# Computational Enumeration of Colorings of Hyperplanes of Hypercubes for all Irreducible Representations and Applications 

Krishnan Balasubramanian ${ }^{\mathrm{a}^{*}}$<br>${ }^{\text {a }}$ School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA<br>* Corresponding author

Article Info<br>Keywords: Combinatorial Enumerations, Colorings of hypercubes, Character Tables of hypercubes, Pólya Theory for all charters, Character cycle indices for all hyperplanes<br>2010 AMS: 15A03, 15A63, 15A72.<br>Received: 18 October 2018<br>Accepted: 29 November 2018<br>Available online: 30 December 2018


#### Abstract

We obtain the generating functions for the combinatorial enumeration of colorings of all hyperplanes of hypercubes for all irreducible representations of the hyperoctahedral groups. The computational group theoretical techniques involve the construction of generalized character cycle indices of all irreducible representations for all hyperplanes of the hypercube using the Möbius function, polynomial generators for all cycle types and for all hyperplanes. This is followed by the construction of the generating functions for colorings of all ( $\mathrm{n}-\mathrm{q}$ )hyperplanes of the hypercube, for example, vertices ( $q=5$ ), edges ( $q=4$ ), faces $(q=3)$, cells $(\mathrm{q}=2)$ and tesseracts $(\mathrm{q}=4)$ for a 5D-hypercube. Tables are constructed for the combinatorial numbers for coloring all hyperplanes of 5D-hypercubes for 36 irreducible representations. Applications to chirality, chemistry and biology are also pointed out.


## 1. Introduction

Hypercubes [1]-[29] and related combinatorics of wreath product groups [30]-[54] have been the focus of a number of research investigations owing to their importance in numerous applications in a variety of disciplines. Hypercubes are natural representations of Boolean functions, as 2 n possible Boolean functions from a set of n entities that take binary values can be represented by the vertices of a hypercube. Thus hypercubes find applications in chemistry, biology, finite automata, electrical circuits, genetics, enumeration of isomers, isomerization reactions, visualization and computer graphics, chirality, protein-protein interactions, intrinsically disordered proteins, partitioning of massively large databases, and parallel computing [1]-[11], [19]-[29], [41]-[55], [56]-[59]. The automorphism groups of hypercubes which are hyperoctahedral wreath products find applications in enumerative combinatorics, isomerization reactions, chirality, nuclear spin statistics, weakly-bound non-rigid water clusters, non-rigid molecules, and in proteomics [41]-[55], [56]-[59]. The hypercubes have also been connected to Goldbach conjecture, last Fermat's theorem, Erdös discrepancy conjecture, modern multi-dimensional representation of time measures, quantum similarity measures, [1]-[5], biochemical imaging [6], multi-dimensional imaging [19],[20], [22]-[26], classification of large data, Quantitative Shape-Activity Relations (QShAR)etc. [7]-[10].
Combinatorial enumeration of colorings of different hyperplanes, especially vertices of hypercubes has been the topic of several studies for the past two centuries. In fact, subsequent to publication of his classic 1937 [15] paper on combinatorics of groups, graphs and chemical compounds, Pólya in a subsequent work [17] has pointed out the errors in previous enumeration of colorings of vertices hypercubes. As pointed out recently by Banks et al. [19],[20] in the context of computer visualization, in 1877, Clifford [12],[13] has enumerated the number of equivalence classes for 2-colorings of a 4D-hypercube vertices as 396 which was subsequently shown to be incorrect by Pólya [17] in 1940 who obtained 402 equivalence classes for 2-colorings of a 4d-hypercube. Historically Pólya's theorem was anticipated in Redfield's paper on superposition theorem [16]. Although in more recent mathematical literature, cycle indices of hypercubes and enumerations of colorings of the vertices of hypercubes have been considered [17]-[29], [34] these studies have been restricted only to the totally symmetric irreducible representations of the hyperoctahedral groups. Moreover in the most recent work on the 5D-hypercube enumeration [29] of vertex colorings there are errors, as we show here. Pólya's theorem and its variation [1]-[6], [17]-[21] have been applied extensively which generate equivalence classes for different distribution of colors called the pattern inventory and also the total number of colorings. However, several chemical and spectroscopic applications require more powerful and generalized enumeration techniques that span all the irreducible representations of the groups where Pólya's theorem becomes a special case for the totally symmetric representation. Furthermore in the
case of hypercubes, most of the previous combinatorics is restricted to the enumeration of vertex colorings. The vertices of hypercubes are only one of several possible hypercube's hyperplanes. The present author [39]-[40] has generalized Pólya's theorem, De Bruijn's theorem [60] and Harary-Palmer power group theorem [31] to characters of all irreducible representations of a group cast into the form of generalized character cycle indices or GCCIs. Such combinatorial and graph theoretical methods have several applications to rovibronic spectroscopy, non-rigid molecules, water clusters, nuclear spin statistics, multiple-quantum NMR spectroscopy, dynamic NMR, enumeration of isomerization reactions, chirality, ESR spectroscopy, topological indices in QSAR [36]-[58], [61]-[63].
The n-dimensional hypercube's automorphism group is comprised of $2^{n} \times n$ ! operations, and thus the order of this group increases both exponentially and factorially. For example, the automorphism group of a 6D-hypercube consists of 46,680 operations spanning 65 irreducible representation. In ordinary Pólya's theory, different conjugacy classes that give rise to the same cycle types under group action on a given set are combined into a single term, as they give rise to the same monomial for patterns, and in general with the exception of full symmetric group $S_{n}$, multiple conjugacy classes often contribute to the same cycle type. This poses a problem when one needs to consider all irreducible representation, as character values in general are based on conjugacy classes and not cycle types. Furthermore there is no one-to-one correspondence between cycle types and conjugacy classes for hyperoctahedral wreath product groups of hypercubes. Thus we need both cycle types of each conjugacy class and the character table of the group unlike the ordinary Pólya cycle index which only needs the cycle types that compose the cycle index of a group. The other computational challenge that arises for hypercube colorings is that the cycle types of induced permutation for different hyperplanes need to be obtained. In general there are n hyper planes for an nD-hypercube represented by q values ranging from 1 to n with of course $\mathrm{q}=0$ being the trivial single vertex and hence is not considered. When $\mathrm{q}=\mathrm{n}$ we obtain the vertices of the hypercube, $\mathrm{q}=\mathrm{n}-1$ we obtain the edges, $\mathrm{q}=\mathrm{n}-2$ yields faces, and in general q represents ( $\mathrm{n}-\mathrm{q}$ )-hyperplanes of an nD -hypercube. Each such hyperplane generates a set of cycle types for each conjugacy class. Thus computing the equivalence classes of the colorings of various hyperplanes requires the computation of the cycle types of different ( $\mathrm{n}-\mathrm{q}$ )-hyperplanes of the hypercube with $\mathrm{q}=1$ through n . Previous works in the mathematical literature [17]-[29] have focused on the total number of equivalence classes rather than the inventory of patterns or a generating function that yields number of colorings for a given number of colors of various kinds. Such a distribution of patterns for various colors is quite important for a number of practical applications, and thus we focus in the present study the computational techniques to obtain such generating functions for all hyperplanes and all irreducible representations of the hypercube. Moreover none of the previous studies [17]-[29] has dealt with irreducible representations other than totally symmetric representation in their enumerations. The present author [11] has previously considered multinomial colorings of 4D-hypercube for different hyperplanes, and with chemical applications to water pentamer in mind, the present author has considered colorings of tesseracts [64] of the 5D-hypercube, and recently vertices ( $q=4$ ) and tesseracts $\mathrm{q}=1$ for all irreducible representations and 2-colorings of $(\mathrm{q}=2) 3$-faces only for the totally symmetric irreducible representation of the 5D-hypercube [61]. The present work considers for the first time enumeration of colorings for all hyperplanes ( $q=1$ through $q=5$ ) of the 5D-hypercube for all 36 irreducible representations.

## 2. Mathematical and computational techniques

In general, the automorphism group of an nD-hypercube is the wreath product $S_{n}\left[S_{2}\right]$ where $S_{n}$ is the full permutation group of n objects comprising of $n!$ permutations. The order of the $n D-h y p e r c u b e$ wreath product group is $2^{n} \times n!$ and hence it grows in astronomical proportion as a function of $n$. For example, the automorphism group of a 10D-hypercube consists of $2^{10} \times 10$ ! permutations that give rise to 481 conjugacy classes, and 481 irreducible representations, 10 hyperplanes, thus demonstrating the combinatorial complexity of the problem of enumerating colorings of different hyperplanes of an nD-hypercube for all irreducible representations. Coxeter [65] has discussed in depth hypercubes and various other regular polytopes and their mathematical characterizations using various projections and graph theory. An nD-hypercube is comprised of ( $\mathrm{n}-\mathrm{q}$ )-hyperplanes where q goes from 0 to n . The largest value of $\mathrm{q}=\mathrm{n}$ represents the vertices, $\mathrm{q}=\mathrm{n}-1$ represents the edges, $\mathrm{q}=\mathrm{n}-2$ represents the faces, $\mathrm{q}=\mathrm{n}-3$ represents the cells, $\mathrm{q}=\mathrm{n}-4$ represents tesseracts, and so on. The induced permutation of the automorphism group of the nD-hypercube on each of these hyperplanes is quite different and it cannot be deduced from a simple inspection with the exception of a 2D-hypercube (square) and a 3D-hypercube (a regular cube). Thus the first step is to construct the cycle types for each conjugacy class of the hypercube's wreath product group for the induced permutations of all hyperplanes of the hypercube. We note that although for ordinary Pólya enumeration one needs only the cycle index which can be constructed by other methods as cycle types of several conjugacy classes become degenerate for wreath products, the enumerations that involve all irreducible representations require the cycle types of each conjugacy class, as there is no one-to-one correspondence between the conjugacy classes and cycle types for wreath product groups. The cycle types of $\mathrm{q}=1$ or ( $\mathrm{n}-1$ )-hyperplanes are the ones that can be readily constructed as they are natural representations of the hypercube permutations.
The techniques to construct the conjugacy class cycle types of $q=1$ or ( $n-1$ )-hyperplanes and the character table for all irreducible representations of the hypercube group involve matrix generating functions and we shall consider this first. We use the 5D-hypercube as not only an illustrative example but also to carry out all of the needed computations. For a 5D-hypercube the special case of $q=1$ enumerates the various tesseracts of the hypercube, and Fig. 1 shows a graph that exemplifies the underlying relationship between the tesseracts of the 5D-hypercube. In Fig. 1 the vertices represent the tesseracts while the edges represent the underlying connectivity among the ten tesseracts of the 5D-hypercube. The cycle types of the permutations of $q=1$ tesseracts are isomorphic with the permutations of vertices of the automorphism group of the graph in Fig. 1.
In general, let a permutation $g \in S_{n}$ upon its action on the set $\Omega$ of $q=1$ hyperplanes of the hypercube generate $a_{1}$ cycles of length $1, a_{2}$ cycles of length $2, a_{3}$ cycles of length $3, \ldots, a_{n}$ cycles of length $n$, which can be represented by $1^{a_{1}} 2^{a_{2}} 3^{a_{3}} \ldots n^{a_{n}}$. Alternatively, the cycle type $T_{g}$ of $g$ can be denoted as $T_{g}=\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right)$. As the composing group in $S_{n}\left[S_{2}\right], S_{2}$ of the wreath product has only two conjugacy classes, the conjugacy class of the wreath product $S_{n}\left[S_{2}\right]$ and he cycle types of action on $\mathrm{q}=1$ hyperplanes can be expressed as a cycle type comprised of a $2 \times n$ matrix, where the first row corresponds to the action of $\{(g ; \pi)\}$ permutations where $\pi=e \in S_{2}$ and $g \in S_{n}$ and the second row represents the permutations $\{(g ; \pi)\}$, for $\pi=(12) \in S_{2}$. The cycle type of any conjugacy class, $T(g ; \pi)$, where $(g ; \pi)$ is any representative in then a $2 \times n$ matrix is obtained using the orbit structure of $g \in S_{n}$ and the corresponding conjugacy class of $S_{2}$. For the particular case of $S_{5}\left[S_{2}\right]$ under consideration, the cycle type of $(g ; \pi)$ for a conjugacy class of $S_{5}\left[S_{2}\right]$ is given by

$$
\begin{equation*}
T(g ; \pi)=a_{i k} \quad(1 \leq i \leq 2),(1 \leq k \leq 5) \tag{2.1}
\end{equation*}
$$



Figure 2.1: Ten tesseracts of the 5D-hypercube are represented by the vertices of the graph shown in this figure (reproduced from ref.[59]). Right: Water Pentamer. The automorphism group of this graph is also the automorphism group of the 5D-hypercube and fully non-rigid water pentamer or S5[S2] comprising of 3840 permutations that span 36 conjugacy classes.

