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Abstract

In this paper we prove the existence of mild solutions for a first-order semilinear differential with state-
dependent delay. The existence results are established by means of a new version of Perov’s fixed point
principles combined with a technique based on vector-valued matrix and convergent to zero matrix.
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1. Introduction

Random ordinary differential equations (RODEs) are ordinary differential equations (ODEs) that include
a stochastic process in their vector field. They seem to have had a shadow existence to stochastic differential
equations (SODEs), but have been around for as long as if not longer and have many important applications.
In particular, RODEs play a fundamental role in the theory of random dynamical systems, it is more
realistic to consider such equations as random operator equations. Therefore, it is more realistic to consider
such equations as random operator equations which are much more difficult to handle mathematically than
deterministic equations. Important contributions to the study of the mathematical aspects of such random
equations have been undertaken in [9, 7, 1, 16] among others. Since sometimes we can get the random
distributions of some main disturbances by historical experiences and data rather than take all random
disturbances into account and assume the noise to be white noises. In a separable metric space, random
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fixed point theorems for contraction mappings were proved by Hans̆ [2, 3], S̆pac̆ek [8], Hans̆ and, S̆pac̆ek [4]
and Mukherjee [5, 6].
In this work we prove the existence of mild solutions of the following functional differential equation with
delay and random effects (random parameters) of the form:

x′(t, ω) = A1(w)x(t, ω)
+ f1(t, xρ1(t,xt)(·, ω), yρ1(t,yt)(·, ω), ω), a.e, t ∈ J := [0, a]

y′(t, ω) = A2(w)y(t, ω)
+ f2(t, xρ2(t,xt)(·, ω), yρ2(t,yt)(·, ω), ω) a.e, t ∈ J := [0, a]

x(t, ω) = φ1(t, ω), t ∈ (−∞, 0]
y(t, ω) = φ2(t, ω),

(1.1)

Here, x(·), y(·) takes the value in the separable Hilbert space X with inner product 〈·, ·〉 induced by the norm
‖ · ‖, Ai : Ω×X −→ X, i = 1, 2 are random operators and (Ω,F ,P) is a complete probability space, w ∈ Ω,
J := [0, a] for fixed a > 0 and X is a real separable Hilbert space with inner product 〈·, ·〉 induced by norm
‖·‖, φ1, φ2 are two random maps and f1, f2 : J×B×B×Ω −→ X and ρ1, ρ1 : J×Ω→ R, B is a phase space
to be specified later. For any function x defined on (−∞, a] × Ω and any t ∈ J we denote by xt(., w) the
element of B × Ω defined by xt(θ, w) = x(t + θ, w), θ ∈ (−∞, 0]. Here xt(., w) represents the history of the
state from time −∞, up to the present time t. We assume that the histories xt(., w) belong to the abstract
phase B. To our knowledge, the literature on the local existence of random evolution equations with delay is
very limited, so the present paper can be considered as a contribution to this question. We refer the reader
to [11, 17] for the properties of the first order abstract Cauchy problem and the semigroup theory.

The paper is organized as follows. In Section Íš,we introduce all the background material needed such as
generalized metric spaces, some random fixed point theorems . In Section Íş, by some new random versions
of Perov’s fixed point theorems in a vector Banach space.

2. Preliminaries

In this section, we introduce some notations, recall some definitions, and preliminary facts which are used
throughout this paper. Actually we will borrow it from [20, 10]. Although we could simply refer to this paper
whenever we need it, we prefer to include this summary in order to make our paper as much self-contained
as possible.
Let (Ω,F) be a measurable space. We equip the metric space X with a σ-algebra B(X) of Borel subsets of
X so that (X,B(X)) becomes a measurable space. A mapping z : Ω→ X is called a random variable if

z−1(B) = {w ∈ Ω : z(w) ∈ B} ∈ F ,

for all Borel sets B ∈ B(X)

Definition 2.1. Let X,Y is a real separable Hilbert space, a mapping A : Ω ×X → Y is called a random
operator if w 7−→ A(w, z) is measurable for all z ∈ X. We also denote a random operator A on X by

A(z)(w) = A(w, z), w ∈ Ω, z ∈ X.

Definition 2.2. A random fixed point of A is a measurable function z : Ω→ X such that

z(w) = A(w, z(w)) for all w ∈ Ω.

Definition 2.3. Let A : Ω×X → Y be a random operator.

