow+d'gop—1'gopl e

< (g o@)llag + [¥'g o ellas
= llvgoolls,, +I1v'go @l
< Cllglls,, + Mlglls,..

= (C+M)lg|s,,

= (C+ M)[[f]laz-

Thus, W, o+ AP — Af is bounded.
Conversely, suppose W, . : AP — A is bounded. Again, by Theorem 2.1,

WW"‘Z’, : Bp;,« — Ag
is bounded. Take f € B, such that f(0) = 0. Then, we have

IWeuw (DB, = (& o @)|az
[0 f o o+ f 0 | 4z
W wer (F)lag + [We ()l ag < 400

The theorem is proved. t

N

Theorem 2.3. Take 1 < p < qg < oo and -1 <r < oco. Let p,9 € By, be such that
o(D) € D and the measure vy, is a vanishing (q, r)-Carleson measure for By,. Then
Wy is a compact operator from B, into By, if and only if W, y is a compact operator
from AP into Ad.

Proof. Suppose that W, : By, — By, is compact. Let {f,} be a bounded sequence
in AP such that f, — 0 uniformly on compact subsets of . For each n, there exists a
function g, € By, such that g, = f, and ¢,,(0) = 0. The sequence {g,} also converges to
zero uniformly on compact subsets of D as n — oo. Further, since W, : By, — By, is
compact, so [|W,, 4 (gn)|lB,, — 0 as n — co. Again, by Theorem 2.1, W, ys : By, — Al is
compact, 50 [|[Wy, 4/ (gn)| 4¢ also converges to zero as n — oo. We have

W e (fn )|l g |2" fr © 0| aa ,
[9" fr 0 @ + 4 gn 0 ol ag + 19 gn 0 @] 4
[(¥gn © ©)'[| a2 + Wi, (gn) | a2

= [Weu(gn)ll By, + [Weur(gn)llag = 0, as n— oo

A

Therefore, Wy, . : A? — A is compact.
Conversely, suppose W, g : AL — Al is compact. Again, by Theorem 2.1, W,y : By, —
A% is compact. Let {g,} be the same sequence as in the direct part. Then,

[Weuw(gn)llByr = 1(Wgn o p) |l ae
= ||’ gn 0@+ gn o @l 4a
W o (fr)llag + Wy (gn)llas =0, as n — oo.

Thus, Wy : By — By, is compact. O

Theorem 2.4. Take 1 < p < oo and —1 < r < oco. Let p,p € By, be such that
o(D) € D and the measure vy, is a vanishing (p,r)— Carleson measure for By,,. Then
W is a bounded (compact) operator from By, into By, if and only if ji,, is a bounded
(vanishing) (p,r)—Carleson measure for By .

Proof. We only prove the boundedness. Suppose first that W, , : By, — B, is bounded.
Then by Theorem 2.2, W, . is a bounded operator on AL. Let f € B, be such that
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f(0) = 0. Then, by using Lemma 1.4, we have
W e (F)Ee = / ()¢ ()P F (@) P(1 = |21*) dA(2)

=l4wwwwmm>

Since W, 4 is bounded on AP, therefore we can find a constant C' > 0 such that
Wi () < CILFI7,

Hence,
1 @)Pdip(w) < €11,

That is, the inclusion operator ¢ : By, — Dy, ,(¢) is bounded. Thus the measure p,,, is a
bounded (p, r)—Carleson measure for B, ,..

Conversely, suppose that j,, is a bounded (p, r)—Carleson measure for B, ,. We want to
show that W, : By, — By, is bounded. We have

W(foe))=v¢'(ffop) +¢/(foy). (2.2)
Take f € Bp,. So by Lemma 1.4,
LGP @1 =127 dAE) = [ 17 @)l diw) <+ (23)
Also, by using Theorem 2.1, we get
/DW(Z)I”If(sD(Z))!p(l = [21)"dA(2) = W ()| < +o0. (2.4)

By using (2.2), (2.3) and (2.4), W,y : By, — B, is bounded.
Compactness of W, can be proved by using the Theorems 2.1 and 2.3, which we omit
its proof. ]

3. Carleson measure characterization of the weighted composition oper-
ators on Besov spaces

In this section, we give a Carleson measure charecterization of W, ,, on Besov space.