To illustrate, the conjugacy class $\{(1)(2)(345) ;(12)\}$ of $S_{5}\left[S_{2}\right]$ given by (2.2)

$$
T[\{(1)(2)(345) ;(12)\}]=\left[\begin{array}{ccccc}
2 & 0 & 0 & 0 & 0  \tag{2.2}\\
0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Likewise the conjugacy class of $\{(1234)(5) ;(12)\}$ is given by (2.3):

$$
T[\{(1234)(5) ;(12)\}]=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0  \tag{2.3}\\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

In this manner all conjugacy classes of $S_{n}\left[S_{2}\right]$ are obtained and for the simplest example of $S_{3}\left[S_{2}\right]$ which represents the permutations of the six faces of the cube, Table 1 shows all as $2 \times 3$ matrices thus constructed for the 3D-cube. In Table 1 we have also shown the corresponding rotations or mirror planes of the cube, as the cycle types of the cube's faces can also be directly obtained by applying these operations on a regular cube and collecting the induced orbits of the permutations of the faces of the cube under the action of these operations. It can be seen from Table 1 that there is no one-to-one correspondence between the cycle types and conjugacy classes of the 3D-cube, as orbit structures of two different matrix types can be the same, for example, for matrices 3 and 5 in Table 1 have the same cycle types of $1^{2} 2^{2}$ for the six faces of the cube ( $\mathrm{q}=1$ ). However these two matrices belong to different conjugacy classes with different character values for the various irreducible representations of the octahedral (cubic) group or $S_{3}\left[S_{2}\right]$. Thus the matrices are important for the enumerations involving all irreducible representations while only the cycle types are needed for the ordinary Pólya enumeration of equivalence classes, as such enumeration becomes a special case of our formalism applied to the totally symmetric $A_{1}$ irreducible representation.
We can obtain the orders of the conjugacy classes and the cycle types for the $\mathrm{q}=1$ or ( $\mathrm{n}-1$ )hyper planes of the hypercube directly from their $2 \times n$ matrices. Suppose $P(m)$ denotes the number of partitions of integer $m$ with $P(0)=1$. Then all ordered partitions of $n$ into pairs or compositions of $n$ into two parts, denoted by $\left(n_{1}, n_{2}\right)$ such that $\sum n_{i}=n$, yields the number of conjugacy classes of $S_{n}\left[S_{2}\right]$. That is, the total number of conjugacy classes of $S_{n}\left[S_{2}\right]$ is given by

$$
\begin{equation*}
N_{C}=\sum_{(n)} P\left(n_{1}\right) P\left(n_{2}\right) \tag{2.4}
\end{equation*}
$$

where the sum is over all ordered pairs of partitions of $n$. Furthermore, the order any conjugacy class of $S_{n}\left[S_{2}\right]$ with the matrix type $T(g ; \pi)=a_{i k}$ can be obtained with Eq (2.5):

$$
\begin{equation*}
|T(g ; \pi)|=\frac{n!}{\prod_{i, k} a_{i k}!(2 k)^{a_{i k}}} \tag{2.5}
\end{equation*}
$$

For example, for the 6-D hyperoctahedral group, $S_{6}\left[S_{2}\right]$, the ordered partitions of 6 into 2 parts are given by

$$
\{(6,0),(0,6),(5,1),(1,5),(4,2),(2,4),(3,3)\}
$$

and hence the number of conjugacy classes of the $S_{6}\left[S_{2}\right]$ group is

$$
\begin{equation*}
2 P(6) P(0)+2 P(5) P(1)+2 P(4) P(2)+P(3)^{2}=65 \tag{2.6}
\end{equation*}
$$

The number of elements in any particular conjugacy class of $S_{n}\left[S_{2}\right]$ can also be readily computed from the corresponding matrix cycle type. For example, application of (2.5) to the conjugacy class 6 in Table 1 gives:

$$
\left|\left(\begin{array}{lll}
1 & 0 & 0  \tag{2.7}\\
0 & 1 & 0
\end{array}\right)\right|=\frac{3!2^{3}}{1!(2.1)^{1} 1!(2.2)^{1}}=6
$$

The orders of conjugacy classes thus obtained for the cube are shown in Table 1 for each conjugacy class. The cycle types for the permutations induced on the $q=1$ or $(n-1)$ - hyperplanes are also obtained readily from the $2 \times n$ matrices by mapping place values for the non-zero entries in the matrix type. That is, assign a cycle of length $\left(k^{2}\right)^{a_{1 k}}$ for each non-zero entry column $k$ in the first row while for the second row
the contribution is $2 k$ for nonzero entries. Thus the above matrix yields the overall cycle type $1^{2} 2^{2}$ for the regular cube's 6 faces. The cycle types thus obtained for $q=1$ or tesseracts of the 5D-hypercubeand for all conjugacy classes of the cubic group, $S_{3}\left[S_{2}\right]$ group are shown in Tables 2 and 1 together with the orders of each conjugacy class.
The above process for finding the cycle types of conjugacy classes and their orders can be likewise applied to the 5D-hypercube and the results are shown in Table 2. The next step is to compute the cycle types of the induced permutations for each conjugacy class for all of the remaining (n-q)-hyperplanes. For the 5d-hypercube this corresponds to $q=2$ (cells), $q=3$ (faces), $q=4$ (edges) and $q=5$ (vertices). Although there are previous studies [17]-[29] that have discussed the techniques for obtaining the cycle indices of the hypercube including the 5D-hypercube, these previous works have been predominantly restricted to the Pólya cycle indices of the vertices of a hypercube with the exception of Lemmis [23] who has explicitly considered other cycle types for a 4D-hypercube even though Lemmis [23] does not compute or report any results for the equivalence classes even for the totally symmetric irreducible representation. The explicit expressions have also been constructed for the ordinary cycle indices of hypercubes up to six dimensions [26], [28], [29]. In the present study we outline techniques for constructing the generalized character cycle indices for all irreducible representations and all cycle types of the various ( $\mathrm{n}-\mathrm{q}$ )-hyperplanes of the hypercube.
The process of computing the generating functions for the cycle types of various $(n-q)$ - hyperplanes of the hypercube involve the Möbius function, a fundamental enumerative combinatorial technique that encompasses generalization of the fundamental combinatorial principle of inclusion and exclusion that has been applied to many disciplines [66], [67] including music theory [35] and isomers with nearest neighbor exclusions [63]. The Möbius functions appear in a natural way, as the construction of various cycle types for the ( $n-q$ ) -hyperplanes is related to the divisors of the set of all hyperplanes and it relates to the simplest cycle types of $q=1$. Thus the technique involves computing the polynomial generating functions via Möbius sums. We accomplish this from the matrix types of the conjugacy classes of the $S_{n}\left[S_{2}\right]$ groups to generate all of the cycle types for all $(n-q)$-hyperplanes through polynomial generating functions. The techniques employed are similar to the ones outlined in Krishnamurthy's book [67] and the work of Lemmis [24] who has made use of the enumerative Möbius inversion technique. That is, the generating functions for all cycle types for all values of q representing $(n-q)$-hyperplanes are generated as coefficient of $x^{q}$ in the polynomial generating function $Q_{p}(x)$ obtained using the Möbius functions shown below:

$$
\begin{equation*}
Q_{p}(x)=\frac{1}{p} \sum_{d / p} \mu(p / d) F_{d}(x) \tag{2.8}
\end{equation*}
$$

where the sum is strictly over all divisors $d$ of $p$, and $\mu(p / d)$ is the Möbius function which takes values

$$
1,-1,-1,0,-1,1,-1,0,0,1 \ldots
$$

for arguments 1 to 10 ; in general, the Möbius function is obtained as follows for any number:
$\mu(m)=1$ if one of $m$ 's prime factors is not a perfect square and $m$ contains even number of prime factors,
$\mu(m)=-1$ if $m$ satisfies the same perfect-square condition as before but m contains odd number of prime factors,
$\mu(m)=0$ if $m$ has a perfect square as one of its factors.
$F_{d}(x)$ in the above Eq (2.8) is defined as a polynomial in x constructed from the matrix cycle types shown in the first column of Table 1 or Table 2. Consider the non-zero columns of the matrix cycle types of $S_{n}\left[S_{2}\right]$ (see Tables 1 and 2). Recall that the first row of these elements are represented by $a_{1 k}$ while the second rows are denoted by $a_{2 k}(k=1, n)$. Then if p is the period of the matrix type shown in the first column of Table 1 or 2 , and define, $g=\operatorname{gcd}(k ; p), p^{\prime}=\frac{k}{g}, h=\operatorname{gcd}(2 k ; p) ; p^{\prime \prime}=\frac{2 k}{h}$ and define the polynomial $F_{p}(x)$ in terms of these divisors of the cycle type as

$$
\begin{align*}
& F_{p}(x)=\prod_{k}^{n c}\left(1+2 x^{p^{\prime}}\right)^{g a_{1 k}}\left(1+2 x^{p^{\prime \prime}}\right)^{\frac{h a_{2 k}}{2}}, \text { if } h \text { does not divide } k \\
& F_{p}(x)=\prod_{k}^{n c}\left(1+2 x^{p^{\prime}}\right)^{g a_{1 k}}, \text { if } h \text { divides } k \tag{2.9}
\end{align*}
$$

where the product is taken only over nc, non-zero columns of the $2 \times n$ matrix cycle type shown in Tables 1 or 2 . The coefficient of $x^{q}$ in $Q_{p}(x)$ obtained from the Möbius sums of various $F_{d}$ polynomials where $d$ 's are strictly divisors of p generate the various cycle types for $(n-q)$ - hyperplanes of the nD-hypercube. We shall illustrate this by one of the matrix cycle types in Table 2 . Consider the 31 st matrix shown in Table 2 for $S_{5}\left[S_{2}\right]$ :

$$
\left(\begin{array}{lllll}
0 & 1 & 1 & 0 & 0  \tag{2.10}\\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