• A is called continuous on X if A(w, ·) is continuous for each w ∈ Ω,
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• A is is called compact if for every bounded subset C of X, A(w,C) is a relatively compact subset of Y
for each w ∈ Ω.

Definition 2.4. Let g : [, b] × X × Ω → Y is called random Carathéodory if the following conditions are
satisfied:

(i) The map (t, w) 7−→ g(t, z, w) is jointly measurable for all z ∈ X,

(ii) The map z 7−→ g(t, z, w) is continuous for all t ∈ [0, b] and w ∈ Ω.

In this paper, we will employ an axiomatic definition of the phase space B introduced by Hale and Kato
in [12] and follow the terminology used in [13]. Thus, (B, ‖.‖B) will be a semi norm linear space of functions
mapping (−∞, 0] into X, and satisfying the following axioms :

• A1 If x : (−∞, σ + a)→ X, a > 0, is continuous on [σ, σ + a] and xσ ∈ B then for every t in [σ, σ + a)
the following conditions hold:

(i) xt ∈ B.
(ii) ‖x‖ ≤ H‖xt‖B.
(iii) ‖xt‖B ≤ K(t− s) sup{‖x(s)‖, σ ≤ s ≤ t}+M(t− σ)‖xσ‖B

where H ≥ 0 is a constant, R+ → R+, K is continuous and M is locally bounded and H, K and M
are independent of x.

• A2 For the function x in A1, xt is a B-valued continuous functions on [σ, σ + a].

• A3 The space B is complete

Remark 2.5. 1. (ii) is equivalent to ‖φ(0)‖ ≤ H‖φ‖B for every φ ∈ B
2. Since ‖.‖B is a seminorm, two elements φ, ψ ∈ B can verify ‖φ−ψ‖B = 0 without necessarily φ(θ) = ψ(θ)

for all θ ≤ 0.
3. From the equivalence of in the first remark, we can see that for all φ, ψ ∈ B such that ‖φ− ψ‖B = 0 .

We necessarily have that φ(0) = ψ(0).

(C2) If a uniformly bounded sequence (φn)n in B converges to a function φ in the compact-open topology,
then φ belongs to B and ‖φn − φ‖B → 0, as n→∞
Remark 2.6. Let S(t) : B → B be the C0-semigroup defined by S(t)φ(θ) = φ(0) for θ ∈ [−t, 0] and
S(t)φ(θ) = φ(t + θ). Let B0 = {φ ∈ B : φ(0) = 0}. We denote by S0(t) the restriction of S(t) to
B0.

• (FMS) The space B is said to be a fading memory space if it verifies axiom (C2) and S0φ(0) → 0 as
t→∞ for all φ ∈ B0.

• (UFMS) The space B is said to be a uniformly fading memory space if it verifies (C2) and ‖S0(t)‖B → 0
as t→∞.

We now indicate some examples of phase spaces. For other details we refer, for instance to the book by
Hinoet al. [13].

Example 2.7. Let: Cb the space of bounded continuous functions defined from (−∞, 0] to X, Cbu the space
of bounded uniformly continuous functions defined from (−∞, 0] to X,

C∞ =
{
φ ∈ Cb : lim

θ→−∞
φ(θ) exist in X

}
;
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C0 =
{
φ ∈ Cb : lim

θ→−∞
φ(θ) = 0

}
,

endowed with the uniform norm
‖φ‖ = sup{|φ|, θ ≤ 0}.

We have that the spaces Cbu, C∞ and C0 satisfy conditions (A1) − (A3). However, Cb satisfies (A1), (A3)
but (A2) is not satisfied.

Example 2.8. Phase space C0
g (X). Let B = C0

g (X) be the space consisting of continuous functions φ :

(−∞, 0]→ X such that lim
θ→−∞

‖φ(θ)‖
g(θ)

= 0,

where g : (−∞, 0] → (0,+∞) is a continuous function that satisfies conditions (g1) and (g2) in the
terminology of [13]. This means that

(g1) The function G(t) = g(t+θ)
g(θ) is locally bounded for t ≥ 0.

(g2) g(θ)→∞ as θ → −∞.

The norm in B is defined by

‖φ‖B = sup
θ≤0

‖φ(θ)‖
g(θ)

, φ ∈ B

The space B is a phase space ([13], Theorem 1.3.2). If G is bounded, then B verifies (FMS) and, if G(t)→ 0
as t→∞, then B verifies (UFMS) ([13], Example 7.1.7). To simplify some estimate, in this text we always
assume that g is decreasing and g(0) = 1.

