
Journal of Mathematical Sciences and Modelling, 1 (3) (2018) 158-180
Research Article

Journal of Mathematical Sciences and Modelling
Journal Homepage: www.dergipark.gov.tr/jmsm

ISSN: 2636-8692

Computational Enumeration of Colorings of Hyperplanes of
Hypercubes for all Irreducible Representations and Applications

Krishnan Balasubramaniana*

aSchool of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
*Corresponding author

Article Info

Keywords: Combinatorial Enumera-
tions, Colorings of hypercubes, Charac-
ter Tables of hypercubes, Pólya Theory
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Abstract

We obtain the generating functions for the combinatorial enumeration of colorings of all
hyperplanes of hypercubes for all irreducible representations of the hyperoctahedral groups.
The computational group theoretical techniques involve the construction of generalized
character cycle indices of all irreducible representations for all hyperplanes of the hypercube
using the Möbius function, polynomial generators for all cycle types and for all hyperplanes.
This is followed by the construction of the generating functions for colorings of all (n-q)-
hyperplanes of the hypercube, for example, vertices (q=5), edges (q=4), faces (q=3), cells
(q=2) and tesseracts (q=4) for a 5D-hypercube. Tables are constructed for the combinatorial
numbers for coloring all hyperplanes of 5D-hypercubes for 36 irreducible representations.
Applications to chirality, chemistry and biology are also pointed out.

1. Introduction

Hypercubes [1]-[29] and related combinatorics of wreath product groups [30]-[54] have been the focus of a number of research investigations
owing to their importance in numerous applications in a variety of disciplines. Hypercubes are natural representations of Boolean functions,
as 2n possible Boolean functions from a set of n entities that take binary values can be represented by the vertices of a hypercube. Thus
hypercubes find applications in chemistry, biology, finite automata, electrical circuits, genetics, enumeration of isomers, isomerization
reactions, visualization and computer graphics, chirality, protein-protein interactions, intrinsically disordered proteins, partitioning of
massively large databases, and parallel computing [1]-[11], [19]-[29], [41]-[55], [56]-[59]. The automorphism groups of hypercubes
which are hyperoctahedral wreath products find applications in enumerative combinatorics, isomerization reactions, chirality, nuclear spin
statistics, weakly-bound non-rigid water clusters, non-rigid molecules, and in proteomics [41]-[55], [56]-[59]. The hypercubes have also
been connected to Goldbach conjecture, last Fermat’s theorem, Erdös discrepancy conjecture, modern multi-dimensional representation of
time measures, quantum similarity measures, [1]-[5], biochemical imaging [6], multi-dimensional imaging [19],[20], [22]-[26], classification
of large data, Quantitative Shape-Activity Relations (QShAR)etc. [7]-[10].
Combinatorial enumeration of colorings of different hyperplanes, especially vertices of hypercubes has been the topic of several studies for
the past two centuries. In fact, subsequent to publication of his classic 1937 [15] paper on combinatorics of groups, graphs and chemical
compounds, Pólya in a subsequent work [17] has pointed out the errors in previous enumeration of colorings of vertices hypercubes. As
pointed out recently by Banks et al. [19],[20] in the context of computer visualization, in 1877, Clifford [12],[13] has enumerated the number
of equivalence classes for 2-colorings of a 4D-hypercube vertices as 396 which was subsequently shown to be incorrect by Pólya [17] in
1940 who obtained 402 equivalence classes for 2-colorings of a 4d-hypercube. Historically Pólya’s theorem was anticipated in Redfield’s
paper on superposition theorem [16]. Although in more recent mathematical literature, cycle indices of hypercubes and enumerations of
colorings of the vertices of hypercubes have been considered [17]-[29], [34] these studies have been restricted only to the totally symmetric
irreducible representations of the hyperoctahedral groups. Moreover in the most recent work on the 5D-hypercube enumeration [29] of
vertex colorings there are errors, as we show here. Pólya’s theorem and its variation [1]-[6], [17]-[21] have been applied extensively which
generate equivalence classes for different distribution of colors called the pattern inventory and also the total number of colorings. However,
several chemical and spectroscopic applications require more powerful and generalized enumeration techniques that span all the irreducible
representations of the groups where Pólya’s theorem becomes a special case for the totally symmetric representation. Furthermore in the
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case of hypercubes, most of the previous combinatorics is restricted to the enumeration of vertex colorings. The vertices of hypercubes
are only one of several possible hypercube’s hyperplanes. The present author [39]-[40] has generalized Pólya’s theorem, De Bruijn’s
theorem [60] and Harary-Palmer power group theorem [31] to characters of all irreducible representations of a group cast into the form of
generalized character cycle indices or GCCIs. Such combinatorial and graph theoretical methods have several applications to rovibronic
spectroscopy, non-rigid molecules, water clusters, nuclear spin statistics, multiple-quantum NMR spectroscopy, dynamic NMR, enumeration
of isomerization reactions, chirality, ESR spectroscopy, topological indices in QSAR [36]-[58], [61]-[63].
The n-dimensional hypercube’s automorphism group is comprised of 2n×n! operations, and thus the order of this group increases both
exponentially and factorially. For example, the automorphism group of a 6D-hypercube consists of 46,680 operations spanning 65 irreducible
representation. In ordinary Pólya’s theory, different conjugacy classes that give rise to the same cycle types under group action on a given set
are combined into a single term, as they give rise to the same monomial for patterns, and in general with the exception of full symmetric
group Sn, multiple conjugacy classes often contribute to the same cycle type. This poses a problem when one needs to consider all irreducible
representation, as character values in general are based on conjugacy classes and not cycle types. Furthermore there is no one-to-one
correspondence between cycle types and conjugacy classes for hyperoctahedral wreath product groups of hypercubes. Thus we need both
cycle types of each conjugacy class and the character table of the group unlike the ordinary Pólya cycle index which only needs the cycle
types that compose the cycle index of a group. The other computational challenge that arises for hypercube colorings is that the cycle types
of induced permutation for different hyperplanes need to be obtained. In general there are n hyper planes for an nD-hypercube represented
by q values ranging from 1 to n with of course q=0 being the trivial single vertex and hence is not considered. When q=n we obtain the
vertices of the hypercube, q=n-1 we obtain the edges, q=n-2 yields faces, and in general q represents (n-q)-hyperplanes of an nD-hypercube.
Each such hyperplane generates a set of cycle types for each conjugacy class. Thus computing the equivalence classes of the colorings of
various hyperplanes requires the computation of the cycle types of different (n-q)-hyperplanes of the hypercube with q=1 through n. Previous
works in the mathematical literature [17]-[29] have focused on the total number of equivalence classes rather than the inventory of patterns
or a generating function that yields number of colorings for a given number of colors of various kinds. Such a distribution of patterns for
various colors is quite important for a number of practical applications, and thus we focus in the present study the computational techniques
to obtain such generating functions for all hyperplanes and all irreducible representations of the hypercube. Moreover none of the previous
studies [17]-[29] has dealt with irreducible representations other than totally symmetric representation in their enumerations. The present
author [11] has previously considered multinomial colorings of 4D-hypercube for different hyperplanes, and with chemical applications to
water pentamer in mind, the present author has considered colorings of tesseracts [64] of the 5D-hypercube, and recently vertices (q=4) and
tesseracts q=1 for all irreducible representations and 2-colorings of (q=2) 3-faces only for the totally symmetric irreducible representation of
the 5D-hypercube [61]. The present work considers for the first time enumeration of colorings for all hyperplanes (q=1 through q=5) of the
5D-hypercube for all 36 irreducible representations.

2. Mathematical and computational techniques

In general, the automorphism group of an nD-hypercube is the wreath product Sn [S2] where Sn is the full permutation group of n objects
comprising of n! permutations. The order of the nD-hypercube wreath product group is 2n×n! and hence it grows in astronomical proportion
as a function of n. For example, the automorphism group of a 10D-hypercube consists of 210× 10! permutations that give rise to 481
conjugacy classes, and 481 irreducible representations, 10 hyperplanes, thus demonstrating the combinatorial complexity of the problem
of enumerating colorings of different hyperplanes of an nD-hypercube for all irreducible representations. Coxeter [65] has discussed in
depth hypercubes and various other regular polytopes and their mathematical characterizations using various projections and graph theory.
An nD-hypercube is comprised of (n-q)-hyperplanes where q goes from 0 to n. The largest value of q = n represents the vertices, q=n-1
represents the edges, q=n-2 represents the faces, q=n-3 represents the cells, q=n-4 represents tesseracts, and so on. The induced permutation
of the automorphism group of the nD-hypercube on each of these hyperplanes is quite different and it cannot be deduced from a simple
inspection with the exception of a 2D-hypercube (square) and a 3D-hypercube (a regular cube). Thus the first step is to construct the cycle
types for each conjugacy class of the hypercube’s wreath product group for the induced permutations of all hyperplanes of the hypercube. We
note that although for ordinary Pólya enumeration one needs only the cycle index which can be constructed by other methods as cycle types
of several conjugacy classes become degenerate for wreath products, the enumerations that involve all irreducible representations require the
cycle types of each conjugacy class, as there is no one-to-one correspondence between the conjugacy classes and cycle types for wreath
product groups. The cycle types of q=1 or (n-1)-hyperplanes are the ones that can be readily constructed as they are natural representations
of the hypercube permutations.
The techniques to construct the conjugacy class cycle types of q=1 or (n-1)-hyperplanes and the character table for all irreducible
representations of the hypercube group involve matrix generating functions and we shall consider this first. We use the 5D-hypercube as not
only an illustrative example but also to carry out all of the needed computations. For a 5D-hypercube the special case of q=1 enumerates
the various tesseracts of the hypercube, and Fig.1 shows a graph that exemplifies the underlying relationship between the tesseracts of
the 5D-hypercube. In Fig. 1 the vertices represent the tesseracts while the edges represent the underlying connectivity among the ten
tesseracts of the 5D-hypercube. The cycle types of the permutations of q=1 tesseracts are isomorphic with the permutations of vertices of the
automorphism group of the graph in Fig. 1.
In general, let a permutation g ∈ Sn upon its action on the set Ω of q = 1 hyperplanes of the hypercube generate a1 cycles of length 1, a2
cycles of length 2, a3 cycles of length 3, ... , an cycles of length n, which can be represented by 1a1 2a2 3a3 ...nan . Alternatively, the cycle
type Tg of g can be denoted as Tg = (a1,a2,a3, ... ,an). As the composing group in Sn [S2], S2 of the wreath product has only two conjugacy
classes, the conjugacy class of the wreath product Sn [S2] and he cycle types of action on q=1 hyperplanes can be expressed as a cycle type
comprised of a 2×n matrix, where the first row corresponds to the action of {(g;π)}permutations where π = e ∈ S2 and g ∈ Sn and the
second row represents the permutations {(g;π)}, for π = (12) ∈ S2. The cycle type of any conjugacy class, T (g;π), where (g;π) is any
representative in then a 2×n matrix is obtained using the orbit structure of g ∈ Sn and the corresponding conjugacy class of S2. For the
particular case of S5 [S2] under consideration, the cycle type of (g;π) for a conjugacy class of S5 [S2] is given by

T (g;π) = aik (1≤ i≤ 2) , (1≤ k ≤ 5) (2.1)
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Figure 2.1: Ten tesseracts of the 5D-hypercube are represented by the vertices of the graph shown in this figure (reproduced from ref.[59]). Right: Water
Pentamer. The automorphism group of this graph is also the automorphism group of the 5D-hypercube and fully non-rigid water pentamer or S5[S2]
comprising of 3840 permutations that span 36 conjugacy classes.