As only $2^{\text {nd }}$ and $3^{\text {rd }}$ columns contain non-zero values, hence we need to consider only these two columns. Thus the maximum period to consider is 6 and hence the possible $F$ polynomials are $F_{6}, F_{3}, F_{2}$ and $F_{1}$ as divisors of 6 are $1,2,3$, and 6 . Applying the GCD followed by the use of Eq (2.9), we obtain each of these polynomials as

$$
\begin{align*}
& F_{1}(x)=\left(1+2 x^{2}\right)\left(1+2 x^{3}\right)  \tag{2.11}\\
& F_{2}(x)=(1+2 x)^{2}\left(1+2 x^{3}\right)  \tag{2.12}\\
& F_{3}(x)=\left(1+2 x^{2}\right)(1+2 x)^{3} \tag{2.13}
\end{align*}
$$

$$
\begin{equation*}
F_{6}(x)=(1+2 x)^{5} \tag{2.14}
\end{equation*}
$$

From the $F_{d}$ polynomials thus constructed above, we obtain the $Q_{p}$ polynomials using the Möbius sum, shown in Eq (2.8). Thus we obtain

$$
\begin{gather*}
Q_{1}=F_{1}=1+2 x^{2}+2 x^{3}+4 x^{5}  \tag{2.15}\\
Q_{2}=\frac{\mu(2) F_{1}+\mu(1) F_{2}}{2}=\frac{F_{2}-F_{1}}{2}=\frac{(1+2 x)^{2}\left(1+2 x^{3}\right)-\left(1+2 x^{2}\right)\left(1+2 x^{3}\right)}{2}=2 x+x^{2}+4 x^{4}+2 x^{5}  \tag{2.16}\\
Q_{3}=\frac{\mu(1) F_{3}+\mu(3) F_{1}}{3}=\frac{F_{3}-F_{1}}{3}=\frac{\left(1+2 x^{2}\right)(1+2 x)^{3}-\left(1+2 x^{2}\right)\left(1+2 x^{3}\right)}{3}=2 x+4 x^{2}+6 x^{3}+8 x^{4}+4 x^{5}  \tag{2.17}\\
Q_{6}=\frac{\mu(1) F_{6}+\mu(2) F_{3}+\mu(3) F_{2}+\mu(6) F_{1}}{6}=\frac{F_{6}-F_{3}-F_{2}+F_{1}}{6}=4 x^{2}+10 x^{3}+8 x^{4}+2 x^{5} \tag{2.18}
\end{gather*}
$$

The coefficients of $x^{q} s$ are tabulated below for all possible $Q_{p}$ polynomials which yield the cycle types for various $(n-q)$-perplanes as shown below:

| $Q_{p}$ | $x$ | $x^{2}$ | $x^{3}$ | $x^{4}$ | $x^{5}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $Q_{1}$ |  | 2 | 2 |  | 4 |
| $Q_{2}$ | 2 | 1 |  | 4 | 2 |
| $Q_{3}$ | 2 | 4 | 6 | 8 | 4 |
| $Q_{6}$ |  | 4 | 10 | 8 | 2 |
| Cycle type | $2^{2} 3^{2}$ | $1^{2} 2^{1} 3^{4} 6^{4}$ | $1^{2} 3^{6} 6^{10}$ | $2^{4} 3^{8} 6^{8}$ | $1^{4} 2^{2} 3^{4} 6^{2}$ |
| Hyperplane | $q=1$ <br> (tesseracts) | $q=2$ <br> (cells) | $q=3$ <br> (faces) | $q=2$ <br> (edges) | $q=5$ <br> (vertices) |

The results thus obtained for all cycle types of the hyperplanes of 5D-hypercube are shown in Table 2. We believe this is the first time that these cycle types have been tabulated for all hyperplanes of the 5D-hypercube. Although previously the cycle index for the vertices of the 5D-hypercube have been reported in the literature [24]-[26], [28], [29] using different techniques, and our results agree with those results, Table 2 is exhaustive as it includes all hyperplanes, not just $q=5$ (vertices). Moreover, as outlined below we consider all irreducible representations for coloring the $(n-q)$ - hyperplanes, and not just the totally symmetric $A_{1}$ representation. In our previous studies [51],[52] we have shown how the character tables of the $S_{n}\left[S_{2}\right]$ groups can be obtained from matrix generating functions and thus we shall not repeat the techniques in detail. Instead we shall focus on the colorings of the hyperplanes using the character table of $S_{5}\left[S_{2}\right]$, and the cycle types obtained for various hyperplanes of the 5D-hypercube shown in Table 2.
The character table of $S_{5}\left[S_{2}\right]$ containing 36 irreducible representations have been constructed before and thus we employ the GCCIs of the irreducible representation with character of the group $S_{5}\left[S_{2}\right]$. In general, the GCCI for the character $\chi$ of a group $G^{\prime}$ is defined as

$$
\begin{equation*}
P_{G^{\prime}}^{\chi}=\frac{1}{\left|G^{\prime}\right|} \sum_{g \in G^{\prime}} \chi(g) S_{1}^{b_{1}} S_{2}^{b_{2}} \ldots S_{n}^{b_{n}} \tag{2.19}
\end{equation*}
$$

where the sum is over all permutation representations of $g \in G^{\prime}$ that generate $b_{1}$ cycles of length $1, b_{2}$ cycles of length $2, \ldots, b_{n}$ cycles of length n upon its action on the set $\Omega$ of the $(n-q)$ - hyperplanes of the 5D-hypercube. Upon construction of the GCCIs for each irreducible representation and each of the $(n-q)$-hyperplane's cycle types shown in Table 2, one can carry out generalized Pólya substitution in the GCCIs for each representation of $S_{5}\left[S_{2}\right]$ with a multinomial expansion. Let[n] be an ordered partition, also called the composition of $n$ into $p$ parts such that $n_{1} \geq 0, n_{2} \geq 0, \ldots, n_{p} \geq 0, \sum_{i=1}^{p} n_{i}=n$. A multinomial generating function in $\lambda s$ is obtained as

$$
\left(\lambda_{1}+\lambda_{2}+\ldots . \cdot+\lambda_{p}\right)^{n}=\sum_{[\mathrm{n}]}^{\mathrm{p}}\left(\begin{array}{lllll} 
& & \mathrm{n}  \tag{2.20}\\
\mathrm{n}_{1} & \mathrm{n}_{2} & \cdot & . & \mathrm{n}_{\mathrm{p}}
\end{array}\right) \lambda_{1}{ }^{\mathrm{n}_{1}} \lambda_{2}^{\mathrm{n}_{2}} \ldots \ldots . . \lambda_{\mathrm{p}-1}{ }^{\mathrm{n}_{\mathrm{p}-1}} \lambda_{\mathrm{p}}^{\mathrm{n}_{\mathrm{p}}}
$$

where $\left(\begin{array}{ccccc} & & n & & \\ n_{1} & n_{2} & . & . & n_{p}\end{array}\right)$ are multinomials given by

$$
\left(\begin{array}{ccccc} 
& & n & &  \tag{2.21}\\
n_{1} & n_{2} & \cdot & \cdot & n_{p}
\end{array}\right)=\frac{n!}{n_{1}!n_{2}!\ldots \ldots \cdot n_{p-1}!n_{p}!}
$$

Define two sets, the set $D$ which contains a set of $(n-q)$-hyperplanes for a given $q$ to be colored and the set R which contains different colors. Let wi be the weight of each color $r$ in $R$. The weight of a function $f$ from $D$ to $R$ is defined as

$$
\begin{equation*}
W(f)=\prod_{i=1}^{|R|} w\left(f\left(d_{i}\right)\right) \tag{2.22}
\end{equation*}
$$



$$
\begin{equation*}
G F^{\chi}\left(\lambda_{1}, \lambda_{2} \ldots . \lambda_{p}\right)=P_{G}^{\chi}\left\{s_{k} \rightarrow\left(w_{1}^{k}+w_{1}^{k}+\ldots+w_{p-1}^{k}+w_{p}^{k}\right)\right\} \tag{2.23}
\end{equation*}
$$

The above GFs are computed for each irreducible representation of the 5D-hyperoctahedral group. The coefficient of each term $w_{1}{ }^{n 1} w_{2}{ }^{n 2} \ldots . w_{p}{ }^{n p}$ generates the number of functions in the set $R^{D}$ that transform according to the irreducible representation $\Gamma$ with character $\chi$. For the special case of the totally symmetric irreducible representation $A_{1}$, the GF becomes the ordinary Pólya's theorem, thus enumerating the number of equivalence classes of colorings.
In the case of hyperplanes of nD-hypercubes the number of $(n-q)$-hyperplanes for a given value of $q$ increase as $\binom{n}{q} 2^{q}$ and thus, for example, a 10D-hypercube would have 13,440 4-hyperplanes ( $q=6$ ) and 15,360 3-hyperplanes ( $q=7$ ). Consequently, as the multinomial generators explode in astronomical proportions for such large sets, it is practically not possible to consider more than 2 colors in the set $R$ or only 2-colorings for larger hypercubes are feasible. We have developed Fortran ' 95 codes that compute the cycle types for all hyperplanes using the Möbius method, the character tables and then finally the generating functions for 2-colorings of various $(n-q)$-hyperplanes of the hypercube. All of the arithmetic were carried out in Real* 16 or quadruple precision arithmetic and thus we can rely on an accuracy of up to 32 digits, which appears to suffice for 2-colorings for all possible distribution of colors up to six-dimensional cases. However, for larger cases either only first k coefficients that contain 32 or fewer digits be considered for colorings or the codes have to be enhanced with multiple arrays to store beyond 32 digits as presently most compilers handle at most quadruple precision for real numbers. The special cases of multinomials for 2 colorings were computed in a single step for 2-colorings recursively, and stored in memory for computations of each of the monomials, sorting and collection of the coefficients for the final GF without computation of any factorials to save time. Moreover the expansion of multinomials, sorting and collection of coefficients is done only for the $A_{1}$ IR and for the remaining IRs the computed terms for each cycle type of $A_{1}$ are used. For the present case of the 5D-hypercube we were able to compute all of the possible 2 -colorings for all $(n-q)$-hyperplanes as discussed in the next section within real quadruple precision or REAL*16 precision.

## 3. Results and discussions

As seen from Table 2, the 5D-hypercube contains 5 different hyperplanes, where $q=1$ to 5, represent tesseracts, cells, 3-faces, edges and vertices, respectively. Owing to the simplicity of $q=1$ which yields only 10 tesseracts that can be represented by 10 vertices of a graph (Fig. 1) and as these 10 vertices also represent the protons of the fully nonrigid water pentamer $\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}$, colorings of these ten vertices have been considered previously [64] and thus we shall not repeat the results. However for other $q$ values with the exception of $q=5$ (vertices) restricted to $A_{1}$, complete enumeration results for all IRs have not been considered previously. We note that the problem of coloring the vertices of the hypercube is equivalent to generating the equivalence classes of $2^{n}$ Boolean functions of a $n$ - dimensional hypercube which is of considerable interest [24]-[26], [28], [29]. Previous exhaustive combinatorial enumerations for the 4d-hypercube for all irreducible representations have been considered by the current author recently [11].
Tables 3-6 show the unique terms for 2-colorings of $(5-q)$ - hyperplanes $q=2-5$, respectively for the 5D-hypercube. In all these tables irreducible representations of the $S_{5}\left[S_{2}\right]$ group are denoted as $A_{1}$ to $A_{36}$, respectively. We note that only $A_{1}$ to $A_{4}$ are one-dimensional, $A_{5}-A_{8}$ are 4-dimensional, $A_{9}-A_{16}$ are five-dimensional, $A_{17}-A_{18}$ are 6-dimensional, $A_{19}-A_{28}$ are 10-dimensional, $A_{29}-A_{32}$ are 15-dimensional, $A_{33}-A_{36}$ are 20-dimensional IRs of the 5d-hypercube. The number of colorings that transform according to the irreducible representation $A_{i}(i=1-36)$ are shown in Tables 3-6 for unique partition of colors. For example, the number of colorings which transform as the given irreducible representation in a row and contain 35 red colors and 5 green colors for coloring the cells $(q=2)$ of the 5D-hyercube are shown in Table 3 in the fifth column. We use the notation $[\lambda]$ to denote the unique partitions for the colorings and in order to save space, owing to the symmetry of binomial numbers the results are shown only for $\left[n_{1}, n_{2}\right.$ ] where $n_{1}$ GE $n_{2}$ as the other case ( $n_{2}, n_{1}$ ) is equivalent to $\left(n_{1}, n_{2}\right)$. As can be seen from Table 3, there are $1,1,5,18,84$, and 362 colorings that transform as $A_{1}$ for 40 reds, 39 reds, 38 reds, 37 reds, 36 reds, and 35 reds (remaining 40 -red $=$ greens), respectively. The number of colorings that transform as $A_{1}$ irreducible representation is simply the number of equivalence classes under the action of the 5D-hyperoctahedal group on the cells for Table 3. Thus from Table 3, there are $36,600,432$ ways to color the cells of the 5D-hypercube with 20 red colors and 20 green colors.- a result that is not known up to now. In the mathematics literature, the focus has been often on the total number of equivalence classes for the vertex colorings as opposed to the detailed enumeration for each possible distribution of colors $\left(n_{1}, n_{2}\right)$ that we show in Table 3. The results in Tables 3-5 have not been obtained before.
As can be seen from Table 4 the number of equivalence classes for coloring faces $(q=3)$ of the 5D-hypercube are $1,8,54,633$ and 7287 for $1,2,3,4,5$ green colors (remaining being red colors), respectively. The fact that the number of equivalence classes for 79 red and 1 green colors for the face colorings is one implies all the faces of the hypercube are equivalent, a result that is expected. As seen from Table 4 , the number of equivalence classes ( $A_{1}$ colorings) for 40 red and 40 green colors is a result that is unknown up to now. The numbers for other 35 irreducible representations $\left(A_{2}-A_{36}\right)$ correspond to the number of functions out of $2^{80}$ functions in the set $R^{D}$ that transform as the corresponding irreducible representation. Consequently, the numbers in each row multiplied by the dimensions of the corresponding irreducible representations for all 36 IRs and all color distributions, that is, doubling each number in Table 4 for [ $\lambda$ ] with the exception [40 40] we obtain $2^{80}$ which is the total number of functions in the set of all maps. Likewise the sum of twice all numbers for the $A_{1}$ representation with the exception that [4040] is added only once, generates the total number of equivalence classes. This result can also be directly obtained from the cycle index for the $A_{1}$ IR by replacing every $x_{k}$ by 2 . That is, for the results in Table 3 , total equivalence classes count is given by