Example 2.9. For any real positive constant γ, we define the functional space Cγ by

Cγ :=
{
φ ∈ C((−∞, 0), X) : lim

θ→−∞
eγθφ(φ) exists inX

}
,

endowed with the following norm
‖φ‖ = sup{eγθ|φ(θ)| : θ ≤ 0}.

Then in the space Cγ the axioms (A1)− (A3) are satisfied.

3. Vector metric space and Random variable

If, x, y ∈ Rn, x = (x1, . . . , xn), y = (y1, . . . , yn), by x ≤ y we mean xi ≤ yi for all i = 1, . . . , n. Also
|x| = (|x1|, . . . , |xn|), max(x, y) = max(max(x1, y1), . . . ,max(xn, yn)) and Rn+ = {x ∈ Rn : xi > 0}. If
c ∈ R, then x ≤ c means xi ≤ c for each i = 1, . . . , n.

Definition 3.1. Let X be a nonempty set. By a vector-valued metric on X we mean a map d : X×X → Rn+
with the following properties:

• d(u, v) ≥ 0 for all u, v ∈ X; if d(u, v) then u = v;

• d(u, v) = d(v, u) for all u, v ∈ X;

• d(u, v) ≤ d(u,w) + d(w, v) for all u, v, w ∈ X.

We call the pair (X, d) a generalized metric space with d(x, y) :=

 d1(x, y)
· · ·
dn(x, y)

 .

Notice that d is a generalized metric space on X if and only if di, i = 1, . . . , n are metrics on X.
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For r = (r1, . . . , rn) ∈ Rn+, we will denote by

B(x0, r) = {x ∈ X : d(x0, x) < r},

the open ball centered in x0 with radius r and

B(x0, r) = {x ∈ X : d(x0, x) ≤ r},

the closed ball centered in x0 with radius r. We mention that for generalized metric space, the notation of
open subset, closed set, convergence, Cauchy sequence and completeness are similar to those in usual metric
spaces.

Definition 3.2. A square matrix of real numbers is said to be convergent to zero if and only if its spectral
radius ρ(M) is strictly less than 1. In other words, this means that all the eigenvalues of M are in the open
unit disc i.e. |λ| < 1, for every λ ∈ C with det(M − λI) = 0, where I denote the unit matrix ofMn×n(R).

Theorem 3.3. [18] Let M ∈Mn×n(R+). The following assertions are equivalent:

• M is convergent towards zero;

• Mk → 0 as k →∞;

• The matrix (I −M) is nonsingular and

(I −M)−1 = I +M +M2 + . . .+Mk + . . . ,

• The matrix (I −M) is nonsingular and (I −M)−1 has nonnegative elements.

Some examples of matrices convergent to zero are the following:

• A =

(
a 0
0 b

)
, where a, b ∈ R+ and max(a, b) < 1

• A =

(
a −c
0 b

)
, where a, b, c ∈ R+ and a+ b < 1, c < 1

• A =

(
a −a
b −b

)
, where a, b, c ∈ R+ and |a− b| < 1, a > 1, b > 0.

Definition 3.4. Let (X, d) be a generalized metric space. An operator N : X → X is said to be contractive
if there exists a convergent to zero matrix M such that

d(N(x), N(y)) ≤Md(x, y) for all x, y ∈ X.

For n = 1 we recover the classical Banach’s contraction fixed point result.

We shall use a random version of Perov type of random differential equations of first order for different
aspects of the solutions under suitable conditions

Theorem 3.5. [19] Let (Ω,F) be a measurable space, X be a real separable generalized Banach space and
F : Ω×X → X be a continuous random operator, and let M(w) ∈Mn×n(R+) be a random variable matrix
such that, for every w ∈ Ω , the matrix M(w) converges to 0 and

d(F (w, x1), F (w, x1)) ≤M(w)d(x1, x2), for each x1, x2 ∈ X,w ∈ Ω.

Then there exists any random variable x : Ω→ X which is the unique random fixed point of F .

Lemma 3.6. [19] Let X be a separable generalized metric space and F : Ω×X → X be a mapping such that
F (., x) is measurable for all x ∈ X and F (w, .) is continuous for all w ∈ Ω. Then the map (w, x)→ F (w, x)
is jointly measurable.