To illustrate, the conjugacy class {(1)(2)(345) ;(12)} of S5 [S2] given by (2.2)

T [{(1)(2)(345) ;(12)}] =
[

2 0 0 0 0
0 0 1 0 0

]
(2.2)

Likewise the conjugacy class of {(1234)(5);(12)} is given by (2.3):

T [{(1234)(5);(12)}] =
[

1 0 0 0 0
0 0 0 1 0

]
(2.3)

In this manner all conjugacy classes of Sn [S2] are obtained and for the simplest example of S3 [S2] which represents the permutations of the
six faces of the cube, Table 1 shows all as 2×3 matrices thus constructed for the 3D-cube. In Table 1 we have also shown the corresponding
rotations or mirror planes of the cube, as the cycle types of the cube’s faces can also be directly obtained by applying these operations on
a regular cube and collecting the induced orbits of the permutations of the faces of the cube under the action of these operations. It can
be seen from Table 1 that there is no one-to-one correspondence between the cycle types and conjugacy classes of the 3D-cube, as orbit
structures of two different matrix types can be the same, for example, for matrices 3 and 5 in Table 1 have the same cycle types of 1222 for
the six faces of the cube (q=1). However these two matrices belong to different conjugacy classes with different character values for the
various irreducible representations of the octahedral (cubic) group or S3 [S2]. Thus the matrices are important for the enumerations involving
all irreducible representations while only the cycle types are needed for the ordinary Pólya enumeration of equivalence classes, as such
enumeration becomes a special case of our formalism applied to the totally symmetric A1 irreducible representation.
We can obtain the orders of the conjugacy classes and the cycle types for the q=1 or (n-1)hyper planes of the hypercube directly from their
2×n matrices. Suppose P(m) denotes the number of partitions of integer m with P(0) = 1. Then all ordered partitions of n into pairs or
compositions of n into two parts, denoted by (n1,n2) such that ∑ni = n, yields the number of conjugacy classes of Sn [S2]. That is, the total
number of conjugacy classes of Sn [S2]is given by

NC = ∑ (n)P(n1)P(n2) (2.4)

where the sum is over all ordered pairs of partitions of n. Furthermore, the order any conjugacy class of Sn [S2] with the matrix type
T (g;π) = aik can be obtained with Eq (2.5):

|T (g;π)|= n!
∏i,kaik!(2k)aik

(2.5)

For example, for the 6-D hyperoctahedral group, S6 [S2], the ordered partitions of 6 into 2 parts are given by

{(6,0) ,(0,6) ,(5,1) ,(1,5) ,(4,2) ,(2,4) ,(3,3)}

and hence the number of conjugacy classes of the S6 [S2] group is

2P(6)P(0)+2P(5)P(1)+2P(4)P(2)+P(3)2 = 65 (2.6)

The number of elements in any particular conjugacy class of Sn [S2] can also be readily computed from the corresponding matrix cycle type.
For example, application of (2.5) to the conjugacy class 6 in Table 1 gives:∣∣∣∣( 1 0 0

0 1 0

)∣∣∣∣= 3!23

1!(2.1)11!(2.2)1 = 6 (2.7)

The orders of conjugacy classes thus obtained for the cube are shown in Table 1 for each conjugacy class. The cycle types for the permutations
induced on the q = 1 or (n−1)− hyperplanes are also obtained readily from the 2×n matrices by mapping place values for the non-zero
entries in the matrix type. That is, assign a cycle of length

(
k2)a1k for each non-zero entry column k in the first row while for the second row
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the contribution is 2k for nonzero entries. Thus the above matrix yields the overall cycle type 1222 for the regular cube’s 6 faces. The cycle
types thus obtained for q = 1 or tesseracts of the 5D-hypercubeand for all conjugacy classes of the cubic group, S3 [S2] group are shown in
Tables 2 and 1 together with the orders of each conjugacy class.
The above process for finding the cycle types of conjugacy classes and their orders can be likewise applied to the 5D-hypercube and the
results are shown in Table 2. The next step is to compute the cycle types of the induced permutations for each conjugacy class for all of
the remaining (n-q)-hyperplanes. For the 5d-hypercube this corresponds to q = 2 (cells), q = 3 (faces), q = 4 (edges) and q = 5 (vertices).
Although there are previous studies [17]-[29] that have discussed the techniques for obtaining the cycle indices of the hypercube including
the 5D-hypercube, these previous works have been predominantly restricted to the Pólya cycle indices of the vertices of a hypercube with the
exception of Lemmis [23] who has explicitly considered other cycle types for a 4D-hypercube even though Lemmis [23] does not compute
or report any results for the equivalence classes even for the totally symmetric irreducible representation . The explicit expressions have
also been constructed for the ordinary cycle indices of hypercubes up to six dimensions [26], [28], [29]. In the present study we outline
techniques for constructing the generalized character cycle indices for all irreducible representations and all cycle types of the various
(n-q)-hyperplanes of the hypercube.
The process of computing the generating functions for the cycle types of various (n−q)− hyperplanes of the hypercube involve the Möbius
function, a fundamental enumerative combinatorial technique that encompasses generalization of the fundamental combinatorial principle of
inclusion and exclusion that has been applied to many disciplines [66], [67] including music theory [35] and isomers with nearest neighbor
exclusions [63]. The Möbius functions appear in a natural way, as the construction of various cycle types for the (n−q)−hyperplanes is
related to the divisors of the set of all hyperplanes and it relates to the simplest cycle types of q = 1. Thus the technique involves computing
the polynomial generating functions via Möbius sums. We accomplish this from the matrix types of the conjugacy classes of the Sn [S2]
groups to generate all of the cycle types for all (n−q)−hyperplanes through polynomial generating functions. The techniques employed
are similar to the ones outlined in Krishnamurthy’s book [67] and the work of Lemmis [24] who has made use of the enumerative Möbius
inversion technique. That is, the generating functions for all cycle types for all values of q representing (n−q)−hyperplanes are generated
as coefficient of xq in the polynomial generating function Qp (x) obtained using the Möbius functions shown below:

Qp (x) =
1
p ∑

d/p
µ (p/d)Fd (x) (2.8)

where the sum is strictly over all divisors d of p, and µ (p/d) is the Möbius function which takes values

1 , −1, −1, 0, −1, 1, −1, 0, 0, 1 . . .

for arguments 1 to 10; in general, the Möbius function is obtained as follows for any number:
µ (m) = 1 if one of m’s prime factors is not a perfect square and m contains even number of prime factors,
µ (m) =−1 if m satisfies the same perfect-square condition as before but m contains odd number of prime factors,
µ (m) = 0 if m has a perfect square as one of its factors.
Fd (x) in the above Eq (2.8) is defined as a polynomial in x constructed from the matrix cycle types shown in the first column of Table
1 or Table 2. Consider the non-zero columns of the matrix cycle types of Sn [S2] (see Tables 1 and 2) . Recall that the first row of these
elements are represented by a1k while the second rows are denoted by a2k (k = 1,n). Then if p is the period of the matrix type shown in the
first column of Table 1 or 2, and define, g = gcd(k; p), p′ = k

g , h = gcd(2k; p) ; p′′ = 2k
h and define the polynomial Fp (x) in terms of these

divisors of the cycle type as

Fp(x) =
nc

∏
k
(1+2xp′)ga1k (1+2xp′′)

ha2k
2 , if h does not divide k;

Fp(x) =
nc

∏
k
(1+2xp′)ga1k , if h divides k, (2.9)

where the product is taken only over nc, non-zero columns of the 2×n matrix cycle type shown in Tables 1 or 2. The coefficient of xq in
Qp (x) obtained from the Möbius sums of various Fd polynomials where d’s are strictly divisors of p generate the various cycle types for
(n−q)− hyperplanes of the nD-hypercube. We shall illustrate this by one of the matrix cycle types in Table 2. Consider the 31st matrix
shown in Table 2 for S5 [S2]:

(
0 1 1 0 0
0 0 0 0 0

)
(2.10)

As only 2nd and 3rd columns contain non-zero values, hence we need to consider only these two columns. Thus the maximum period to
consider is 6 and hence the possible F polynomials are F6, F3, F2 and F1 as divisors of 6 are 1, 2, 3, and 6. Applying the GCD followed by
the use of Eq (2.9), we obtain each of these polynomials as

F1 (x) =
(

1+2x2
)(

1+2x3
)

(2.11)

F2 (x) = (1+2x)2
(

1+2x3
)

(2.12)

F3 (x) =
(

1+2x2
)
(1+2x)3 (2.13)
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F6 (x) = (1+2x)5. (2.14)

From the Fd polynomials thus constructed above, we obtain the Qp polynomials using the Möbius sum, shown in Eq (2.8). Thus we obtain