$$
\begin{aligned}
I(\text { faces } ; 2) & =\frac{1}{3840}\left\{\begin{array}{l}
2^{80}+5 \times 2^{56}+10 \times 2^{44}+10 \times 2^{40}+5 \times 2^{40}+1 \times 2^{40}+20 \times 2^{50}+20 \times 2^{26} \\
+60 \times 2^{44}+60 \times 2^{22}+60 \times 2^{42}+60 \times 2^{22}+20 \times 2^{40}+20 \times 2^{22}+80 \times 2^{28} \\
+80 \times 2^{14}+160 \times 2^{20}+160 \times 2^{14}+80 \times 2^{16}+80 \times 2^{14}+60 \times 2^{44}+120 \times 2^{24} \\
+60 \times 2^{40}+120 \times 2^{22}+60 \times 2^{20}+60 \times 2^{20}+240 \times 2^{22}+240 \times 2^{10}+240 \times 2^{22} \\
+240 \times 2^{10}+160 \times 2^{18}+160 \times 2^{14}+160 \times 2^{10}+160 \times 2^{8}+384 \times 2^{16}+384 \times 2^{8}
\end{array}\right\} \\
& =314,824,532,572,147,370,464
\end{aligned}
$$

The result thus obtained agrees with the computer code that independently computed the sum of all coefficients in the generating function, thus providing independent validation of our results. Consequently, the total number of equivalence classes for the face colorings of 5D-hypercube with 2 colors is $314,824,532,572,147,370,464$.
As seen from Table 5, there are also 80 edges for the 5D-hypercube, which happens to be coincidentally same as the number of faces. We have provide all 2-coloring distributions in Table 5 and as these numbers contain less than 32-33, digits all results are computed accurately within the quadruple precision arithmetic. Once again from Table 5 , we infer there are $1,8,50,608,7092$ colorings for $1,2,3,4,5$ green colors (remaining reds) for the edge colorings of the 5D-cube.Although the first two numbers coincide with the face coloring distribution from the third number onwards all the results differ. In general, the number of face colorings is larger than the number of edge colorings for the same color distribution. Thus we obtain $27,996,670,589,987,902,014$ as the number of equivalence classes for edge colorings with 40 red colors and 40 green colors while the corresponding number for face colorings is $27,996,675,954,790,045,648$ with 40 reds and 40 greens. The total number of equivalence classes for edge colorings of the 5D-hypercube with 2 colors is $314,824,456,456,819,827,136$ which can be obtained in two independent ways as demonstrated for the face colorings.
Table 6 shows the vertex colorings for all irreducible representations for the 5D-hypercube. The results for the vertex colorings of the 5D-hypercube for the $A_{1}$ IR have been obtained previously by Chen and Guo [29] using a completely different method of generating the cycle index of the group. The results obtained by Chen and Guo [29] for the equivalence classes correspond to our numbers in Table 6 for the $A_{1}$ IR. Chen and Guo [29] obtain these numbers as $1,1,5,29,47,131,472,1326,3779,9013,19,963,38,073,65,664,98,804,133,576$, 158,658 , for greens varying from 0 to 17 (remaining red). The corresponding results that we obtain in Table 6 for the same color distribution for the vertex colorings of the 5D-hypercube are $1,1,5,10,47,131,472,1326,3779,9013,19,963,38,073,65,664,98,804,133,576$, 158,658 , respectively. In addition we obtain the number of equivalence classes for 40 red and 40 green as 169,112 that Chen and Guo [29] did not report. Evidently the number of equivalence classes reported for 3 green colors by Chen and Guo [29] as 29 is not correct, and it disagrees with our result of 10 equivalence classes for the same color distribution. Furthermore the total number of equivalence classes that we obtain by adding doubles of all the numbers for $A_{1}$ in Table 6 except that [16 16] is counted once, is $1,228,158$ which clearly does not agree with the results of Chen and Guo [29] although the total number directly obtained from their cycle index by replacing every $x_{k}$ with 2 agrees with our result of $1,228,158$. Therefore we conclude that only the number reported for 3 green colors as 29 by Chen and Guo [29] must be incorrect. Moreover, our result of $1,228,158$ for the total number of equivalence classes for 2 colors agrees with the number reported by Perez-Agulia [26] but differs from the result of Aichholzer [25] who has obtained it as $1,226,525$. The difference was reconciled by Perez-Agulia [26] with the explanation that vertices with 0 to 4 polytopes were treated differently by Aichholzer [25].

## 4. Chiral and alternating colorings, chemical and biological applications

As discussed in the previous section the numbers enumerated for the $A_{1}$ representation (totally symmetric) for the partition $\left[n_{1}, n_{2}\right]$ of colors enumerates the number of Pólya equivalence classes for the coloring of $(n-q)$ - hyperplanes with $n_{1}$ colors of one kind and $n_{2}$ colors of another kind. A geometrical or physical interpretation for the numbers enumerated for other irreducible representations in Tables is that these numbers enumerate the number of functions that transform as the IR among the set of all $R^{D}$ functions from the set D to R . That is, for hypercube's binary colorings there are $2^{n}$ such functions where n is the number of $(n-q)$-hyperplanes for a given $q$. Thus the number of irreducible representations in Tables 3 to 6 for a given color partition $\left[n_{1} n_{2}\right]$ gives the number of possible symmetry-adapted orthogonal functions generated from the set $R^{D}$ of $2^{n}$ functions. In addition to this interpretation the numbers enumerated for irreducible representations other than $A_{1}$ can yield information on different aspects of colorings such as chirality, alternation and various other applications.
Chirality arises in a coloring if the mirror image of the coloring is not superimposable on the original coloring. Objects are chiral when they have handedness such as shoes, hands, feet, gloves, etc. In such cases, the mirror images of the object cannot be converted into the original object by any proper rotations in the physical space. The term proper rotation refers to a rotation by an angle $2 \pi / \mathrm{m}$ for a natural number m around a specified axis of rotation denoted by a $C_{m}$ axis of rotation. The set of such proper rotations that leave the object in the set D invariant constitute a subgroup that we call the rotational subgroup of the $n D$-hyperoctahedral group and it is comprised of $2^{(n-1)} x n$ ! operations for the $n D$-hypercube. While such rotational operations are readily identified for a regular three-dimensional square or a cube shown in Table 1 , this is less transparent for the higher dimensional hypercubes. As seen from Table 1, for each conjugacy class we can assign a rotational operation or mirror plane or a composite improper rotation by simply applying the operation on the vertices or edges or faces of the cube and gathering the various orbits generated upon the action of the operation. An improper axis of rotation, denoted is defined as the product $C_{n} \sigma_{h}$, or $\sigma_{h} C_{n}$ where the $\sigma_{h}$ operation is a mirror plane perpendicular to the $C_{n}$ axis. For a cube these operations are assigned to the various matrix conjugacy classes in Table 1 based on the permutation's orbits it generates upon its action on the vertices or edges or faces of the 3D cube. The proper rotations for an nD-hypercube can be obtained from the $2 \times n$ matrix of the corresponding conjugacy class by considering the non-zero column's place values. That is, a conjugacy class with matrix $\left[a_{i k}\right]$ is a proper rotation if and only if

$$
\sum_{k}^{\text {even }} a_{1 k}+\sum_{k}^{\text {odd }} a_{2 k}
$$

is even, where the first sum is restricted to even ks while the second to odd $k s$. If the above sum is odd then the operation corresponding to the $2 \times n$ matrix of the conjugacy class is an improper axis of rotation, where a special case of an improper axis may also be a mirror plane of symmetry or a center of inversion. This procedure can be applied to higher dimensional cubes, and thus in Table 2 we have identified each proper rotation of the 5D-hypercube by placing the label R next to the conjugacy class. If the label R is absent it means that the conjugacy class represents an improper axis of rotation. Chirality can then be determined by the definition that an object is chiral if it does not possess an improper axis of rotation. Evidently uncolored 5D-hypercube or a 3D-cube is not chiral because of the presence of improper axes of rotations. However, once the ( $\mathrm{n}-\mathrm{q}$ )-hyperplanes are colored some of the colorings for certain distribution of colors may become chiral. Tables 3-6 that we have constructed enumerate and identify these chiral colorings. The chiral colorings are obtained by stipulating that the functions in $R^{D}$ for the coloring distribution $\left[n_{1} n_{2}\right]$ must transform in accord to the irreducible representation of chirality. This irreducible representation for chirality of the $n D$-hypercube is rigorously identified as the uni-dimensional IR that has +1 character values for all proper rotations of the nD-hyperoctahedral group and -1 for all improper rotations. By examining the character values for the uni-dimensional
representations for the 5D-hypercube we identify this IR as $A_{2}$ representation, and thus in Tables 3-5 they are identified with * in these tables. Consequently, the number of chiral colorings for a given distribution of colors [ $n_{1} n_{2}$ ] is enumerated by the numbers for the $A_{2}$ row in Tables 3-6 for various $(n-q)$ - hyperplanes.
As seen from Table 3, the first few numbers or the $A_{2}$ representation are $0,0,0,0,6,84,657,3750,16,898,63,366,203,095,565,964, \ldots$ suggesting that coloring 40 cells of the 5D-hypercube do not produce any chiral colorings for 40 reds $\& 0$ greens, 39 reds \& 1 green, 38 reds $\& 2$ green, 37 reds $\& 3$ greens, and in order to produce a chiral coloring one needs at least 4 green colors and remaining 36 red, and there are exactly 6 such colorings which are chiral. That is, among the 84 equivalence classes of cell colorings for [36 4] partition of colors there are exactly six chiral pairs in that mirror images of a chiral coloring is not superimposable on the original coloring. In order to illustrate this further consider a regular 3D cube. Among the total of 14 equivalence classes produced for all 2-colorings of the vertices of a 3D cube, only one coloring is chiral and all remaining colorings are achiral. The chiral coloring is shown in Figure 2.


Figure 4.1: The only chiral coloring among 14 equivalence classes of 2-colorings of vertices of a cube. This is enumerated as the number of $A_{1 u}$ irreducible representations for the 2-colorings. For the 5D-hypercube the first chiral coloring appears for 4 greens and 28 reds. There are 2, 26, 148, 653, 2218, 6300, $14972,30,730$, and 54,528 such chiral colorings for $4,5,6,7,8,9,10,11$, and 12 green colors (remaining red), respectively for the 2-colorings of the vertices of the 5D-hypercube as enumerated by the $A_{2}$ chiral representation of the 5D-hypercube..