Proposition 3.7. [15] Let X be a separable Banach space, and D be a dense linear subspace of X. Let
L : Ω×D → X be a closed linear random operator such that, for each w ∈ Ω, L(w) is one to one and onto.
Then the operator R : Ω×X → X defined by R(w)x = L−1(w)x is random.
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4. Main Results

Now we give our main existence result for problem (1.1). Before starting and proving this result, we give
the definition of the mild random solution.

Definition 4.1. A stochastic process x, y : J × Ω→ X is said to be random mild solution of problem (1.1)
if (x(t, w)y(t, w)) = (φ1(t, ω), φ2(t, ω)) ,t ∈ (−∞, 0] and the restriction of (x(., w), y(., w)) to the interval J
is continuous and satisfies the following integral equation:

x(t, w) = S1(w, t)φ1(t, ω) +

∫ t

0
S1(t− s)f1(s, xρ1(s,xs)(·, ω), yρ1(s,ys)(·, ω), ω)ds, t ∈ J

y(t, w) = S2(w, t)φ2(t, ω) +

∫ t

0
S2(t− s)f2(s, xρ2(s,xs)(·, ω), yρ2(s,ys)(·, ω), ω)ds, t ∈ J

where {S1(w, t), S2(w, t)} are random C0−Îşemigroups of bounded linear operators on X with infinitesimal
generators A1,A2, respectively.

We will need to introduce the following hypotheses which are assumed there after:

There exist random variables M1,M2 : Ω→ (0,+∞) such that.

‖Si(w, t)‖ ≤M(w), 0 ≤ t ≤ a for each i = 1, 2 , w ∈ Ω. (4.1)

Moreover, to abbreviate the writing, we set Ka = sup
t∈[0,a]

K(t) and Ma = sup
t∈[0,a]

M(t), M = M(w)

We will need to introduce the following hypotheses which are assumed there after:

(H1) (1) For every ψ1, ψ2 ∈ B the function f i(., ψ1, ψ1) : J → X, t 7−→ f i(t, ψ1, ψ1) is strongly measurable,
and the function f i(., 0, 0) is integrable on I.

(2) There exists a constant Lfi , L̄fi : Ω→ R+ such that

‖f i(t, ϕ1, ϕ2, w)− f i(t, ϕ̄1, ϕ̄2, w)‖ ≤ Lfi(w)‖ϕ1 − ϕ̄1‖+ L̄fi(w)‖ϕ2 − ϕ̄2‖,

where
Lf(w) = max{Lfi(w), L̄fi(w)}, i = 1, 2

(H2) The function ρi : J × B → [0,+∞) satisfies :

(1) For every ψ, the function t 7−→ ρ(t, ψ) is continuous

(2) There exists a constant Lρ > 0 such that

‖ρi(t, ψ)− ρi(t, ψ̄)‖ ≤ Lρ‖ψ − ψ̄‖

for all (ψ, ψ̄) ∈ B × B, t ∈ [0, a]

(H3) For every r > 0, there exists a constant L2(r, .) : Ω→ R+ such that

‖f i(t, xt2 , yt2 , w)− f i(t, xt1 , yt1 , w)‖ ≤ L2(r, w)|t2 − t1|.

For each i = 1, 2, w ∈ Ω, φi(., w) is continuous and for each t, φi(t, .) is measurable and

( sup
s∈[0,r]

‖x(s)‖, sup
s∈[0,r]

‖x(s)‖) ≤ (r, r).



T.Blouhi, M.Ferhat, Adv. Theory Nonlinear Anal. Appl. 3 (2019), 1–10. 7

Theorem 4.2. Assume that conditions (H1)− (H3) are satisfied and the matrix

Mtrice =

(
λ1(w) λ1(w)
λ1(w) λ1(w)

)
, λ1(w) ≥ 0.

where
λ1(w) = MKat(Lf(w) + L2(r, w)Lρ),

If Mtrice converges to zero. Then problem (1.1) has at least one mild random solution on (−∞, a].