Q1 = F1 = 1+2x2 +2x3 +4x5 (2.15)

Q2 =
µ (2)F1 +µ (1)F2

2
=

F2−F1

2
=
(1+2x)2 (1+2x3)− (1+2x2)(1+2x3)

2
= 2x+ x2 +4x4 +2x5 (2.16)

Q3 =
µ (1)F3 +µ (3)F1

3
=

F3−F1

3
=

(
1+2x2)(1+2x)3−

(
1+2x2)(1+2x3)

3
= 2x+4x2 +6x3 +8x4 +4x5 (2.17)

Q6 =
µ (1)F6 +µ (2)F3 +µ (3)F2 +µ (6)F1

6
=

F6−F3−F2 +F1

6
= 4x2 +10x3 +8x4 +2x5 (2.18)

The coefficients of xqs are tabulated below for all possible Qp polynomials which yield the cycle types for various (n−q)−perplanes as
shown below:

Qp x x2 x3 x4 x5

Q1 2 2 4
Q2 2 1 4 2
Q3 2 4 6 8 4
Q6 4 10 8 2
Cycle type 2232 12213464 1236610 243868 14223462

Hyperplane q = 1 q = 2 q = 3 q = 2 q = 5
(tesseracts) (cells) (faces) (edges) (vertices)

The results thus obtained for all cycle types of the hyperplanes of 5D-hypercube are shown in Table 2. We believe this is the first time
that these cycle types have been tabulated for all hyperplanes of the 5D-hypercube. Although previously the cycle index for the vertices
of the 5D-hypercube have been reported in the literature [24]-[26], [28], [29] using different techniques, and our results agree with those
results, Table 2 is exhaustive as it includes all hyperplanes, not just q = 5 (vertices). Moreover, as outlined below we consider all irreducible
representations for coloring the (n−q)− hyperplanes, and not just the totally symmetric A1 representation. In our previous studies [51],[52]
we have shown how the character tables of the Sn [S2] groups can be obtained from matrix generating functions and thus we shall not repeat
the techniques in detail. Instead we shall focus on the colorings of the hyperplanes using the character table of S5 [S2], and the cycle types
obtained for various hyperplanes of the 5D-hypercube shown in Table 2.
The character table of S5 [S2] containing 36 irreducible representations have been constructed before and thus we employ the GCCIs of the
irreducible representation with character of the group S5 [S2]. In general, the GCCI for the character χ of a group G′ is defined as

Pχ

G′ =
1
|G′| ∑

g∈G′
χ (g)Sb1

1 Sb2
2 ...Sbn

n (2.19)

where the sum is over all permutation representations of g ∈ G′ that generate b1 cycles of length 1, b2 cycles of length 2, ... , bn cycles of
length n upon its action on the set Ω of the (n−q)− hyperplanes of the 5D-hypercube. Upon construction of the GCCIs for each irreducible
representation and each of the (n−q)−hyperplane’s cycle types shown in Table 2, one can carry out generalized Pólya substitution in the
GCCIs for each representation of S5 [S2] with a multinomial expansion. Let[n] be an ordered partition, also called the composition of n into
p parts such that n1 ≥ 0, n2 ≥ 0, ... , np ≥ 0, ∑

p
i=1 ni = n. A multinomial generating function in λ s is obtained as

(
λ1 +λ2 + . . . ..+λp

)n
=

p

∑
[n]

(
n1 n2

n
. . np

)
λ1

n1 λ2
n2 . . . . . . ..λp−1

np−1 λp
np (2.20)

where
(

n1 n2

n
. . np

)
are multinomials given by

(
n1 n2

n
. . np

)
=

n!
n1!n2! . . . . . .np−1!np!

(2.21)

Define two sets, the set D which contains a set of (n−q)−hyperplanes for a given q to be colored and the set R which contains different
colors. Let wi be the weight of each color r in R . The weight of a function f from D to R is defined as

W ( f ) =
|R|

∏
i=1

w( f (di)) (2.22)
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The generating function for each irreducible representation of the nD-hyperoctahedral group is obtained by the substitution as

GFχ
(
λ1,λ2 . . . ..λp

)
= Pχ

G

{
sk→

(
wk

1 +wk
1 + . . . .+wk

p−1 +wk
p

)}
(2.23)

The above GFs are computed for each irreducible representation of the 5D-hyperoctahedral group. The coefficient of each term
w1

n1w2
n2 . . . ..wp

np generates the number of functions in the set RD that transform according to the irreducible representation Γ with
character χ . For the special case of the totally symmetric irreducible representation A1 , the GF becomes the ordinary Pólya’s theorem, thus
enumerating the number of equivalence classes of colorings.

In the case of hyperplanes of nD-hypercubes the number of (n−q)−hyperplanes for a given value of q increase as
(

n
q

)
2q and thus, for

example, a 10D-hypercube would have 13,440 4-hyperplanes (q=6) and 15,360 3-hyperplanes (q=7). Consequently, as the multinomial
generators explode in astronomical proportions for such large sets, it is practically not possible to consider more than 2 colors in the set R or
only 2-colorings for larger hypercubes are feasible. We have developed Fortran ’95 codes that compute the cycle types for all hyperplanes
using the Möbius method, the character tables and then finally the generating functions for 2-colorings of various (n−q)−hyperplanes of
the hypercube. All of the arithmetic were carried out in Real*16 or quadruple precision arithmetic and thus we can rely on an accuracy of
up to 32 digits, which appears to suffice for 2-colorings for all possible distribution of colors up to six-dimensional cases. However, for
larger cases either only first k coefficients that contain 32 or fewer digits be considered for colorings or the codes have to be enhanced with
multiple arrays to store beyond 32 digits as presently most compilers handle at most quadruple precision for real numbers. The special cases
of multinomials for 2 colorings were computed in a single step for 2-colorings recursively, and stored in memory for computations of each of
the monomials, sorting and collection of the coefficients for the final GF without computation of any factorials to save time. Moreover the
expansion of multinomials, sorting and collection of coefficients is done only for the A1 IR and for the remaining IRs the computed terms for
each cycle type of A1 are used. For the present case of the 5D-hypercube we were able to compute all of the possible 2-colorings for all
(n−q)−hyperplanes as discussed in the next section within real quadruple precision or REAL*16 precision.

3. Results and discussions

As seen from Table 2, the 5D-hypercube contains 5 different hyperplanes, where q = 1 to 5, represent tesseracts, cells, 3-faces, edges and
vertices, respectively. Owing to the simplicity of q = 1which yields only 10 tesseracts that can be represented by 10 vertices of a graph
(Fig. 1) and as these 10 vertices also represent the protons of the fully nonrigid water pentamer (H2O)5 , colorings of these ten vertices have
been considered previously [64] and thus we shall not repeat the results. However for other q values with the exception of q = 5 (vertices)
restricted to A1 , complete enumeration results for all IRs have not been considered previously. We note that the problem of coloring the
vertices of the hypercube is equivalent to generating the equivalence classes of 2n Boolean functions of a n− dimensional hypercube which
is of considerable interest [24]-[26], [28], [29]. Previous exhaustive combinatorial enumerations for the 4d-hypercube for all irreducible
representations have been considered by the current author recently [11].
Tables 3-6 show the unique terms for 2-colorings of (5−q)− hyperplanes q = 2−5, respectively for the 5D-hypercube. In all these tables
irreducible representations of the S5 [S2] group are denoted as A1 to A36, respectively. We note that only A1 to A4 are one-dimensional,
A5−A8 are 4-dimensional, A9−A16 are five-dimensional, A17−A18 are 6-dimensional, A19−A28 are 10-dimensional, A29−A32 are
15-dimensional, A33−A36 are 20-dimensional IRs of the 5d-hypercube. The number of colorings that transform according to the irreducible
representation Ai (i = 1−36) are shown in Tables 3-6 for unique partition of colors. For example, the number of colorings which transform
as the given irreducible representation in a row and contain 35 red colors and 5 green colors for coloring the cells (q = 2) of the 5D-hyercube
are shown in Table 3 in the fifth column. We use the notation [λ ] to denote the unique partitions for the colorings and in order to save space,
owing to the symmetry of binomial numbers the results are shown only for [ n1,n2] where n1 GE n2 as the other case (n2, n1) is equivalent
to (n1, n2) . As can be seen from Table 3, there are 1, 1, 5, 18, 84, and 362 colorings that transform as A1 for 40 reds, 39 reds, 38 reds, 37
reds, 36 reds, and 35 reds (remaining 40-red = greens), respectively. The number of colorings that transform as A1 irreducible representation
is simply the number of equivalence classes under the action of the 5D-hyperoctahedal group on the cells for Table 3. Thus from Table 3,
there are 36,600,432 ways to color the cells of the 5D-hypercube with 20 red colors and 20 green colors.- a result that is not known up to
now. In the mathematics literature, the focus has been often on the total number of equivalence classes for the vertex colorings as opposed to
the detailed enumeration for each possible distribution of colors (n1, n2) that we show in Table 3. The results in Tables 3-5 have not been
obtained before.
As can be seen from Table 4 the number of equivalence classes for coloring faces (q = 3) of the 5D-hypercube are 1, 8, 54, 633 and 7287 for
1, 2, 3, 4, 5 green colors (remaining being red colors), respectively. The fact that the number of equivalence classes for 79 red and 1 green
colors for the face colorings is one implies all the faces of the hypercube are equivalent, a result that is expected. As seen from Table 4,
the number of equivalence classes (A1 colorings) for 40 red and 40 green colors is a result that is unknown up to now. The numbers for
other 35 irreducible representations (A2−A36) correspond to the number of functions out of 280 functions in the set RD that transform as
the corresponding irreducible representation. Consequently, the numbers in each row multiplied by the dimensions of the corresponding
irreducible representations for all 36 IRs and all color distributions, that is, doubling each number in Table 4 for [λ ] with the exception [40 40]
we obtain 280 which is the total number of functions in the set of all maps. Likewise the sum of twice all numbers for the A1 representation
with the exception that [40 40] is added only once, generates the total number of equivalence classes. This result can also be directly obtained
from the cycle index for the A1 IR by replacing every xk by 2. That is, for the results in Table 3, total equivalence classes count is given by