The numbers of chiral colorings for face-colorings of the 5D-hypercube are given by the numbers of the $A_{2}$ IR in Table 4 , and it can be seen as $14,326,5722,74973,811,527,7,477,975$ and $60,113,621$ for $3,4,5,6,7,8$, and 9 greens (remaining reds), respectively. The corresponding results for the edge 2 -colorings are $12,330,5782,75,369,815,762,60,219,494$ and $428,191,237$ for $3,4,5,6,7,8$, and 9 greens (remaining reds), respectively. Finally as can be seen from Table 6, 2-colorings of the vertices of the 5D-hypercube produce 2, 26, $148,653,2218,6300,14,972,30,730$, and 54,528 chiral colorings for $4,5,6,7,8,9,10,11$, and 12 green colors (remaining red), respectively. Thus in order to produce a chiral coloring of 2-coloring of the vertices of a 5D-hypercube one needs at least 4 colors of one kind and 28 colors of another kind, and there are 2 such chiral colorings for [28 4] color distribution.
The alternating irreducible representation is defined as the one that exhibits +1 character values for even permutations of $q=1$ ( $n-1$ )hyperplanes and -1 for the odd permutations. The set of all even permutations form the alternating subgroup of the hypercube group. The alternating representation plays an important role in the quantum chemical classification of the rovibronic total wave functions of fermions as such wave functions for fermions must transform as the alternating IR in order to comply with the Pauli Principle. For the 5D-hypercube the uni-dimensional alternating IR is the $A_{3}$ representation in Table 3-6. Thus the 2-colorings enumerated for the $A_{3}$ representation provides important information on the nuclear spin functions of rovibronic levels and nuclear spin statistical weights of fermionic particles of molecules, for example, water pentamer. We thus point out that these combinatorial enumerations aid in the analysis of experimental spectroscopic studies of weakly-bound van der waals clusters and molecular clusters of polar molecules such as ammoniated ammonia, $\left(\mathrm{H}_{2} \mathrm{O}\right)_{n},\left(\mathrm{NH}_{3}\right)_{n}$ [50], [64], [62] etc., as such clusters exhibit potential energy surfaces with multiple valleys separated by surmountable mountains, and consequently, these molecular clusters undergo rapid tunneling motions. Hence these tunneling motions that occur rapidly at higher room temperatures result in the splittings of the rovibronic levels to tunneling levels. Consequently, the interpretation of the rovibronic spectra of these molecular clusters requires hypercube colorings and detailed analysis for all IRs.
Finally we would like to point out applications to biology in the context of genetic regulatory network and phylogeny. The phylogenic trees are recursive in nature and they are special cases of Cayley trees and thus the automorphism groups and colorings of phylogenic trees require nested nD-hypergroups and wreath products. Likewise, in genetics it has been shown that canalization or control of one genetic trait by another trait of genetic regulatory networks is important in evolutionary processes, and such networks are represented by nD-hypercubes where the vertices of the nD-hypercube represent the $2^{n}$ possible Boolean functions for $n$ traits. Reichhardt and Bassler [34] have shown the connection between 2-colorings of an nD-hypercube and genetic regulatory pathways, and the necessity to classify the 2-colorings of the vertices into equivalence classes in order to generate a smaller clustering subsets on the basis of equivalence classes thus enumerated for the 2-colorings of the vertices of the nD -hypercube. Thus the properties of any representative function in a class would have the same genetic expression as any other function in the equivalence class thereby reducing the amount of computations. The question of if chirality in colorings would have any implication in the probability of producing chiral traits and thus biological evolutionary implication of chirality has not been visited thus far.

## 5. Conclusion

Combinatorial enumeration of 2-colorings for all irreducible representations and all hyperplanes for were considered for a 5D-hypercube. The techniques involved Möbius inversion combined with generalized character cycle indices for all 36 irreducible representations of the 5D-hypercube. We also discussed applications chirality, alternation of colorings in the equivalence class. Applications to genetics and molecular spectroscopy were pointed out. As nD-hypercube colorings explode combinatorially in astronomical proportions, it remains to be seen how well the techniques will computationally scale and work for higher dimensional hypercubes.

Table 1: Conjugacy Classes, polynomials, cycle types of a regular cube or 3D-cube with group $S_{3}\left[S_{2}\right]$

| CC |  | $\|C C\|$ | O | $F_{d}(x)$ | $q=1$ <br> (face) | $q=2$ <br> (edge) | $q=3$ <br> (Vert) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ | 1 | E | $F_{1}(x)=(1+2 x)^{3}$ | $1^{6}$ | $1^{12}$ | $1^{8}$ |  |
| $\left(\begin{array}{lll}2 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$ | 3 | $\sigma_{h}$ | $F_{1}(x)=(1+2 x)^{2}$ <br> $F_{2}(x)=(1+2 x)^{3}$ | $1^{4} 2$ | $1^{4} 2^{4}$ | $2^{4}$ |  |
| $\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 0 & 0\end{array}\right)$ | 3 | $C_{4}^{2}$ | $F_{1}(x)=(1+2 x)$ <br> $F_{2}(x)=(1+2 x)^{3}$ | $1^{2} 2^{2}$ | $2^{6}$ | $2^{4}$ |  |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 3 & 0 & 0\end{array}\right)$ | 1 | $i$ | $F_{1}(x)=1$ <br> $F_{2}(x)=(1+2 x)^{3}$ | $2^{3}$ | $2^{6}$ | $2^{4}$ |  |
| $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ | 6 | $\sigma_{d}$ | $F_{1}(x)=(1+2 x)\left(1+2 x^{2}\right)$ <br> $F_{2}(x)=(1+2 x)^{3}$ | $1^{2} 2^{2}$ | $1^{2} 2^{5}$ | $1^{4} 2^{2}$ |  |
| $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$ | 6 | $C_{4}$ | $F_{1}(x)=(1+2 x)$ <br> $F_{2}(x)=(1+2 x)$ <br> $F_{4}(x)=(1+2 x)^{3}$ | $1^{2} 4$ | $4^{3}$ | $4^{2}$ |  |
| $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$ | 6 | $C_{2}$ | $F_{1}(x)=\left(1+2 x^{2}\right)$ <br> $F_{2}(x)=(1+2 x)^{3}$ | $2^{3}$ | $1^{2} 2^{5}$ | $2^{4}$ |  |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right)$ | 6 | $S_{4}$ | $F_{1}(x)=1$ <br> $F_{2}(x)=(1+2 x)$ <br> $F_{4}(x)=(1+2 x)^{3}$ | $2^{1} 4^{1}$ | $4^{3}$ | $4^{2}$ |  |
| $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ | 8 | $C_{3}$ | $F_{1}(x)=\left(1+2 x^{3}\right)$ <br> $F_{3}(x)=(1+2 x)^{3}$ | $3^{2}$ | $3^{4}$ | $1^{2} 3^{2}$ |  |
| $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$ | 8 | $S_{3}$ | $F_{1}(x)=1$ <br> $F_{2}(x)=\left(1+2 x^{3}\right)$ <br> $F_{3}(x)=1$ <br> $F_{6}(x)=(1+2 x)^{3}$ | 6 | $6^{2}$ | $2^{1} 6$ |  |

Table 2: Conjugacy Classes of $S_{5}\left[S_{2}\right]$, their orders, $F_{d}$ polynomials and cycle types generated using Möbius inversion for the 5D-hypercube's five hyperplanes*.

| Conj Class <br> C | $\|C\|$ | $F_{d}(x)$ | $\begin{aligned} & q=1 \\ & \text { tes } \end{aligned}$ | $\begin{aligned} & q=2 \\ & \mathrm{Cel} \end{aligned}$ | $\begin{aligned} & q=3 \\ & \text { fac } \end{aligned}$ | $\begin{aligned} & q=4 \\ & \text { ed } \end{aligned}$ | $\begin{aligned} & q=5 \\ & \text { Ver } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\begin{array}{lllll}5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$ | 1E | $F_{1}(x)=(1+2 x)^{5}$ | $1^{10}$ | $1^{40}$ | $1^{80}$ | 180 | $1^{32}$ |
| $\left(\begin{array}{lllll}4 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0\end{array}\right)$ | 5 | $\begin{aligned} & F_{1}(x)=(1+2 x)^{4} \\ & F_{2}(x)=(1+2 x)^{5} \end{aligned}$ | $1^{8} 2$ | $1^{24} 2^{8}$ | $1^{32} 2^{24}$ | $1^{16} 2^{32}$ | $2^{16}$ |
| $\left(\begin{array}{lllll}3 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0\end{array}\right)$ | 10R | $\begin{aligned} & F_{1}(x)=(1+2 x)^{3} \\ & F_{2}(x)=(1+2 x)^{5} \end{aligned}$ | $1^{8} 2^{2}$ | $1^{12} 2^{14}$ | $1^{8} 2^{36}$ | $2^{40}$ | $2^{16}$ |
| $\left(\begin{array}{lllll}2 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0\end{array}\right)$ | 10 | $\begin{aligned} & F_{1}(x)=(1+2 x)^{2} \\ & F_{2}(x)=(1+2 x)^{5} \end{aligned}$ | $1^{4} 2^{3}$ | $1^{4} 2^{18}$ | $2^{40}$ | $2^{40}$ | $2^{16}$ |
| $\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 & 0\end{array}\right)$ | 5R | $\begin{aligned} & F_{1}(x)=(1+2 x) \\ & F_{2}(x)=(1+2 x)^{5} \end{aligned}$ | $1^{2} 2^{4}$ | $2^{20}$ | $2^{40}$ | $2^{40}$ | $2^{16}$ |
| $\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 & 0\end{array}\right)$ | 1 | $\begin{aligned} & F_{1}(x)=1 \\ & F_{2}(x)=(1+2 x)^{5} \end{aligned}$ | $2^{5}$ | $2^{20}$ | $2^{40}$ | $2^{40}$ | $2^{16}$ |
| $\left(\begin{array}{lllll}3 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$ | 20 | $\begin{aligned} & F_{1}(x)=(1+2 x)^{3}\left(1+2 x^{2}\right) \\ & F_{2}(x)=(1+2 x)^{5} \end{aligned}$ | $1^{6} 2^{2}$ | $1^{14} 2^{13}$ | $1^{20} 2^{30}$ | $1^{24} 2^{28}$ | $1^{16} 2^{8}$ |
| $\left(\begin{array}{lllll}3 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0\end{array}\right)$ | 20R | $\begin{aligned} & F_{1}(x)=(1+2 x)^{3} \\ & F_{2}(x)=(1+2 x)^{3} \\ & F_{4}(x)=(1+2 x)^{5} \end{aligned}$ | $1^{6} 4$ | $1^{12} 4^{7}$ | $1^{8} 4^{18}$ | $4^{20}$ | $4^{8}$ |
| $\left(\begin{array}{lllll}2 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0\end{array}\right)$ | 60R | $\begin{aligned} & F_{1}(x)=(1+2 x)^{2}\left(1+2 x^{2}\right) \\ & F_{2}(x)=(1+2 x)^{5} \end{aligned}$ | $1^{4} 2^{3}$ | $1^{16} 2^{17}$ | $1^{8} 2^{36}$ | $1^{8} 2^{36}$ | $2^{16}$ |
| $\left(\begin{array}{lllll}2 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0\end{array}\right)$ | 60 | $\begin{aligned} & F_{1}(x)=(1+2 x)^{2} \\ & F_{2}(x)=(1+2 x)^{3} \\ & F_{4}(x)=(1+2 x)^{5} \end{aligned}$ | $1^{4} 2^{1} 4$ | $1^{4} 2^{4} 4^{7}$ | $2^{4} 4^{18}$ | $4^{20}$ | $4^{8}$ |
| $\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0\end{array}\right)$ | 60 | $\begin{aligned} & F_{1}(x)=(1+2 x)\left(1+2 x^{2}\right) \\ & F_{2}(x)=(1+2 x)^{5} \end{aligned}$ | $1^{2} 2^{4}$ | $1^{2} 2^{19}$ | $1^{4} 2^{38}$ | $2^{40}$ | $2^{16}$ |
| $\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0\end{array}\right)$ | 60R | $\begin{aligned} & F_{1}(x)=(1+2 x) \\ & F_{2}(x)=(1+2 x)^{3} \\ & F_{4}(x)=(1+2 x)^{5} \end{aligned}$ | $1^{4} 2^{2} 4$ | $2^{6} 4^{7}$ | $2^{4} 4^{18}$ | $4^{20}$ | $4^{8}$ |
| $\left(\begin{array}{lllll}0 & 1 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0\end{array}\right)$ | 20R | $\begin{aligned} & F_{1}(x)=\left(1+2 x^{2}\right) \\ & F_{2}(x)=(1+2 x)^{5} \end{aligned}$ | $2^{5}$ | $1^{2} 2^{19}$ | $2^{40}$ | $2^{40}$ | $2^{16}$ |
| $\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 3 & 1 & 0 & 0 & 0\end{array}\right)$ | 20 | $\begin{aligned} & F_{1}(x)=1 \\ & F_{2}(x)=(1+2 x)^{3} \\ & F_{4}(x)=(1+2 x)^{5} \end{aligned}$ | $2^{3} 4$ | $2^{6} 4^{7}$ | $2^{4} 4^{18}$ | $4^{20}$ | $4^{8}$ |
| $\left(\begin{array}{lllll}2 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$ | 80R | $\begin{aligned} & F_{1}(x)=(1+2 x)^{2}\left(1+2 x^{3}\right) \\ & F_{3}(x)=(1+2 x)^{5} \end{aligned}$ | $1^{4} 3^{2}$ | $1^{4} 3^{12}$ | $1^{2} 2^{26}$ | $1^{8} 3^{24}$ | $1^{8} 3^{8}$ |
| $\left(\begin{array}{lllll}2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0\end{array}\right)$ | 80 | $\begin{aligned} & F_{1}(x)=(1+2 x)^{2} \\ & F_{2}(x)=(1+2 x)^{2}\left(1+2 x^{3}\right) \\ & F_{3}(x)=(1+2 x)^{2} \\ & F_{6}(x)=(1+2 x)^{5} \end{aligned}$ | $1^{4} 6$ | $1^{4} 6^{6}$ | $26^{13}$ | $2^{4} 6^{12}$ | $2^{4} 6^{4}$ |
| $\left(\begin{array}{lllll}1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0\end{array}\right)$ | 160 | $\begin{aligned} & F_{1}(x)=(1+2 x)\left(1+2 x^{3}\right) \\ & F_{2}(x)=(1+2 x)^{2}\left(1+2 x^{3}\right) \\ & F_{3}(x)=(1+2 x)^{4} \\ & F_{6}(x)=(1+2 x)^{5} \end{aligned}$ | $1^{2} 2^{1} 3^{2}$ | $2^{2} 3^{10} 6^{8}$ | $1^{2} 3^{8} 6^{2}$ | $1^{4} 2^{2} 3^{4} 6^{10}$ | $2^{4} 6^{4}$ |