Let 1 < p,q < 00, ¢ be a holomorphic mapping defined on D such that ¢(D) C D and
¥ € By be such that 1(2)¢(2)(1 — |2]?) € LY(D,dX) (where d\(z) = (1 — |2|*)2dA(z) is
the Mobius invariant measure on D). For f € B, there exists a constant Cy such that

WD, = [ I@CH @I =23 2dAC)
< Cq/D [0/ () 1UCof)(2)|?(1 = [2)T72dA(2)
+Cq/D\w(Z)!q\w’(Z)!q!f’(so(Z))!q(l = [e[)2dA(2).
By using Lemma 1.4, we have

IWeso D), < Co [ 17) 9dvyw) + G [ 17/ (). (31)

Since W, : B, — By is a bounded operator if and only if there exists a positive constant
C such that
W (D%, < ClIFIG,.

so, the following theorem holds.
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Theorem 3.1. Let 1 < p < oo, ¢ be a holomorphic mapping defined on D such that
(D) C D and ) € B, be such that (2)¢'(2)(1—|2|?) € LP(D,d\). If the measure i, is a p-
Carleson measure and v, is a vanishing p-Carleson measure for By, then W, : B, — B,
is a bounded operator.

Proof. Suppose that p, is a p-Carleson measure for B),. By Definition 1.2, there exisits
a constant C; such that

1 @)Pdug(w) < 1, (32

Let v, is a vanishing p-Carleson measure for B,. By using Theorem 2.1 for r = p — 2,
there exisits a constant Cy such that

IWoar (Dl = [ WIS 0 0l (1 =22 2dAz

= [ I pduy(w)
< Glf,. (33)
By using (3.2) and (3.3), from (3.1) the theorem is proved. O

Theorem 3.2. Suppose 1 < p < g < oo and @ is a holomorphic mapping defined on D.
Let (D) C D and 1 € By be such that ¥(2)¢'(2)(1 — |2|*) € LI(D,dN). If the measures
vq and g are vanishing q-Carleson measures for By, then W,y © B, — By is a compact
operator.

Proof. Let {f,} be a bounded sequence in B, such that f, — 0 uniformly on compact
subsets of D. Then the mean value property for the holomorphic function yields

y _ 4
1) = a7 oy A (34)

Therefore by Jensen’s inequality,
4
éwq<7/ T (2)|7dA(z2). 3.5
L S s f o 04 (35)

Since the measure v, is a vanishing g-Carleson measure for By, by using Theorem 2.1(re-
lation (2.1)), we have

/ | fr(w)|?dvg(w) — 0, as n — oo. (3.6)
D
By using (3.1), (3.5), (3.6) and Fubini’s Theorem,

IWoltlls, < Co [ 1futw) fduy(w) +C, [ 11101ty (w)

4 , .
C D W </w z\<1 |w]| | ”(Z)| dA(Z)) d:“é](w)
C / |fn |q (/ WX{Z |[w— z|<1 ‘w‘}( )dﬂq(w)> dA(Z)

1-— 4
Note that if jw — z| < 2\11}]7 then w € S(2(1 — |z|),0), where z = |z]e?, since

IN

— |w]

2

z
— — 2 <2(1- .
g =2l < 21— e

, . 1
lw — e < |z —w|+[e? — 2| <

1—
Moreover, if |w — z| < Q\w] then
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Hence,

q | fn(2)]
IWewln)lz, = Com'/p (1—1z)? </5(2(1|z|>,9> dﬂqm)) )

. I ) aa:
B g </|2>1g Jr/z|<1§ (1—12])? </S(2(1IZ),9) il )> i )>

= I+1I (3.7)

for any 0 < § < 1.
Fix € > 0 and let 6 > 0 be such that for any 6 € [0, 27] and any h < 9,

11g(S(h, 0)) < ehf, (3.8)

and so
/ dpg < €ehf.
S(h,0)
By (3.8),
| fn(2)]? 2
I < const. 2q€/|z>1_g A e HPaAR)
< const. 6an\|‘}3q < const. e. (3.9)

For n large enough, since f;, — 0 uniformly on compact sets, we have

S |fl(2)]2 (/D duq> dA(z) < const. e. (3.10)

2

IT < const. /
|2|<1—

Therefore, from (3.7), (3.9) and (3.10) we obtain
HWgo,w(fn)Hqu < const.e.

Thus HW%w(fn)H%q — 0 as n — 00, and from Lemma 1.5, W, 4 is compact. O
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