I ( f aces;2) = 1
3840


280 +5×256 +10×244 +10×240 +5×240 +1×240 +20×250 +20×226

+60×244 +60×222 +60×242 +60×222 +20×240 +20×222 +80×228

+80×214 +160×220 +160×214 +80×216 +80×214 +60×244 +120×224

+60×240 +120×222 +60×220 +60×220 +240×222 +240×210 +240×222

+240×210 +160×218 +160×214 +160×210 +160×28 +384×216 +384×28


= 314,824,532,572,147,370,464
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The result thus obtained agrees with the computer code that independently computed the sum of all coefficients in the generating function,
thus providing independent validation of our results. Consequently, the total number of equivalence classes for the face colorings of
5D-hypercube with 2 colors is 314,824,532,572,147,370,464.
As seen from Table 5, there are also 80 edges for the 5D-hypercube, which happens to be coincidentally same as the number of faces. We
have provide all 2-coloring distributions in Table 5 and as these numbers contain less than 32-33, digits all results are computed accurately
within the quadruple precision arithmetic. Once again from Table 5, we infer there are 1, 8, 50, 608, 7092 colorings for 1, 2, 3, 4, 5 green
colors (remaining reds) for the edge colorings of the 5D-cube.Although the first two numbers coincide with the face coloring distribution
from the third number onwards all the results differ. In general, the number of face colorings is larger than the number of edge colorings for
the same color distribution. Thus we obtain 27,996,670,589,987,902,014 as the number of equivalence classes for edge colorings with 40
red colors and 40 green colors while the corresponding number for face colorings is 27,996,675,954,790,045,648 with 40 reds and 40
greens. The total number of equivalence classes for edge colorings of the 5D-hypercube with 2 colors is 314,824,456,456,819,827,136 which
can be obtained in two independent ways as demonstrated for the face colorings.
Table 6 shows the vertex colorings for all irreducible representations for the 5D-hypercube. The results for the vertex colorings of the
5D-hypercube for the A1 IR have been obtained previously by Chen and Guo [29] using a completely different method of generating the
cycle index of the group. The results obtained by Chen and Guo [29] for the equivalence classes correspond to our numbers in Table 6 for the
A1 IR. Chen and Guo [29] obtain these numbers as 1, 1, 5, 29, 47, 131, 472, 1326, 3779, 9013, 19,963, 38,073, 65,664, 98,804, 133,576,
158,658, for greens varying from 0 to 17 (remaining red). The corresponding results that we obtain in Table 6 for the same color distribution
for the vertex colorings of the 5D-hypercube are 1, 1, 5, 10, 47, 131, 472, 1326, 3779, 9013, 19,963, 38,073, 65,664, 98,804, 133,576,
158,658, respectively. In addition we obtain the number of equivalence classes for 40 red and 40 green as 169,112 that Chen and Guo [29]
did not report. Evidently the number of equivalence classes reported for 3 green colors by Chen and Guo [29] as 29 is not correct, and it
disagrees with our result of 10 equivalence classes for the same color distribution. Furthermore the total number of equivalence classes that
we obtain by adding doubles of all the numbers for A1 in Table 6 except that [16 16] is counted once, is 1,228,158 which clearly does not
agree with the results of Chen and Guo [29] although the total number directly obtained from their cycle index by replacing every xk with 2
agrees with our result of 1,228,158. Therefore we conclude that only the number reported for 3 green colors as 29 by Chen and Guo [29]
must be incorrect. Moreover, our result of 1,228,158 for the total number of equivalence classes for 2 colors agrees with the number reported
by Perez-Agulia [26] but differs from the result of Aichholzer [25] who has obtained it as 1,226,525. The difference was reconciled by
Perez-Agulia [26] with the explanation that vertices with 0 to 4 polytopes were treated differently by Aichholzer [25].

4. Chiral and alternating colorings, chemical and biological applications

As discussed in the previous section the numbers enumerated for the A1 representation (totally symmetric) for the partition [n1,n2] of colors
enumerates the number of Pólya equivalence classes for the coloring of (n−q)− hyperplanes with n1 colors of one kind and n2 colors of
another kind. A geometrical or physical interpretation for the numbers enumerated for other irreducible representations in Tables is that these
numbers enumerate the number of functions that transform as the IR among the set of all RD functions from the set D to R. That is, for
hypercube’s binary colorings there are 2n such functions where n is the number of (n−q)−hyperplanes for a given q . Thus the number of
irreducible representations in Tables 3 to 6 for a given color partition [n1n2] gives the number of possible symmetry-adapted orthogonal
functions generated from the set RD of 2n functions. In addition to this interpretation the numbers enumerated for irreducible representations
other than A1 can yield information on different aspects of colorings such as chirality, alternation and various other applications.
Chirality arises in a coloring if the mirror image of the coloring is not superimposable on the original coloring. Objects are chiral when they
have handedness such as shoes, hands, feet, gloves, etc. In such cases, the mirror images of the object cannot be converted into the original
object by any proper rotations in the physical space. The term proper rotation refers to a rotation by an angle 2π/m for a natural number m
around a specified axis of rotation denoted by a Cm axis of rotation. The set of such proper rotations that leave the object in the set D invariant
constitute a subgroup that we call the rotational subgroup of the nD-hyperoctahedral group and it is comprised of 2(n−1)x n! operations for
the nD-hypercube. While such rotational operations are readily identified for a regular three-dimensional square or a cube shown in Table 1,
this is less transparent for the higher dimensional hypercubes. As seen from Table 1, for each conjugacy class we can assign a rotational
operation or mirror plane or a composite improper rotation by simply applying the operation on the vertices or edges or faces of the cube and
gathering the various orbits generated upon the action of the operation. An improper axis of rotation, denoted is defined as the product Cnσh,
or σhCn where the σh operation is a mirror plane perpendicular to the Cn axis. For a cube these operations are assigned to the various matrix
conjugacy classes in Table 1 based on the permutation’s orbits it generates upon its action on the vertices or edges or faces of the 3D cube.
The proper rotations for an nD-hypercube can be obtained from the 2×n matrix of the corresponding conjugacy class by considering the
non-zero column’s place values. That is, a conjugacy class with matrix [aik] is a proper rotation if and only if

even

∑
k

a1k +
odd

∑
k

a2k

is even, where the first sum is restricted to even ks while the second to odd ks. If the above sum is odd then the operation corresponding to
the 2×n matrix of the conjugacy class is an improper axis of rotation, where a special case of an improper axis may also be a mirror plane of
symmetry or a center of inversion. This procedure can be applied to higher dimensional cubes, and thus in Table 2 we have identified each
proper rotation of the 5D-hypercube by placing the label R next to the conjugacy class. If the label R is absent it means that the conjugacy
class represents an improper axis of rotation. Chirality can then be determined by the definition that an object is chiral if it does not possess
an improper axis of rotation. Evidently uncolored 5D-hypercube or a 3D-cube is not chiral because of the presence of improper axes of
rotations. However, once the (n-q)-hyperplanes are colored some of the colorings for certain distribution of colors may become chiral.
Tables 3-6 that we have constructed enumerate and identify these chiral colorings. The chiral colorings are obtained by stipulating that the
functions in RD for the coloring distribution [n1 n2] must transform in accord to the irreducible representation of chirality. This irreducible
representation for chirality of the nD-hypercube is rigorously identified as the uni-dimensional IR that has +1 character values for all proper
rotations of the nD-hyperoctahedral group and -1 for all improper rotations. By examining the character values for the uni-dimensional
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representations for the 5D-hypercube we identify this IR as A2 representation, and thus in Tables 3-5 they are identified with * in these tables.
Consequently, the number of chiral colorings for a given distribution of colors [n1 n2]is enumerated by the numbers for the A2 row in Tables
3-6 for various (n−q)− hyperplanes.
As seen from Table 3, the first few numbers or the A2 representation are 0,0,0,0,6,84,657,3750,16,898,63,366,203,095,565,964, ...
suggesting that coloring 40 cells of the 5D-hypercube do not produce any chiral colorings for 40 reds & 0 greens, 39 reds & 1 green, 38 reds
& 2 green, 37 reds & 3 greens, and in order to produce a chiral coloring one needs at least 4 green colors and remaining 36 red, and there are
exactly 6 such colorings which are chiral. That is, among the 84 equivalence classes of cell colorings for [36 4] partition of colors there are
exactly six chiral pairs in that mirror images of a chiral coloring is not superimposable on the original coloring. In order to illustrate this
further consider a regular 3D cube. Among the total of 14 equivalence classes produced for all 2-colorings of the vertices of a 3D cube, only
one coloring is chiral and all remaining colorings are achiral. The chiral coloring is shown in Figure 2.

Figure 4.1: The only chiral coloring among 14 equivalence classes of 2-colorings of vertices of a cube. This is enumerated as the number of A1u irreducible
representations for the 2-colorings. For the 5D-hypercube the first chiral coloring appears for 4 greens and 28 reds. There are 2, 26, 148, 653, 2218, 6300,
14972, 30,730, and 54,528 such chiral colorings for 4, 5, 6, 7, 8, 9, 10, 11, and 12 green colors (remaining red), respectively for the 2-colorings of the vertices
of the 5D-hypercube as enumerated by the A2 chiral representation of the 5D-hypercube..