Proof. We can choose a constant p(w), q(w) > 0 such that

M(H‖φ1‖B + Lf(w)Maa(‖φ1‖B + |φ2‖B) +MLf(w)Kaa(p(w) + q(w))

+M

∫ t

0
‖f1(s, 0, 0, ω)‖ds ≤ p(w) (4.2)

and
M(H‖φ2‖B + Lf(w)Maa(‖φ1‖B + |φ2‖B) +MLf(w)Kaa(p(w) + q(w))

+M

∫ t

0
‖f2(s, 0, 0, ω)‖ds ≤ q(w). (4.3)

Let Y = {x, y ∈ C(J,X) : (x(0, w), y(0, w)) = (φ1(0, w), φ2(0, w)) = (0, 0)} endowed with the uniform
convergence topology. Consider the operator N : Ω× Y × Y → Y × Y be the random operator defined by

(x, y) 7−→ (N1(w, x, y), N2(w, x, y)),

where

N1(x(t, w), y(t, w), w) = S1(t, w)φ1(0, w)

+

∫ t

0
S1(t− s, w)f1(s, xρ1(s,xs)(s, ω), yρ1(s,ys)(s, ω), ω)ds, t ∈ J

and

N2(x(t, w), y(t, w), w) = S2(t, w)φ2(0, w)

+

∫ t

0
S2(t− s, w)f2(s, xρ1(s,xs)(s, ω), yρ1(s,ys)(s, ω), ω)ds, t ∈ J.

First we show that N is a random operator on Y × Y . Since f1 and f2 are Caratheodory functions, then
w 7−→ f1(t, x, y, w) and w 7−→ f2(t, x, y, w) are measurable maps in view of Lemma 3.6. By the Crandall-
Liggett formula, we have

Si(w, t) = lim
n→∞

(
I − t

n
Ai(w)

)−n
x, i = 1, 2.

From Proposition 3.7, we know that w →
(
I − t

nAi(w)
)−n

x are measurable operators, thus w → Si(w, t)

are measurable. Using the continuity properties of the semigroups S1(w, .), S2(w, .), we get

w → Si(t, w)φi(w) and (s, w)→ Si(t− s, w)f i(s, xρ1(s,xs), yρ1(s,ys), ω)

are measurable. Further, the integral is a limit of a finite sum of measurable functions; therefore, the maps

w 7−→ N1(x(t, w), y(t, w), w), w 7−→ N2(x(t, w), y(t, w), w)

are measurable. As a result, N is a random operator on Y × Y × Ω into Y × Y .Let Bp, Bq : Ω → 2Y be
defined by:

Bp(w)×Bq(w) =
{

(x, y) ∈ Y × Y :
∥∥∥( x(t, w)

y(t, w)

)∥∥∥ ≤ ( p(w)
q(w)

)}
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where ∥∥∥( x(t, w)
y(t, w)

)∥∥∥ =

(
‖x(t, w)‖
‖y(t, w)‖

)
.

The set Bp(w)×Bq(w) bounded, closed, convex and solid for all w ∈ Ω . Then Bp(w)×Bq(w) is measurable.
Let w ∈ Ω be fixed.
Step 1.- We show initially that N(Bp(w)×Bq(w)) ⊆ Bp(w)×Bq(w). In fact, for (x, y) ∈ Bp(w)×Bq(w),
using (4.2) and (4.3), we can estimate we can estimate

‖N1(x(t, w), y(t, w), w)‖

≤MH‖φ1‖B +M

∫ t

0
‖f1(s, xρ1(s,xs), yρ1(s,ys), ω)‖ds

≤MH‖φ1‖B +M

∫ t

0
‖f1(s, xρ1(s,xs), yρ1(s,ys), ω)− f1(s, 0, 0, ω)‖ds

+M

∫ t

0
‖f1(s, 0, 0, ω)‖ds

≤MH‖φ1‖B +MLf1(w)

∫ t

0
‖xρ1(s,xs)‖Bds+ Lf2(w)

∫ t

0
‖yρ1(s,ys)‖Bds

≤MH‖φ1‖B +MLf1(w)

∫ t

0

(
Ka sup

0≤τ≤ρ1(s,xs)
‖x(τ)‖ +Ma‖φ1‖B

)
ds

+MLf2(w)

∫ t

0

(
Ka sup

0≤τ≤ρ1(s,ys)
‖y(τ)‖ +Ma‖φ2‖B

)
ds+M

∫ t

0
‖f1(s, 0, 0, ω)‖ds

≤MH‖φ1‖B +MLf(w)Kaap(w) +MLf(w)Maa‖φ1‖B

+MLf(w)Kaaq(w) +MLf(w)aMa‖φ2‖B +M

∫ t

0
‖f1(s, 0, 0, ω)‖ds.

≤ p(w).