| $\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0\end{array}\right)$ | 160R | $\begin{aligned} & F_{1}(x)=(1+2 x) \\ & F_{2}(x)=(1+2 x)^{2}\left(1+2 x^{3}\right) \\ & F_{3}(x)=(1+2 x) \\ & F_{6}(x)=(1+2 x)^{5} \end{aligned}$ | $1^{2} 2^{1} 6$ | $2^{2} 6^{6}$ | $2^{1} 6^{13}$ | $2^{4} 6^{12}$ | $2^{4} 6^{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\begin{array}{lllll}0 & 0 & 1 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0\end{array}\right)$ | 80R | $\begin{aligned} & F_{1}(x)=\left(1+2 x^{3}\right) \\ & F_{2}(x)=(1+2 x)^{2}\left(1+2 x^{3}\right) \\ & F_{3}(x)=(1+2 x)^{3} \\ & F_{6}(x)=(1+2 x)^{5} \end{aligned}$ | $2^{2} 3^{2}$ | $2^{2} 3^{4} 6^{4}$ | $1^{2} 3^{2} 6^{12}$ | $2^{4} 6^{12}$ | $2^{4} 6^{4}$ |
| $\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 & 0\end{array}\right)$ | 80 | $\begin{aligned} & F_{1}(x)=1 \\ & F_{2}(x)=(1+2 x)^{2}\left(1+2 x^{3}\right) \\ & F_{3}(x)=1 \\ & F_{6}(x)=(1+2 x)^{5} \end{aligned}$ | $2^{2} 6$ | $2^{2} 6^{6}$ | $2^{1} 6^{13}$ | $2^{4} 6^{12}$ | $2^{4} 6^{4}$ |
| $\left(\begin{array}{lllll}1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$ | 60R | $\begin{aligned} & F_{1}(x)=(1+2 x)\left(1+2 x^{2}\right)^{2} \\ & F_{2}(x)=(1+2 x)^{5} \end{aligned}$ | $1^{2} 2^{4}$ | $1^{4} 2^{18}$ | $1^{8} 2^{36}$ | $1^{4} 2^{38}$ | $1^{8} 2^{12}$ |
| $\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0\end{array}\right)$ | 120 | $\begin{aligned} & F_{1}(x)=(1+2 x)\left(1+2 x^{2}\right) \\ & F_{2}(x)=(1+2 x)^{3} \\ & F_{4}(x)=(1+2 x)^{5} \end{aligned}$ | $1^{2} 2^{2} 4$ | $1^{2} 2^{5} 4^{7}$ | $1^{4} 2^{2} 4^{18}$ | $4^{20}$ | $4^{8}$ |
| $\left(\begin{array}{lllll}0 & 2 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0\end{array}\right)$ | 60 | $\begin{aligned} & F_{1}(x)=\left(1+2 x^{2}\right)^{2} \\ & F_{2}(x)=(1+2 x)^{5} \end{aligned}$ | $2^{5}$ | $1^{4} 2^{18}$ | $2^{40}$ | $1^{4} 2^{38}$ | $2^{16}$ |
| $\left(\begin{array}{lllll}0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0\end{array}\right)$ | 120R | $\begin{aligned} & F_{1}(x)=\left(1+2 x^{2}\right) \\ & F_{2}(x)=(1+2 x)^{3} \\ & F_{4}(x)=(1+2 x)^{5} \\ & \hline \end{aligned}$ | $2^{3} 4$ | $1^{2} 2^{5} 4^{7}$ | $2^{4} 4^{18}$ | $4^{20}$ | $4^{8}$ |
| $\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0\end{array}\right)$ | 60R | $\begin{aligned} & F_{1}(x)=(1+2 x) \\ & F_{2}(x)=(1+2 x) \\ & F_{4}(x)=(1+2 x)^{5} \end{aligned}$ | $1^{2} 4^{2} 4$ | $4^{10}$ | $4^{20}$ | $4^{20}$ | $4^{8}$ |
| $\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0\end{array}\right)$ | 60 | $\begin{aligned} & F_{1}(x)=1 \\ & F_{2}(x)=(1+2 x) \\ & F_{4}(x)=(1+2 x)^{5} \end{aligned}$ | $2^{1} 4^{2}$ | $4^{10}$ | $4^{20}$ | $4^{20}$ | $4^{8}$ |
| $\left(\begin{array}{lllll}1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$ | 240 | $\begin{aligned} & F_{1}(x)=(1+2 x)\left(1+2 x^{4}\right) \\ & F_{2}(x)=(1+2 x)\left(1+2 x^{2}\right)^{2} \\ & F_{4}(x)=(1+2 x)^{5} \end{aligned}$ | $1^{2} 4^{2} 4$ | $2^{2} 4^{9}$ | $2^{4} 4^{18}$ | $1^{2} 2^{1} 4^{19}$ | $1^{4} 2^{2} 4^{6}$ |
| $\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0\end{array}\right)$ | 240R | $\begin{aligned} & F_{1}(x)=(1+2 x) \\ & F_{2}(x)=(1+2 x) \\ & F_{4}(x)=(1+2 x) \\ & F_{8}(x)=(1+2 x)^{5} \end{aligned}$ | $1^{2} 8$ | $8^{5}$ | $8^{10}$ | $8^{10}$ | $8^{4}$ |
| $\left(\begin{array}{lllll}0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0\end{array}\right)$ | 240R | $\begin{aligned} & F_{1}(x)=(1+2 x)\left(1+2 x^{4}\right) \\ & F_{2}(x)=(1+2 x)\left(1+2 x^{2}\right)^{2} \\ & F_{4}(x)=(1+2 x)^{5} \end{aligned}$ | $2^{1} 4^{2}$ | $2^{2} 4^{9}$ | $2^{4} 4^{18}$ | $1^{2} 2^{1} 4^{19}$ | $2^{4} 4^{6}$ |
| $\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0\end{array}\right)$ | 240 | $\begin{aligned} & F_{1}(x)=1 \\ & F_{2}(x)=(1+2 x) \\ & F_{4}(x)=(1+2 x) \\ & F_{8}(x)=(1+2 x)^{5} \end{aligned}$ | $2^{1} 8$ | $8^{5}$ | $8^{10}$ | $8^{10}$ | $8^{4}$ |
| $\left(\begin{array}{lllll}0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0\end{array}\right)$ | 160 | $\begin{aligned} & F_{1}(x)=\left(1+2 x^{2}\right)\left(1+2 x^{3}\right) \\ & F_{2}(x)=(1+2 x)^{2}\left(1+2 x^{3}\right) \\ & F_{3}(x)=\left(1+2 x^{2}\right)(1+2 x)^{3} \\ & F_{6}(x)=(1+2 x)^{5} \end{aligned}$ | $2^{3} 3^{2}$ | $1^{2} 2^{1} 3^{4} 6^{4}$ | $1^{2} 3^{6} 6^{10}$ | $2^{4} 3^{8} 6^{8}$ | $1^{4} 2^{2} 3^{4} 6^{2}$ |


| $\left(\begin{array}{lllll}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0\end{array}\right)$ | 160R | $\begin{aligned} & F_{1}(x)=\left(1+2 x^{2}\right) \\ & F_{2}(x)=(1+2 x)^{2}\left(1+2 x^{3}\right) \\ & F_{3}(x)=\left(1+2 x^{2}\right) \\ & F_{6}(x)=(1+2 x)^{5} \end{aligned}$ | $2^{2} 6$ | $1^{2} 2^{1} 6^{6}$ | $2^{1} 6^{13}$ | $2^{4} 6^{12}$ | $2^{4} 6^{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\begin{array}{lllll}0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0\end{array}\right)$ | 160R | $\begin{aligned} & F_{1}(x)=\left(1+2 x^{3}\right) \\ & F_{2}(x)=\left(1+2 x^{3}\right) \\ & F_{3}(x)=(1+2 x)^{3} \\ & F_{4}(x)=(1+2 x)^{2}\left(1+2 x^{3}\right) \\ & F_{6}(x)=(1+2 x)^{3} \\ & F_{12}(x)=(1+2 x)^{5} \end{aligned}$ | $4^{1} 3^{2}$ | $3^{4} 4^{1} 12^{2}$ | $1^{2} 3^{2} 12^{6}$ | $4^{2} 12^{6}$ | $4^{2} 12^{2}$ |
| $\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0\end{array}\right)$ | 160 | $\begin{aligned} & F_{1}(x)=1 \\ & F_{2}(x)=\left(1+2 x^{3}\right) \\ & F_{3}(x)=1 \\ & F_{4}(x)=(1+2 x)^{2}\left(1+2 x^{3}\right) \\ & F_{6}(x)=(1+2 x)^{3} \\ & F_{12}(x)=(1+2 x)^{5} \end{aligned}$ | 46 | $46^{2} 12^{2}$ | $2612^{6}$ | $4^{2} 12^{6}$ | $4^{2} 12^{2}$ |
| $\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$ | 384R | $\begin{aligned} & F_{1}(x)=\left(1+2 x^{5}\right) \\ & F_{5}(x)=(1+2 x)^{5} \end{aligned}$ | $5^{2}$ | $5^{8}$ | $5^{16}$ | $5^{16}$ | $1^{2} 5^{6}$ |
| $\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right)$ | 384 | $\begin{aligned} & F_{1}(x)=1 \\ & F_{2}(x)=\left(1+2 x^{5}\right) \\ & F_{5}(x)=1 \\ & F_{10}(x)=(1+2 x)^{5} \end{aligned}$ | 10 | $10^{4}$ | $10^{8}$ | $10^{8}$ | $2^{1} 10^{3}$ |

*Label R identifies proper rotations.