The numbers of chiral colorings for face-colorings of the 5D-hypercube are given by the numbers of the A2 IR in Table 4, and it can be
seen as 14, 326, 5722, 74973, 811,527, 7,477,975 and 60,113,621 for 3, 4, 5, 6, 7, 8, and 9 greens (remaining reds), respectively. The
corresponding results for the edge 2-colorings are 12, 330, 5782, 75,369, 815,762, 60,219,494 and 428,191,237 for 3, 4, 5, 6, 7, 8, and 9
greens (remaining reds), respectively. Finally as can be seen from Table 6, 2-colorings of the vertices of the 5D-hypercube produce 2, 26,
148, 653, 2218, 6300, 14,972, 30,730, and 54,528 chiral colorings for 4, 5, 6, 7, 8, 9, 10, 11, and 12 green colors (remaining red), respectively.
Thus in order to produce a chiral coloring of 2-coloring of the vertices of a 5D-hypercube one needs at least 4 colors of one kind and 28
colors of another kind, and there are 2 such chiral colorings for [28 4] color distribution.
The alternating irreducible representation is defined as the one that exhibits +1 character values for even permutations of q=1 (n-1)hyperplanes
and -1 for the odd permutations. The set of all even permutations form the alternating subgroup of the hypercube group. The alternating
representation plays an important role in the quantum chemical classification of the rovibronic total wave functions of fermions as such
wave functions for fermions must transform as the alternating IR in order to comply with the Pauli Principle. For the 5D-hypercube the
uni-dimensional alternating IR is the A3 representation in Table 3-6. Thus the 2-colorings enumerated for the A3 representation provides
important information on the nuclear spin functions of rovibronic levels and nuclear spin statistical weights of fermionic particles of
molecules, for example, water pentamer. We thus point out that these combinatorial enumerations aid in the analysis of experimental
spectroscopic studies of weakly-bound van der waals clusters and molecular clusters of polar molecules such as ammoniated ammonia,
(H2O)n, (NH3)n [50], [64], [62] etc., as such clusters exhibit potential energy surfaces with multiple valleys separated by surmountable
mountains, and consequently, these molecular clusters undergo rapid tunneling motions. Hence these tunneling motions that occur rapidly at
higher room temperatures result in the splittings of the rovibronic levels to tunneling levels. Consequently, the interpretation of the rovibronic
spectra of these molecular clusters requires hypercube colorings and detailed analysis for all IRs.
Finally we would like to point out applications to biology in the context of genetic regulatory network and phylogeny. The phylogenic trees
are recursive in nature and they are special cases of Cayley trees and thus the automorphism groups and colorings of phylogenic trees require
nested nD-hypergroups and wreath products. Likewise, in genetics it has been shown that canalization or control of one genetic trait by
another trait of genetic regulatory networks is important in evolutionary processes, and such networks are represented by nD-hypercubes
where the vertices of the nD-hypercube represent the 2n possible Boolean functions for n traits. Reichhardt and Bassler [34] have shown
the connection between 2-colorings of an nD-hypercube and genetic regulatory pathways, and the necessity to classify the 2-colorings of
the vertices into equivalence classes in order to generate a smaller clustering subsets on the basis of equivalence classes thus enumerated
for the 2-colorings of the vertices of the nD-hypercube. Thus the properties of any representative function in a class would have the same
genetic expression as any other function in the equivalence class thereby reducing the amount of computations. The question of if chirality in
colorings would have any implication in the probability of producing chiral traits and thus biological evolutionary implication of chirality has
not been visited thus far.

5. Conclusion

Combinatorial enumeration of 2-colorings for all irreducible representations and all hyperplanes for were considered for a 5D-hypercube.
The techniques involved Möbius inversion combined with generalized character cycle indices for all 36 irreducible representations of the
5D-hypercube. We also discussed applications chirality, alternation of colorings in the equivalence class. Applications to genetics and
molecular spectroscopy were pointed out. As nD-hypercube colorings explode combinatorially in astronomical proportions, it remains to be
seen how well the techniques will computationally scale and work for higher dimensional hypercubes.
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Table 1: Conjugacy Classes, polynomials, cycle types of a regular cube or 3D-cube with group S3[S2]

CC |CC| O Fd(x) q = 1 q = 2 q = 3
(face) (edge) (Vert)(

3 0 0
0 0 0

)
1 E F1(x) = (1+2x)3 16 112 18(

2 0 0
1 0 0

)
3 σh F1(x) = (1+2x)2 142 1424 24

F2(x) = (1+2x)3(
1 0 0
2 0 0

)
3 C2

4 F1(x) = (1+2x) 1222 26 24

F2(x) = (1+2x)3(
0 0 0
3 0 0

)
1 i F1(x) = 1 23 26 24

F2(x) = (1+2x)3(
1 1 0
0 0 0

)
6 σd F1(x) = (1+2x)(1+2x2) 1222 1225 1422

F2(x) = (1+2x)3(
1 0 0
0 1 0

)
6 C4 F1(x) = (1+2x) 124 43 42

F2(x) = (1+2x)
F4(x) = (1+2x)3(

0 1 0
1 0 0

)
6 C2 F1(x) = (1+2x2) 23 1225 24

F2(x) = (1+2x)3(
0 0 0
1 1 0

)
6 S4 F1(x) = 1 2141 43 42

F2(x) = (1+2x)
F4(x) = (1+2x)3(

0 0 1
0 0 0

)
8 C3 F1(x) = (1+2x3) 32 34 1232

F3(x) = (1+2x)3(
0 0 0
0 0 1

)
8 S3 F1(x) = 1 6 62 21 6

F2(x) = (1+2x3)
F3(x) = 1
F6(x) = (1+2x)3
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Table 2: Conjugacy Classes of S5[S2], their orders, Fd polynomials and cycle types generated using Möbius inversion for the 5D-hypercube’s five hyperplanes*.

Conj Class |C| Fd(x) q = 1 q = 2 q = 3 q = 4 q = 5
C tes Cel fac ed Ver(

5 0 0 0 0
0 0 0 0 0

)
1E F1(x) = (1+2x)5 110 140 180 180 132(

4 0 0 0 0
1 0 0 0 0

)
5 F1(x) = (1+2x)4 182 12428 132224 116232 216

F2(x) = (1+2x)5(
3 0 0 0 0
2 0 0 0 0

)
10R F1(x) = (1+2x)3 1822 112214 18236 240 216

F2(x) = (1+2x)5(
2 0 0 0 0
3 0 0 0 0

)
10 F1(x) = (1+2x)2 1423 14218 240 240 216

F2(x) = (1+2x)5(
1 0 0 0 0
4 0 0 0 0

)
5R F1(x) = (1+2x) 1224 220 240 240 216

F2(x) = (1+2x)5(
0 0 0 0 0
5 0 0 0 0

)
1 F1(x) = 1 25 220 240 240 216

F2(x) = (1+2x)5(
3 1 0 0 0
0 0 0 0 0

)
20 F1(x) = (1+2x)3(1+2x2) 1622 114213 120230 124228 11628

F2(x) = (1+2x)5(
3 0 0 0 0
0 1 0 0 0

)
20R F1(x) = (1+2x)3 164 11247 18418 420 48

F2(x) = (1+2x)3

F4(x) = (1+2x)5(
2 1 0 0 0
1 0 0 0 0

)
60R F1(x) = (1+2x)2(1+2x2) 1423 116217 18236 18236 216

F2(x) = (1+2x)5(
2 0 0 0 0
1 1 0 0 0

)
60 F1(x) = (1+2x)2 14214 142447 24418 420 48

F2(x) = (1+2x)3

F4(x) = (1+2x)5(
1 1 0 0 0
2 0 0 0 0

)
60 F1(x) = (1+2x)(1+2x2) 1224 12219 14238 240 216

F2(x) = (1+2x)5(
1 0 0 0 0
2 1 0 0 0

)
60R F1(x) = (1+2x) 14224 2647 24418 420 48

F2(x) = (1+2x)3

F4(x) = (1+2x)5(
0 1 0 0 0
3 0 0 0 0

)
20R F1(x) = (1+2x2) 25 12219 240 240 216

F2(x) = (1+2x)5(
0 0 0 0 0
3 1 0 0 0

)
20 F1(x) = 1 234 2647 24418 420 48

F2(x) = (1+2x)3

F4(x) = (1+2x)5(
2 0 1 0 0
0 0 0 0 0

)
80R F1(x) = (1+2x)2(1+2x3) 1432 14312 12226 18324 1838

F3(x) = (1+2x)5(
2 0 0 0 0
0 0 1 0 0

)
80 F1(x) = (1+2x)2 146 1466 2613 24612 2464

F2(x) = (1+2x)2(1+2x3)
F3(x) = (1+2x)2

F6(x) = (1+2x)5(
1 0 1 0 0
1 0 0 0 0

)
160 F1(x) = (1+2x)(1+2x3) 122132 2231068 123862 142234610 2464

F2(x) = (1+2x)2(1+2x3)
F3(x) = (1+2x)4

F6(x) = (1+2x)5
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(
1 0 0 0 0
1 0 1 0 0

)
160R F1(x) = (1+2x) 12216 2266 21613 24612 2464

F2(x) = (1+2x)2(1+2x3)
F3(x) = (1+2x)
F6(x) = (1+2x)5(

0 0 1 0 0
2 0 0 0 0

)
80R F1(x) = (1+2x3) 2232 223464 1232612 24612 2464

F2(x) = (1+2x)2(1+2x3)
F3(x) = (1+2x)3

F6(x) = (1+2x)5(
0 0 0 0 0
2 0 1 0 0

)
80 F1(x) = 1 226 2266 21613 24612 2464

F2(x) = (1+2x)2(1+2x3)
F3(x) = 1
F6(x) = (1+2x)5(

1 2 0 0 0
0 0 0 0 0

)
60R F1(x) = (1+2x)(1+2x2)2 1224 14218 18236 14238 18212

F2(x) = (1+2x)5(
1 1 0 0 0
0 1 0 0 0

)
120 F1(x) = (1+2x)(1+2x2) 12224 122547 1422418 420 48

F2(x) = (1+2x)3

F4(x) = (1+2x)5(
0 2 0 0 0
1 0 0 0 0

)
60 F1(x) = (1+2x2)2 25 14218 240 14238 216

F2(x) = (1+2x)5(
0 1 0 0 0
1 1 0 0 0

)
120R F1(x) = (1+2x2) 234 122547 24418 420 48

F2(x) = (1+2x)3

F4(x) = (1+2x)5(
1 0 0 0 0
0 2 0 0 0

)
60R F1(x) = (1+2x) 12424 410 420 420 48

F2(x) = (1+2x)
F4(x) = (1+2x)5(

0 0 0 0 0
1 2 0 0 0

)
60 F1(x) = 1 2142 410 420 420 48

F2(x) = (1+2x)
F4(x) = (1+2x)5(

1 0 0 1 0
0 0 0 0 0

)
240 F1(x) = (1+2x)(1+2x4) 12424 2249 24418 1221419 142246

F2(x) = (1+2x)(1+2x2)2

F4(x) = (1+2x)5(
1 0 0 0 0
0 0 0 1 0

)
240R F1(x) = (1+2x) 128 85 810 810 84

F2(x) = (1+2x)
F4(x) = (1+2x)
F8(x) = (1+2x)5(

0 0 0 1 0
1 0 0 0 0

)
240R F1(x) = (1+2x)(1+2x4) 2142 2249 24418 1221419 2446

F2(x) = (1+2x)(1+2x2)2

F4(x) = (1+2x)5(
0 0 0 0 0
1 0 0 1 0

)
240 F1(x) = 1 218 85 810 810 84

F2(x) = (1+2x)
F4(x) = (1+2x)
F8(x) = (1+2x)5(

0 1 1 0 0
1 0 0 1 0

)
160 F1(x) = (1+2x2)(1+2x3) 2332 12213464 1236610 243868 14223462

F2(x) = (1+2x)2(1+2x3)
F3(x) = (1+2x2)(1+2x)3

F6(x) = (1+2x)5
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(
0 1 0 0 0
0 0 1 0 0