Similarly we have

‖N2(x(t, w), y(t, w), w)‖ ≤ MH‖φ2‖B +MLf(w)Kaap(w) +MLf(w)Maa‖φ2‖B

+MLf(w)Kaaq(w) +MLf(w)aMa‖φ2‖B +M

∫ t

0
‖f2(s, 0, 0, ω)‖ds

≤ q(w).

Step 2.- we show that N is Lipschitz continuous. Let (x, , y), (x̄, ȳ) ∈ Bp(w) × Bq(w) . Using conditions
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(H1)− (H3), we have

‖N1(x(t, w), y(t, w), w)−N1(x̄(t, w), ȳ(t, w), w)‖

≤M
∫ t

0
‖f1(s, xρ1(s,xs), yρ1(s,ys), ω)− f1(s, x̄ρ1(s,x̄s), ȳρ1(s,ȳs), ω)‖ds

≤M
∫ t

0
‖f1(s, xρ1(s,xs), yρ1(s,ys), ω)− f1(s, x̄ρ1(s,xs), ȳρ1(s,ys), ω)‖ds

+M

∫ t

0
‖f1(s, x̄ρ1(s,xs), ȳρ1(s,ys), ω)− f1(s, x̄ρ1(s,x̄s), ȳρ1(s,ȳs), ω)‖ds

≤MLf(w)

∫ t

0
‖xρ1(s,xs) − x̄ρ1(s,xs)‖Bds+MLf(w)

∫ t

0
‖yρ1(s,ys) − ȳρ1(s,ys)‖Bds

+ML2(r, w)

∫ t

0
|ρ1(s, xs)− ρ1(s, x̄s)|ds+ML2(r, w)

∫ t

0
|ρ1(s, ys)− ρ1(s, ȳs)|ds

≤MLf(w)Ka

∫ t

0
sup

0≤τ≤ρ1(s,xs)
‖x(τ)− x̄(τ)‖ds+MLf(w)Ka

∫ t

0
sup

0≤τ≤ρ1(s,ys)
‖y(τ)− ȳ(τ)‖ds

+ML2(r, w)Lρ

∫ t

0
‖xs − x̄s‖Bds+ML2(r, w)Lρ

∫ t

0
‖ys − ȳs‖Bds

≤MLf1(w)Ka

∫ t

0
sup

0≤τ≤s
‖x(τ)− x̄(τ)‖ds+MLf(w)Ka

∫ t

0
sup

0≤τ≤s
‖y(τ)− ȳ(τ)‖ds

+ML2(r, w)Lρ

∫ t

0
‖xs − x̄s‖Bds+ML2(r, w)Lρ

∫ t

0
‖ys − ȳs‖Bds

≤MLf(w)Kat sup
0≤s≤t

‖x(s)− x̄(s)‖ds+MLf(w)Kat sup
0≤s≤t

‖y(s)− ȳ(s)‖

+ML2(r, w)LρKat sup
0≤s≤t

‖y(s)− ȳ(s)‖ +ML2(r, w)LρKat sup
0≤s≤t

‖y(s)− ȳ(s)‖

≤ λ1(w) sup
0≤s≤t

‖x(s)− x̄(s)‖ + λ1(w) sup
0≤s≤t

‖y(s)− ȳ(s)‖.

and

‖N2(x(t, w), y(t, w), w)−N2(x̄(t, w), ȳ(t, w), w)‖ ≤ λ1(w) sup
0≤s≤t

‖x(s, w)− x̄(s, w)‖

+λ1(w) sup
0≤s≤t

‖y(s)− ȳ(s)‖
)
,

for all 0 ≤ t ≤ a. Consequently,

‖N(x, y, w)−N(x, y, w)‖∞ =

(
‖N1((x, y, w)−N1(x, y, w)‖∞
‖N2(x, y, w)−N2(x, y, w)‖∞

)
≤ λ1(w)

(
1 1
1 1

)(
‖x(·, w)− x(·, w)‖∞
‖y(·, w)− y(·, w)‖∞

)
.

Therefore

‖N(x, y, w)−N(x, y, w)‖∞ ≤Mtrice

(
‖x(·, w)− x(·, w)‖∞
‖y(·, w)− y(·, w)‖∞

)
, for all, (x, y), (x, y) ∈ Bp(w)×Bq(w).

It is clear that the radius spectral ρ(Mtrice) < 1. By Lemma 3.3, Mtrix(w) converges to zero. From Theorem
3.5 there exists a unique random solution of problem (1.1). We denote by (x(t, w), y(t, w)) the mild solution
of (1.1).
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