Table 3: 2-colorings of $q=2$ or 3-hyerplnes (cells) of 5D-hhypercube*

| $[\lambda]$ | 40 | 391 | 382 | 373 | 364 | 355 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $A_{1}$ | 1 | 1 | 5 | 18 | 84 | 362 |
| $A_{2} *$ | 0 | 0 | 0 | 0 | 6 | 84 |
| $A_{3} \dagger$ | 0 | 0 | 0 | 1 | 17 | 130 |
| $A_{4}$ | 0 | 0 | 0 | 3 | 29 | 218 |
| $A_{5}$ | 0 | 0 | 0 | 14 | 132 | 912 |
| $A_{6}$ | 0 | 1 | 8 | 41 | 234 | 1198 |
| $A_{7}$ | 0 | 0 | 0 | 1 | 33 | 376 |
| $A_{8}$ | 0 | 0 | 0 | 3 | 53 | 466 |
| $A_{9}$ | 0 | 0 | 3 | 28 | 211 | 1266 |
| $A_{10}$ | 0 | 1 | 7 | 43 | 261 | 1410 |
| $A_{11}$ | 0 | 0 | 0 | 2 | 46 | 502 |
| $A_{12}$ | 0 | 0 | 0 | 3 | 57 | 548 |
| $A_{13}$ | 0 | 0 | 1 | 11 | 105 | 753 |
| $A_{14}$ | 0 | 0 | 0 | 4 | 59 | 570 |
| $A_{15}$ | 0 | 1 | 5 | 36 | 217 | 1247 |
| $A_{16}$ | 0 | 0 | 0 | 10 | 130 | 958 |
| $A_{17}$ | 0 | 0 | 3 | 34 | 253 | 1534 |
| $A_{18}$ | 0 | 0 | 0 | 3 | 63 | 632 |
| $A_{19}$ | 0 | 0 | 1 | 20 | 225 | 1705 |
| $A_{20}$ | 0 | 0 | 0 | 19 | 231 | 1741 |
| $A_{21}$ | 0 | 1 | 7 | 48 | 335 | 2060 |
| $A_{22}$ | 0 | 10 | 2 | 30 | 266 | 1853 |
| $A_{23}$ | 0 | 0 | 0 | 11 | 161 | 1394 |
| $A_{24}$ | 0 | 0 | 1 | 16 | 181 | 1454 |
| $A_{25}$ | 0 | 0 | 2 | 27 | 237 | 1684 |
| $A_{26}$ | 0 | 0 | 1 | 22 | 217 | 1624 |
| $A_{27}$ | 0 | 0 | 1 | 14 | 158 | 1315 |
| $A_{28}$ | 0 | 0 | 4 | 44 | 341 | 2197 |
| $A_{29}$ | 0 | 0 | 0 | 11 | 191 | 1808 |
| $A_{30}$ | 0 | 0 | 0 | 18 | 232 | 1991 |
| $A_{31}$ | 0 | 0 | 4 | 54 | 471 | 3155 |
| $A_{32}$ | 0 | 1 | 9 | 80 | 558 | 3444 |
| $A_{33}$ | 0 | 0 | 3 | 50 | 489 | 3556 |
| $A_{34}$ | 0 | 0 | 6 | 66 | 562 | 3797 |
| $A_{35}$ | 0 | 0 | 1 | 32 | 376 | 3012 |
| $A_{36}$ | 0 | 0 | 3 | 40 | 414 | 3130 |
| $[\lambda]$ | 346 | 337 | 328 | 319 | 3010 | 2911 |
| $A_{1}$ | 1608 | 6549 | 24447 | 81523 | 243027 | 645920 |
| $A_{2} *$ | 657 | 3750 | 16898 | 63366 | 203095 | 565964 |
| $A_{3} \dagger$ | 820 | 4201 | 18036 | 65883 | 208248 | 575519 |
| $A_{4}$ | 1196 | 5575 | 22187 | 76923 | 234085 | 630118 |
| $A_{5}$ | 4957 | 22752 | 89932 | 310271 | 941691 | 2530274 |
| $A_{6}$ | 5764 | 24690 | 94419 | 319457 | 959523 | 2561868 |
| $A_{7}$ | 2788 | 15437 | 68714 | 255963 | 817470 | 2273349 |
| $A_{8}$ | 3112 | 16337 | 70988 | 260991 | 827766 | 2292449 |
| $A_{9}$ | 6548 | 29276 | 114337 | 391745 | 1184645 | 3176086 |
| $A_{10}$ | 6951 | 30250 | 116572 | 396345 | 1193551 | 3191888 |
| $A_{11}$ | 3603 | 19622 | 86732 | 321822 | 1025657 | 2848796 |
| $A_{12}$ | 3766 | 20073 | 87870 | 324339 | 1030810 | 2858351 |
| $A_{13}$ | 4505 | 22424 | 94334 | 340422 | 1066636 | 2931379 |
| $A_{14}$ | 3902 | 20774 | 90308 | 331592 | 1048890 | 2898671 |
|  |  |  |  |  |  |  |


| $A_{15}$ | 6315 | 28332 | 111060 | 382756 | 1162511 | 3128715 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A_{16}$ | 5519 | 26226 | 106192 | 372241 | 1142010 | 3091274 |
| $A_{17}$ | 7917 | 35318 | 137717 | 471282 | 1424118 | 3816104 |
| $A_{18}$ | 4423 | 23823 | 104768 | 387705 | 1233905 | 3424315 |
| $A_{19}$ | 10100 | 49179 | 202674 | 719261 | 2225769 | 6060963 |
| $A_{20}$ | 10246 | 49608 | 203802 | 721773 | 2231003 | 6070695 |
| $A_{21}$ | 11143 | 51877 | 209058 | 732893 | 2252661 | 6109809 |
| $A_{22}$ | 10559 | 50479 | 205914 | 726505 | 2240491 | 6088449 |
| $A_{23}$ | 8893 | 45231 | 191440 | 690879 | 2161351 | 5928638 |
| $A_{24}$ | 9081 | 45720 | 192650 | 693498 | 2166648 | 5938361 |
| $A_{25}$ | 9791 | 47669 | 197270 | 703613 | 2186655 | 5975122 |
| $A_{26}$ | 9603 | 47180 | 196060 | 700994 | 2181358 | 5965399 |
| $A_{27}$ | 8394 | 43167 | 184598 | 671959 | 2115409 | 5829890 |
| $A_{28}$ | 11821 | 54521 | 217202 | 754936 | 2304404 | 6219829 |
| $A_{29}$ | 12097 | 63479 | 273932 | 1001661 | 3160917 | 8722835 |
| $A_{30}$ | 12691 | 65129 | 277938 | 1010491 | 3178627 | 8755543 |
| $A_{31}$ | 17340 | 80747 | 323394 | 1127177 | 3446414 | 9311103 |
| $A_{32}$ | 18136 | 82853 | 328262 | 1137692 | 3466915 | 9348544 |
| $A_{33}$ | 20657 | 99644 | 408572 | 1445748 | 4466210 | 12149350 |
| $A_{34}$ | 21383 | 101463 | 412836 | 1454636 | 4483602 | 12180432 |
| $A_{35}$ | 18488 | 92296 | 387472 | 1391838 | 4342653 | 11893939 |
| $A_{36}$ | 18860 | 93370 | 389890 | 1397068 | 4353235 | 11913375 |
| [ $\lambda$ ] | 2812 | 2713 | 2614 | 2515 | 2416 | 2020 |
| $A_{1}$ | 1534959 | 3268238 | 6253840 | 10780533 | 16780905 | 36600432 |
| $A_{2} *$ | 1387615 | 3018198 | 5860684 | 10206958 | 16001831 | 35267044 |
| $A_{3} \dagger$ | 1404093 | 3044481 | 5899917 | 10261735 | 16073555 | 35382134 |
| $A_{4}$ | 1508474 | 3227163 | 6193673 | 10698058 | 16674124 | 36432620 |
| $A_{5}$ | 6051057 | 12935884 | 24815540 | 42849105 | 66771193 | 145850208 |
| $A_{6}$ | 6103944 | 13018005 | 24935767 | 43014020 | 66984612 | 146185674 |
| $A_{7}$ | 5566873 | 12098955 | 23481819 | 40882439 | 64078845 | 141182942 |
| $A_{8}$ | 5599815 | 12151509 | 23560277 | 40991977 | 64222269 | 141413110 |
| $A_{9}$ | 7585897 | 16203956 | 31069136 | 53629419 | 83551831 | 182450208 |
| $A_{10}$ | 7612322 | 16245031 | 31129219 | 53711894 | 83658502 | 182617894 |
| $A_{11}$ | 6970887 | 15143304 | 29381578 | 51144016 | 80152173 | 176564772 |
| $A_{12}$ | 6987365 | 15169587 | 29420811 | 51198793 | 80223897 | 176679862 |
| $A_{13}$ | 7122810 | 15401876 | 29787455 | 51737069 | 80956494 | 177940894 |
| $A_{14}$ | 7066962 | 15313232 | 29655841 | 51554067 | 80717484 | 177559178 |
| $A_{15}$ | 4793096 | 16040561 | 30802821 | 53232534 | 83001076 | 181479598 |
| $A_{16}$ | 7430012 | 15940878 | 30655982 | 53029221 | 82736568 | 181059380 |
| $A_{17}$ | 9111568 | 19458488 | 37303794 | 64384562 | 100300776 | 219002868 |
| $A_{18}$ | 8374980 | 18187785 | 35281495 | 61405751 | 96225728 | 211946906 |
| $A_{19}$ | 14630010 | 31481747 | 60673483 | 105113023 | 164178470 | 359867382 |
| $A_{20}$ | 14646966 | 31508798 | 60714034 | 105169696 | 164252800 | 359986806 |
| $A_{21}$ | 14712710 | 31612100 | 60865880 | 105379320 | 164525016 | 360417862 |
| $A_{22}$ | 14677526 | 31557917 | 60787385 | 105272259 | 164387422 | 360203692 |
| $A_{23}$ | 14381627 | 31054027 | 59993215 | 104112178 | 162809521 | 357499270 |
| $A_{24}$ | 14398357 | 31080628 | 60032854 | 104167367 | 162881749 | 357614990 |
| $A_{25}$ | 14460573 | 31179079 | 60178307 | 104369056 | 163144521 | 358033038 |
| $A_{26}$ | 14443843 | 31152478 | 60138668 | 104313867 | 163072293 | 357917318 |
| $A_{27}$ | 14189604 | 30714843 | 59442940 | 103290802 | 161673524 | 355499400 |
| $A_{28}$ | 14922940 | 31981159 | 61458432 | 106261406 | 165737190 | 362538286 |
| $A_{29}$ | 21247566 | 46014649 | 89080019 | 154819871 | 242359594 | 533011478 |
| $A_{30}$ | 21303354 | 46103293 | 89211549 | 155002873 | 242598504 | 533393068 |
| $A_{31}$ | 22352952 | 47922037 | 92114414 | 159290627 | 248473758 | 543597666 |
| $A_{32}$ | 22416036 | 48021720 | 92261253 | 159493940 | 248738266 | 544017884 |
| $A_{33}$ | 29307474 | 63039544 | 121460718 | 210385140 | 328565692 | 720070782 |
| $A_{34}$ | 29359594 | 63120751 | 121579741 | 210548843 | 328777586 | 720404344 |
| $A_{35}$ | 28825377 | 62206368 | 120131677 | 208425861 | 325881583 | 715416208 |
| $A_{36}$ | 28858823 | 62259556 | 120210947 | 208536219 | 326026015 | 715647636 |