)
160R F1(x) = (1+2x2) 226 122166 21613 24612 2464

F2(x) = (1+2x)2(1+2x3)
F3(x) = (1+2x2)

F6(x) = (1+2x)5(
0 0 1 0 0
0 1 0 0 0

)
160R F1(x) = (1+2x3) 4132 3441122 1232126 42126 42122

F2(x) = (1+2x3)
F3(x) = (1+2x)3

F4(x) = (1+2x)2(1+2x3)
F6(x) = (1+2x)3

F12(x) = (1+2x)5(
0 0 0 0 0
0 1 1 0 0

)
160 F1(x) = 1 4 6 4 62122 2 6126 42126 42122

F2(x) = (1+2x3)
F3(x) = 1
F4(x) = (1+2x)2(1+2x3)
F6(x) = (1+2x)3

F12(x) = (1+2x)5(
0 0 0 0 1
0 0 0 0 0

)
384R F1(x) = (1+2x5) 52 58 516 516 1256

F5(x) = (1+2x)5(
0 0 0 0 0
0 0 0 0 1

)
384 F1(x) = 1 10 104 108 108 21103

F2(x) = (1+2x5)
F5(x) = 1
F10(x) = (1+2x)5

*Label R identifies proper rotations.
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Table 3: 2-colorings of q = 2 or 3-hyerplnes (cells) of 5D-hhypercube*

[λ ] 40 39 1 38 2 37 3 36 4 35 5
A1 1 1 5 18 84 362
A2∗ 0 0 0 0 6 84
A3† 0 0 0 1 17 130
A4 0 0 0 3 29 218
A5 0 0 0 14 132 912
A6 0 1 8 41 234 1198
A7 0 0 0 1 33 376
A8 0 0 0 3 53 466
A9 0 0 3 28 211 1266
A10 0 1 7 43 261 1410
A11 0 0 0 2 46 502
A12 0 0 0 3 57 548
A13 0 0 1 11 105 753
A14 0 0 0 4 59 570
A15 0 1 5 36 217 1247
A16 0 0 0 10 130 958
A17 0 0 3 34 253 1534
A18 0 0 0 3 63 632
A19 0 0 1 20 225 1705
A20 0 0 0 19 231 1741
A21 0 1 7 48 335 2060
A22 0 10 2 30 266 1853
A23 0 0 0 11 161 1394
A24 0 0 1 16 181 1454
A25 0 0 2 27 237 1684
A26 0 0 1 22 217 1624
A27 0 0 1 14 158 1315
A28 0 0 4 44 341 2197
A29 0 0 0 11 191 1808
A30 0 0 0 18 232 1991
A31 0 0 4 54 471 3155
A32 0 1 9 80 558 3444
A33 0 0 3 50 489 3556
A34 0 0 6 66 562 3797
A35 0 0 1 32 376 3012
A36 0 0 3 40 414 3130
[λ ] 34 6 33 7 32 8 31 9 30 10 29 11
A1 1608 6549 24447 81523 243027 645920
A2∗ 657 3750 16898 63366 203095 565964
A3† 820 4201 18036 65883 208248 575519
A4 1196 5575 22187 76923 234085 630118
A5 4957 22752 89932 310271 941691 2530274
A6 5764 24690 94419 319457 959523 2561868
A7 2788 15437 68714 255963 817470 2273349
A8 3112 16337 70988 260991 827766 2292449
A9 6548 29276 114337 391745 1184645 3176086
A10 6951 30250 116572 396345 1193551 3191888
A11 3603 19622 86732 321822 1025657 2848796
A12 3766 20073 87870 324339 1030810 2858351
A13 4505 22424 94334 340422 1066636 2931379
A14 3902 20774 90308 331592 1048890 2898671
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A15 6315 28332 111060 382756 1162511 3128715
A16 5519 26226 106192 372241 1142010 3091274
A17 7917 35318 137717 471282 1424118 3816104
A18 4423 23823 104768 387705 1233905 3424315
A19 10100 49179 202674 719261 2225769 6060963
A20 10246 49608 203802 721773 2231003 6070695
A21 11143 51877 209058 732893 2252661 6109809
A22 10559 50479 205914 726505 2240491 6088449
A23 8893 45231 191440 690879 2161351 5928638
A24 9081 45720 192650 693498 2166648 5938361
A25 9791 47669 197270 703613 2186655 5975122
A26 9603 47180 196060 700994 2181358 5965399
A27 8394 43167 184598 671959 2115409 5829890
A28 11821 54521 217202 754936 2304404 6219829
A29 12097 63479 273932 1001661 3160917 8722835
A30 12691 65129 277938 1010491 3178627 8755543
A31 17340 80747 323394 1127177 3446414 9311103
A32 18136 82853 328262 1137692 3466915 9348544
A33 20657 99644 408572 1445748 4466210 12149350
A34 21383 101463 412836 1454636 4483602 12180432
A35 18488 92296 387472 1391838 4342653 11893939
A36 18860 93370 389890 1397068 4353235 11913375
[λ ] 28 12 27 13 26 14 25 15 24 16 20 20
A1 1534959 3268238 6253840 10780533 16780905 36600432
A2∗ 1387615 3018198 5860684 10206958 16001831 35267044
A3† 1404093 3044481 5899917 10261735 16073555 35382134
A4 1508474 3227163 6193673 10698058 16674124 36432620
A5 6051057 12935884 24815540 42849105 66771193 145850208
A6 6103944 13018005 24935767 43014020 66984612 146185674
A7 5566873 12098955 23481819 40882439 64078845 141182942
A8 5599815 12151509 23560277 40991977 64222269 141413110
A9 7585897 16203956 31069136 53629419 83551831 182450208
A10 7612322 16245031 31129219 53711894 83658502 182617894
A11 6970887 15143304 29381578 51144016 80152173 176564772
A12 6987365 15169587 29420811 51198793 80223897 176679862
A13 7122810 15401876 29787455 51737069 80956494 177940894
A14 7066962 15313232 29655841 51554067 80717484 177559178
A15 4793096 16040561 30802821 53232534 83001076 181479598
A16 7430012 15940878 30655982 53029221 82736568 181059380
A17 9111568 19458488 37303794 64384562 100300776 219002868
A18 8374980 18187785 35281495 61405751 96225728 211946906
A19 14630010 31481747 60673483 105113023 164178470 359867382
A20 14646966 31508798 60714034 105169696 164252800 359986806
A21 14712710 31612100 60865880 105379320 164525016 360417862
A22 14677526 31557917 60787385 105272259 164387422 360203692
A23 14381627 31054027 59993215 104112178 162809521 357499270
A24 14398357 31080628 60032854 104167367 162881749 357614990
A25 14460573 31179079 60178307 104369056 163144521 358033038
A26 14443843 31152478 60138668 104313867 163072293 357917318
A27 14189604 30714843 59442940 103290802 161673524 355499400
A28 14922940 31981159 61458432 106261406 165737190 362538286
A29 21247566 46014649 89080019 154819871 242359594 533011478
A30 21303354 46103293 89211549 155002873 242598504 533393068
A31 22352952 47922037 92114414 159290627 248473758 543597666
A32 22416036 48021720 92261253 159493940 248738266 544017884
A33 29307474 63039544 121460718 210385140 328565692 720070782
A34 29359594 63120751 121579741 210548843 328777586 720404344
A35 28825377 62206368 120131677 208425861 325881583 715416208
A36 28858823 62259556 120210947 208536219 326026015 715647636

∗Identifies Chiral Representation,
†Identifies Alternating Representation
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Table 4: 2-colorings of 5D-hypercube: q=3 or 2-hyperplanes(faces)

[λ ] 80 0 79 1 78 2 77 3 76 4 75 5
A1 1 1 8 54 633 7287
A2∗ 0 0 0 14 326 5722
A3† 0 0 1 2 408 699
A4 0 0 0 19 418 661
A5 0 0 1 86 1724 25905
A6 0 1 14 154 2138 27755
A7 0 0 0 48 1329 22923
A8 0 0 2 71 1491 23876
A9 0 0 8 136 2349 33188
A10 0 1 14 171 2552 34114
A11 0 0 1 73 1735 29121
A12 0 0 2 85 1817 29598
A13 0 0 6 110 2060 30896
A14 0 0 1 73 1771 29392
A15 0 1 10 168 2435 33702
A16 0 0 3 106 2090 31741
A17 0 0 7 167 2811 40020
A18 0 0 1 79 2086 34886
A19 0 0 7 201 4067 62428
A20 0 0 6 213 4117 62905
A21 0 1 18 275 4557 64866
A22 0 0 6 220 4201 6500
A23 0 0 4 173 3807 60718
A24 0 0 4 165 3833 60755
A25 0 1 11 245 4232 6148
A26 0 0 8 210 4090 62222
A27 0 0 7 180 3825 60285
A28 0 1 13 271 4519 65440
A29 0 0 4 233 5451 89243
A30 0 0 7 270 5728 90747
A31 0 0 14 354 6550 96726
A32 0 1 21 416 6895 98687
A33 0 0 13 421 8268 125928
A34 0 1 24 487 8672 127770
A35 0 0 12 381 7893 122938
A36 0 0 15 406 8057 123899
[λ ] 74 6 73 7 72 8 71 9 70 10 69 11
A1 83555 849445 7641565 60729304 429970617 2732388768
A2∗ 74973 811527 7477975 60113621 427758604 2725189869
A3† 77230 821376 7515124 60245702 428179564 2726468083
A4 79347 833673 7583400 60540511 429376647 2730690404
A5 319235 3344486 30366992 242293889 1717899937 10924039594
A6 327603 3376017 30483176 242671455 1719087495 10927436302
A7 301055 3250060 29935770 240529874 1711337285 10901617831
A8 305566 3269746 30010065 240794016 1712179165 10904174239
A9 402754 4193869 38008521 303022994 2147870156 13656428163
A10 406924 4209641 38066550 303211787 2148463784 13658126527
A11 378269 4071401 37450878 300775427 2139516551 13628085765
A12 380526 4081250 37488027 300907508 2139937511 13629363979



Journal of Mathematical Sciences and Modelling 173

A13 388244 4115896 37642667 301493236 2142078579 13636348861
A14 380718 4085029 37522094 301081473 2140734613 13632382149
A15 403325 4194147 37983313 302887223 2147152220 13653690659
A16 394699 4157315 37849447 302418655 2145690306 13649303434
A17 483936 5037385 45625203 363695529 2577640232 16388396724
A18 454418 4886903 44952736 360964567 2567578338 16354134118
A19 782696 8276912 75522353 604085534 4288538040 27288670143
A20 784537 8286761 75555698 604217615 4288931526 27289948357
A21 794398 8323593 75700964 604686183 4290475691 27294335582
A22 787906 8301941 75618251 604440771 4289681978 27292217431
A23 772614 8226772 75295921 603175242 4285167659 27277249393
A24 773790 8230741 75319810 603250704 4285470842 27278107820
A25 783478 8273411 75466888 603775798 4287050362 27282914469
A26 780121 8257639 75416431 603587005 4286511454 27281216105
A27 768923 8200847 75164722 602574387 4282812548 27268730688
A28 797985 8351384 75832721 605305556 4292841882 27302993771
A29 1147363 12280002 112662231 903599298 6423347475 40900693107
A30 1154851 12310869 112782678 904011061 6424691099 40904659819
A31 1191584 12502770 113668866 907667442 6438414240 40951876998
A32 1200210 12539602 113802732 908136010 6439876154 40956264223
A33 1570592 16578830 151140594 1208526176 8578219760 54580887445
A34 1578916 16610319 151256643 1208903649 8579406919 54584283790
A35 1552712 16484362 150712329 1206762068 8571678755 54558465319
A36 1557242 16504090 150786672 1207026303 8572520806 54561022090
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[λ ] 44 36 43 37 42 38 41 39 40 40
A1 18847863525339251552 22413675116856521554 25362842575806673932 27313830262039356344 27996675954790045648
A2∗ 18847852585019852784 22413662952649979772 25362829447471548304 27313816527678832042 27996662005552559820
A3† 18847853190803004294 22413663622117296124 25362830164050160934 27313817276349083728 27996662763315380740
A4 18847862859627984748 22413674384398836626 25362841789323193438 27313829443562144630 27996675123446791678
A5 75391452039570414338 89654698207061418894 101451367868400802692 109255318522918146262 111986701245805189142
A6 75391453370992774196 89654699671976785110 101451369441367576670 109255320159872567790 111986702908491503538
A7 75391410895382419988 89654652417075817924 101451318447499755284 109255266789578133400 111986648717878780904
A8 75391412106948721622 89654653756010447008 101451319880656979158 109255268286918634892 111986650233404418984
A9 94239315564909056836 112068373323916723632 126814210444206867570 136569148784956847548 139983377200593924674
A10 94239316230620152144 112068374056374408560 126814211230690163308 136569149603434059262 139983378031936988900
A11 94239264086184823660 112068316039191912380 126814148611549315596 136569084065926569990 139983311481192867368
A12 94239264691967975170 112068316708659228732 126814149328127928226 136569084814596821676 139983312238955688288
A13 94239275611010301062 112068328846778722822 126814162431677508060 136569098520092612896 139983326162116863420
A14 94239273757571746680 112068326806566039966 126814160239766081968 136569096238736595918 139983323844407910574
A15 94239306532959553232 112068363268005984602 126814199571879555474 136569137407356432010 139983365636539659632
A16 94239304629041322386 112068361164802814868 126814197321003585678 136569135056193326978 139983363256737576052
A17 113087179025595952234 134482048377782845824 152177052944638511992 163882978977189213078 167980053076059861824
A18 113087117226508284532 134481979598318989036 152176978716635025204 163882901272468852522 167979974182415265728
A19 188478589300930046414 224136700109485934928 253628370658848001576 273138245000424414272 279966701018560496814
A20 188478589901989013044 224136700778953251280 253628371369956483346 273138245749094665958 279966701770579703858
A21 188478591820079755620 224136702882156421014 253628373637242754192 273138248100257770990 279966704167612580446
A22 188478591089716591170 224136702086708485832 253628372775384675292 273138247211973727294 279966703256945725386
A23 188478568698399675330 224136677182998016880 253628345912898114958 273138219098850995800 279966674717232831548
A24 188478569253703298004 224136677789475082978 253628346570512276262 273138219777714415504 279966675412902686308
A25 188478571208100940998 224136679955668384664 253628348880352605006 273138222198684224492 279966677854797606408
A26 188478570551838143964 224136679223210699736 253628348104809448672 273138221380207012778 279966677034941689648
A27 188478549368580840744 224136655653342348792 253628322671442383030 273138194758827908970 279966650006522174306
A28 188478611161999668620 224136724432806385474 253628396892881934154 273138272463548459144 279966728893274635996
A29 282717823061500661778 336204982396918169290 380442482835833897378 409707290927757703692 419949973771606452858
A30 282717824914939044664 336204984437130852146 380442485027745138714 409707293209113720670 419949976089315216212
A311 282717915740561360068 336205085534618800980 380442594154920976128 409707407449934795308 419950092087919132428
A32 282717917644479590914 336205087637821970714 380442596405796945924 409707409801097900340 419950094467721216008
A33 376957180390646038772 448273402196193222712 507256743434232078056 546276492212397496308 559933404275504931684
A34 376957181722068167618 448273403661108470626 507256745007198636492 546276493849351789810 559933405938190990028
A35 376957139250237212918 448273356406207503440 507256694017706957254 546276440479057355420 559933351752173214880
A36 376957140461803631240 448273357745142250826 507256695450864273506 546276441976397984938 559933353267698982600

*Identifies Chiral Representation
†Identifies Alternating Representation

”Terms corresponding to partitions [68 12] through [45 35] are not displayed.”
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Table 5: 2-colorings of 5D-hypercube for q=4 or 1-hyperplanes (edges) of 5D-hypercube

[λ ] 80 0 79 1 78 2 77 3 76 4 75 5
A1 1 1 8 50 608 7092
A2∗ 0 0 0 12 330 5782
A3† 0 0 2 30 488 6690
A4 0 0 0 10 319 5730
A5 0 0 0 55 1426 23866
A6 0 1 13 132 1990 26563
A7 0 0 1 64 1465 23992
A8 0 0 5 98 1781 25800
A9 0 0 3 97 2010 30903
A10 0 0 10 136 2289 32246
A11 0 0 2 90 1940 30638
A12 0 0 4 108 2098 31546
A13 0 1 10 148 2345 32892
A14 0 0 2 74 1808 29722
A15 0 1 10 162 2385 33253
A16 0 0 1 67 1795 29648
A17 0 0 5 127 2489 37615
A18 0 0 4 120 2428 37328
A19 0 0 4 171 3786 60625
A20 0 0 6 191 3952 61607
A21 0 1 19 284 4598 65138
A22 0 0 6 225 4204 63415
A23 0 0 3 157 3735 60286
A24 0 0 5 175 3893 61194
A25 0 1 14 270 4483 64799
A26 0 1 12 252 4325 63891
A27 0 0 9 212 4121 62523
A28 0 0 8 219 4148 62810
A29 0 0 6 267 5820 91884
A30 0 0 13 340 6347 95035
A31 0 0 9 286 5943 92458
A32 0 1 18 381 6533 96063
A33 0 0 10 394 7978 124004
A34 0 1 23 471 8536 126701
A35 0 0 13 403 8041 124130
A36 0 0 17 437 8357 125938
[λ ] 74 6 73 7 72 8 71 9 70 10 69 11
A1 82379 843038 7611823 60601324 429479585 2730645204
A2∗ 75639 815762 7501366 60219494 428191237 2726763270
A3† 80615 837606 7592170 60547288 429312879 2730230168
A4 75477 815283 7500045 60216779 428185149 2726758252
A5 307123 3284074 30095715 241209472 1713913625 10910627650
A6 320894 3339553 30319122 241978353 1716502254 10918401261
A7 307440 3284670 30095732 241204688 1713884368 10910515598
A8 317386 3328346 30277316 241860238 1716127616 10917449272
A9 389378 4126847 37706909 301809609 2143390868 13641268215
A10 396261 4154583 37818587 302193983 2144685133 13645154996
A11 387957 4122042 37687342 301750856 2143195045 13640741264
A12 392933 4143886 37778146 302078650 2144316687 13644208162
A13 399267 4171384 37884523 302461562 2145574281 13648094476
A14 383245 4099953 37598806 301421467 2142091443 13637273850
A15 400355 4177159 37900610 302525641 2145738361 13648631429
A16 383252 4099836 37601654 301428966 2142137746 13637390920
A17 470161 4965306 45302969 362369722 2572751209 16371625455
A18 468572 4959648 45279512 362298144 2572507924 16370971432
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A19 772214 8226800 75301905 603231076 4285454906 27278542065
A20 777520 8249976 75397983 603574410 4286630098 27282141053
A21 795119 8325967 75699273 604655545 4290232009 27293249472
A22 786640 8293652 75571959 604229960 4288818500 27289074727
A23 771209 8221878 75288996 603179822 4285332791 27278132184
A24 776185 8243722 75379800 603507616 4286454433 27281599082
A25 793288 8321045 75678756 604604291 4290055048 27292839591
A26 788312 8299201 75587952 604276497 4288933406 27289372693
A27 782308 8270850 75482201 603880760 4287661270 27285359307
A28 783403 8276508 75501136 603952338 4287871653 27286013330
A29 1163976 12366243 113065434 905261187 6429633640 40922345364
A30 1179979 12437655 113351061 906301111 6433116307 40933165819
A31 1166655 12376344 113102790 905381304 6430009399 40923404250
A32 1183758 12453667 113401746 906477979 6433610014 40934644759
A33 1558766 16520230 150873340 1207459954 8574271258 54567612412
A34 1572537 16575709 151096684 1208228835 8576859887 54575386023
A35 1559415 16520826 150876380 1207455170 8574263945 54567500360
A36 1569361 16564502 151057964 1208110720 8576507193 54574434034
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[λ ] 44 36 43 37 42 38 41 39 40 40
A1 18847859334620010456 22413670446997972838 25362837531743140240 27313824978896887460 27996670589987902014
A2∗ 18847856749898064896 22413667593567098448 25362834461344949584 27313821778724903160 27996667338560535196
A3† 18847859257885780852 22413670364841246912 25362837441865001528 27313824887601341100 27996670495254082980
A4 18847856766704295498 22413667612733468770 25362834481318343144 27313821800213507326 27996667359714049916
A5 75391429606157432796 89654673254005600786 101451340942485322288 109255290345061834468 111986672634212247242
A6 75391434741988768948 89654678922534504952 101451347043334813206 109255296702428492698 111986679094759845390
A7 75391429507567646082 89654673145529299732 101451340825886267878 109255290223762071580 111986672510921365600
A8 75391434523543070266 89654678688077585068 101451346786926363114 109255296441514937800 111986678824308450416
A9 94239288940765094724 112068343700990309476 126814178474214859414 136569115323944723314 139983343224185808696
A10 94239291508680725702 112068346535254721166 126814181524639564132 136569118502628011070 139983346454459568290
A11 94239288765441089748 112068343510357292528 126814178267737678352 136569115111349424020 139983343006161121260
A12 94239291273428805704 112068346281631440992 126814181248257730296 136569118220225861960 139983346162854669044
A13 94239293852494038614 112068349135075557906 126814184312105381812 136569121420411825260 139983349407403993730
A14 94239286278051269304 112068340758262768502 126814175311580690928 136569112023975578906 139983339875230284004
A15 94239293986646838254 112068349287375751864 126814184469883533380 136569121590029833798 139983349573931817500
A16 94239286361724523754 112068340847572699234 126814175410394391170 136569112123786737628 139983339979665122900
A17 113087148246821895790 134482014116808664130 152177015972758652110 163882940268379932380 167980013779270147172
A18 113087148023326870600 134482013875198539440 152177015709602679880 163882939998950765120 167980013501415204240
A19 188478575214092180140 224136684459253077978 253628353780325450740 273138227347920302220 279966683093672480502
A20 188478577753444741688 224136687262337963862 253628356797550900292 273138230492142003960 279966686289042830634
A21 188478585356450552428 224136695670330279072 253628365831274846342 273138239923039836330 279966695856119919142
A22 188478582759971824040 224136692804886249198 253628362747650794080 273138236709894870180 279966692590942719194
A23 188478575127165613502 224136684357929991762 253628353678132069522 273138227235136161648 279966682985826244160
A24 188478577635153329458 224136687129204140226 253628356658652121466 273138230344012599588 279966686142519791944
A25 188478585260075643958 224136695569007192856 253628365718141263676 273138239810255695758 279966695736786486544
A26 188478582752087928002 224136692797733044392 253628362737621211732 273138236701379257818 279966692580092938760
A27 188478580130520633006 224136689893311819736 253628359623658890590 273138233444359426552 279966689282605624774
A28 188478580348346687096 224136690134921944426 253628359880250742400 273138233713788593812 279966689553568287440
A29 282717866380008860880 336205030620395062432 380442534902040326352 409707345433873419442 419950029122932529996
A30 282717873954451546210 336205038997207759458 380442543902564924858 409707354830309573418 419950038655106147470
A31 282717866710071210850 336205030982494643660 380442535290645133570 409707345837575331440 419950029533233410340
A32 282717874334993525350 336205039422297696290 380442544350134275780 409707355303818427610 419950039127500104940
A33 376957157974051675740 448273377264126084652 507256716527962663540 546276464057801193400 559933375684600884504
A34 376957163109882955912 448273382932654988818 507256722628812154458 546276470415167851630 559933382145148421080
A35 376957157879241203778 448273377155649783598 507256716415739690158 546276463936501430512 559933375565904857280
A36 376957162895216627962 448273382698198068934 507256722376779785394 546276470154254296732 559933381879291942096

*Identifies Chiral Representation
†Identifies Alternating Representation

”Terms corresponding to partitions [68 12] through [45 35] are not displayed.”
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Table 6: Two-Colorings of Vertices or q=5-hyperplanes of 5D-hypercube.

[λ ] 32 0 31 1 30 2 29 3 28 4 27 5 26 6 25 7 24 8
A1 1 1 5 10 47 131 472 1326 3779
A2∗ 0 0 0 0 2 26 148 653 2218
A3† 0 1 2 10 33 131 421 1326 3616
A4 0 0 0 0 1 26 144 653 2210
A5 0 0 0 0 8 120 664 2870 9511
A6 0 0 4 13 82 310 1281 4174 12576
A7 0 0 0 0 13 120 690 2870 9600
A8 0 0 2 13 67 310 1215 4174 12360
A9 0 0 0 4 39 228 1092 4135 13189
A10 0 0 2 11 77 324 1399 4789 14718
A11 0 0 0 4 35 228 1073 4135 13128
A12 0 0 1 11 64 324 1339 4789 14514
A13 0 1 5 23 105 441 1657 5500 16038
A14 0 0 0 0 17 146 852 3523 11868
A15 0 1 4 23 100 441 1636 5500 15976
A16 0 0 0 0 15 146 838 3523 11818
A17 0 0 0 3 42 276 1335 5068 16098
A18 0 0 0 3 45 276 1342 5068 16126
A19 0 0 0 4 52 374 1922 7658 24982
A20 0 0 0 3 56 396 2021 7938 25690
A21 0 1 7 34 176 765 3034 10289 30678
A22 0 0 0 16 100 586 2498 9242 28298
A23 0 0 0 4 50 374 1911 7658 24946
A24 0 0 0 3 58 396 2032 7938 25726
A25 0 1 5 34 164 765 2975 10289 30490
A26 0 0 2 16 112 586 2557 9242 28486
A27 0 0 2 15 106 552 2447 8924 27754
A28 0 0 1 15 99 552 2412 8924 27642
A29 0 0 0 7 91 624 3091 12073 38804
A30 0 0 2 27 171 910 3875 14031 42938
A31 0 0 0 7 93 624 3105 12073 38854
A32 0 0 3 27 176 910 3896 14031 43000
A33 0 0 0 18 148 948 4398 16862 53220
A34 0 0 4 31 220 1138 5015 18166 56276
A35 0 0 1 18 157 948 4444 16862 53368
A36 0 0 3 31 211 1138 4969 18166 56128



Journal of Mathematical Sciences and Modelling 179

[λ ] 23 9 22 10 21 11 20 12 19 13 18 14 17 15 16 16
A1 9013 19963 38073 65664 98804 133576 158658 169112
A2∗ 6300 14972 30730 54528 84854 115772 139549 148312
A3† 9013 19591 38073 64985 98804 132622 158658 168028
A4 6300 14955 30730 54502 84854 115733 139549 148272
A5 26577 62443 127170 224457 348060 473805 570371 605924
A6 31935 72346 141756 246631 375831 509313 608445 647402
A7 26577 62656 127170 224857 348060 474370 570371 606564
A8 31935 71835 141756 245691 375831 507976 608445 645892
A9 35457 82216 165022 289831 446538 607012 728648 774616
A10 38137 87161 172314 300905 460423 624750 747682 795338
A11 35457 82075 165022 289569 446538 606644 728648 774200
A12 38137 86673 172314 299996 460423 623459 747682 793876
A13 40948 91573 179829 310939 474635 640973 767103 814338
A14 32877 77754 157900 279619 432914 590482 709920 755258
A15 40948 91426 179829 310676 474635 640598 767103 813920
A16 32877 77628 157900 279385 432914 590142 709920 754876
A17 43199 99880 200138 350931 540233 733809 880619 935962
A18 43199 99934 200138 351041 540233 733952 880619 936136
A19 68334 159792 322922 569118 879452 1197022 1438568 1529340
A20 69776 162501 327308 575734 888293 1208086 1450990 1542436
A21 79085 178556 352143 611502 935058 1265251 1514785 1609132
A22 75134 171312 341894 595902 916064 1240734 1489064 1580692
A23 68334 159703 322922 568954 879452 1196786 1438568 1529076
A24 69776 162590 327308 575898 888293 1208322 1450990 1542700
A25 79085 178099 352143 610672 935058 1264057 1514785 1607796
A26 75134 171769 341894 596732 916064 1241928 1489064 1582028
A27 73594 169021 337336 590062 906961 1230818 1476330 1568876
A28 73594 168748 337336 589565 906961 1230103 1476330 1568076
A29 105233 244539 492330 865233 1334831 1814626 2179638 2316518
A30 113271 258295 514208 896465 1376487 1865012 2236746 2375486
A31 105233 244665 492330 865467 1334831 1814966 2179638 2316900
A32 113271 258442 514208 896728 1376487 1865387 2236746 2375904
A33 143370 330976 664644 1164802 1795254 2437474 2927320 3109712
A34 148728 340879 679230 1186958 1823025 2472982 2965394 3151168
A35 143370 331338 664644 1165463 1795254 2438425 2927320 3110776
A36 148728 340517 679230 1186297 1823025 2472031 2965394 3150104

Identifies Chiral Representation
†Identifies Alternating Representation
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