$*$ Identifies Chiral Representation,
$\dagger$ Identifies Alternating Representation

Table 4: 2-colorings of 5D-hypercube: $q=3$ or 2-hyperplanes(faces)

| [ $\lambda$ ] | 800 | 791 | 782 | 773 | 764 | 755 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A_{1}$ | 1 | 1 | 8 | 54 | 633 | 7287 |
| $A_{2} *$ | 0 | 0 | 0 | 14 | 326 | 5722 |
| $A_{3} \dagger$ | 0 | 0 | 1 | 2 | 408 | 699 |
| $A_{4}$ | 0 | 0 | 0 | 19 | 418 | 661 |
| $A_{5}$ | 0 | 0 | 1 | 86 | 1724 | 25905 |
| $A_{6}$ | 0 | 1 | 14 | 154 | 2138 | 27755 |
| $A_{7}$ | 0 | 0 | 0 | 48 | 1329 | 22923 |
| $A_{8}$ | 0 | 0 | 2 | 71 | 1491 | 23876 |
| $A_{9}$ | 0 | 0 | 8 | 136 | 2349 | 33188 |
| $A_{10}$ | 0 | 1 | 14 | 171 | 2552 | 34114 |
| $A_{11}$ | 0 | 0 | 1 | 73 | 1735 | 29121 |
| $A_{12}$ | 0 | 0 | 2 | 85 | 1817 | 29598 |
| $A_{13}$ | 0 | 0 | 6 | 110 | 2060 | 30896 |
| $A_{14}$ | 0 | 0 | 1 | 73 | 1771 | 29392 |
| $A_{15}$ | 0 | 1 | 10 | 168 | 2435 | 33702 |
| $A_{16}$ | 0 | 0 | 3 | 106 | 2090 | 31741 |
| $A_{17}$ | 0 | 0 | 7 | 167 | 2811 | 40020 |
| $A_{18}$ | 0 | 0 | 1 | 79 | 2086 | 34886 |
| $A_{19}$ | 0 | 0 | 7 | 201 | 4067 | 62428 |
| $A_{20}$ | 0 | 0 | 6 | 213 | 4117 | 62905 |
| $A_{21}$ | 0 | 1 | 18 | 275 | 4557 | 64866 |
| $A_{22}$ | 0 | 0 | 6 | 220 | 4201 | 6500 |
| $A_{23}$ | 0 | 0 | 4 | 173 | 3807 | 60718 |
| $A_{24}$ | 0 | 0 | 4 | 165 | 3833 | 60755 |
| $A_{25}$ | 0 | 1 | 11 | 245 | 4232 | 6148 |
| $A_{26}$ | 0 | 0 | 8 | 210 | 4090 | 62222 |
| $A_{27}$ | 0 | 0 | 7 | 180 | 3825 | 60285 |
| $A_{28}$ | 0 | 1 | 13 | 271 | 4519 | 65440 |
| $A_{29}$ | 0 | 0 | 4 | 233 | 5451 | 89243 |
| $A_{30}$ | 0 | 0 | 7 | 270 | 5728 | 90747 |
| $A_{31}$ | 0 | 0 | 14 | 354 | 6550 | 96726 |
| $A_{32}$ | 0 | 1 | 21 | 416 | 6895 | 98687 |
| $A_{33}$ | 0 | 0 | 13 | 421 | 8268 | 125928 |
| $A_{34}$ | 0 | 1 | 24 | 487 | 8672 | 127770 |
| $A_{35}$ | 0 | 0 | 12 | 381 | 7893 | 122938 |
| $A_{36}$ | 0 | 0 | 15 | 406 | 8057 | 123899 |
| [ $\lambda$ ] | 746 | 737 | 728 | 719 | 7010 | 6911 |
| $A_{1}$ | 83555 | 849445 | 7641565 | 60729304 | 429970617 | 2732388768 |
| $A_{2} *$ | 74973 | 811527 | 7477975 | 60113621 | 427758604 | 2725189869 |
| $A_{3} \dagger$ | 77230 | 821376 | 7515124 | 60245702 | 428179564 | 2726468083 |
| $A_{4}$ | 79347 | 833673 | 7583400 | 60540511 | 429376647 | 2730690404 |
| $A_{5}$ | 319235 | 3344486 | 30366992 | 242293889 | 1717899937 | 10924039594 |
| $A_{6}$ | 327603 | 3376017 | 30483176 | 242671455 | 1719087495 | 10927436302 |
| $A_{7}$ | 301055 | 3250060 | 29935770 | 240529874 | 1711337285 | 10901617831 |
| $A_{8}$ | 305566 | 3269746 | 30010065 | 240794016 | 1712179165 | 10904174239 |
| $A_{9}$ | 402754 | 4193869 | 38008521 | 303022994 | 2147870156 | 13656428163 |
| $A_{10}$ | 406924 | 4209641 | 38066550 | 303211787 | 2148463784 | 13658126527 |
| $A_{11}$ | 378269 | 4071401 | 37450878 | 300775427 | 2139516551 | 13628085765 |
| $A_{12}$ | 380526 | 4081250 | 37488027 | 300907508 | 2139937511 | 13629363979 |


| $A_{13}$ | 388244 | 4115896 | 37642667 | 301493236 | 2142078579 | 13636348861 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $A_{14}$ | 380718 | 4085029 | 37522094 | 301081473 | 2140734613 | 13632382149 |
| $A_{15}$ | 403325 | 4194147 | 37983313 | 302887223 | 2147152220 | 13653690659 |
| $A_{16}$ | 394699 | 4157315 | 37849447 | 302418655 | 2145690306 | 13649303434 |
| $A_{17}$ | 483936 | 5037385 | 45625203 | 363695529 | 2577640232 | 16388396724 |
| $A_{18}$ | 454418 | 4886903 | 44952736 | 360964567 | 2567578338 | 16354134118 |
| $A_{19}$ | 782696 | 8276912 | 75522353 | 604085534 | 4288538040 | 27288670143 |
| $A_{20}$ | 784537 | 8286761 | 75555698 | 604217615 | 4288931526 | 27289948357 |
| $A_{21}$ | 794398 | 8323593 | 75700964 | 604686183 | 4290475691 | 27294335582 |
| $A_{22}$ | 787906 | 8301941 | 75618251 | 604440771 | 4289681978 | 27292217431 |
| $A_{23}$ | 772614 | 8226772 | 75295921 | 603175242 | 4285167659 | 27277249393 |
| $A_{24}$ | 773790 | 8230741 | 75319810 | 603250704 | 4285470842 | 27278107820 |
| $A_{25}$ | 783478 | 8273411 | 75466888 | 603775798 | 4287050362 | 27282914469 |
| $A_{26}$ | 780121 | 8257639 | 75416431 | 603587005 | 4286511454 | 27281216105 |
| $A_{27}$ | 768923 | 8200847 | 75164722 | 602574387 | 4282812548 | 27268730688 |
| $A_{28}$ | 797985 | 8351384 | 75832721 | 605305556 | 4292841882 | 27302993771 |
| $A_{29}$ | 1147363 | 12280002 | 112662231 | 903599298 | 6423347475 | 40900693107 |
| $A_{30}$ | 1154851 | 12310869 | 112782678 | 904011061 | 6424691099 | 40904659819 |
| $A_{31}$ | 1191584 | 12502770 | 113668866 | 907667442 | 6438414240 | 40951876998 |
| $A_{32}$ | 1200210 | 12539602 | 113802732 | 908136010 | 6439876154 | 40956264223 |
| $A_{33}$ | 1570592 | 16578830 | 151140594 | 1208526176 | 8578219760 | 54580887445 |
| $A_{34}$ | 1578916 | 16610319 | 151256643 | 1208903649 | 8579406919 | 54584283790 |
| $A_{35}$ | 1552712 | 16484362 | 150712329 | 1206762068 | 8571678755 | 54558465319 |
| $A_{36}$ | 1557242 | 16504090 | 150786672 | 1207026303 | 8572520806 | 54561022090 |


| [ $\lambda$ ] | 4436 | 4337 | 4238 | 4139 | 4040 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $A_{1}$ | 18847863525339251552 | 22413675116856521554 | 25362842575806673932 | 27313830262039356344 | 27996675954790045648 |
| $A_{2}$ * | 18847852585019852784 | 22413662952649979772 | 25362829447471548304 | 27313816527678832042 | 27996662005552559820 |
| $A_{3} \dagger$ | 18847853190803004294 | 22413663622117296124 | 25362830164050160934 | 27313817276349083728 | 27996662763315380740 |
| A | 18847862859627984748 | 22413674384398836626 | 25362841789323193438 | 27313829443562144630 | 27996675123446791678 |
| $A_{5}$ | 75 | 89654698207061418894 | 101451367868400802692 | 109255318522918146262 | 2 |
| $A_{6}$ | 75391453370992774196 | 896546996719767851 | 101451369441367576670 | 109255320159872567790 | 111986702908491503538 |
| $A_{7}$ | 75391410895382419988 | 89654652417075817924 | 101451318447499755284 | 109255266789578133400 | 111986648717878780904 |
| $A_{8}$ | 75391412106948721622 | 89654653756010447008 | 101451319880656979158 | 109255268286918634892 | 111986650233404418984 |
| A | 94 | 112068373323916723632 | 126814210444206867570 | 136569148784956847548 | 13983377200593924674 |
| $A_{10}$ | 94239316230620152144 | 11206837405637440856 | 126814211230690163308 | 136569149603434059262 | 139983378031936988900 |
| $A_{11}$ | 94239264086184823660 | 112068316039191912380 | 126814148611549315596 | 136569084065926569990 | 139983311481192867368 |
| $A_{12}$ | 94239264691967975170 | 112068316708659228732 | 126814149328127928226 | 136569084814596821676 | 139983312238955688288 |
| $A_{13}$ | 94 | 11 | 12 | 13 | 139983326162116863420 |
| $A_{14}$ | 9423 | 11 | 12 | 13 | 139983323844407910574 |
| $A_{15}$ | 94239306532959553232 | 112068363268005984602 | 126814199571879555474 | 136569137407356432010 | 139983365636539659632 |
| $A_{16}$ | 94239304629041322386 | 112068361164802814868 | 126814197321003585678 | 136569135056193326978 | 139983363256737576052 |
| $A_{17}$ | 113087 | 13 | 152177052944638511992 | 16 | 167980053076059861824 |
| $A_{18}$ | 113 | 13 | 15 | 16 | 167979974182415265728 |
| $A_{19}$ | 188478589300930046 | 22413670010948 | 253628370658848001576 | 273138245000424414272 | 279966701018560496814 |
| $A_{20}$ | 188478589901989013044 | 224136700778953251280 | 253628371369956483346 | 273138245749094665958 | 279966701770579703858 |
| $A_{21}$ | 18847859182007975562 | 224136702882156421014 | 253628373637242754192 | 273138248100257770990 | 279966704167612580446 |
| $A_{22}$ | 188478591089 | 2241 | 253628372775384675292 | 27 | 279966703256945725386 |
| $A_{23}$ | 18847856869 | 2241 | 253 | 273 | 279966674717232831548 |
| $A_{24}$ | 188478569253703298004 | 224136677789475082978 | 253628346570512276262 | 273138219777714415504 | 279966675412902686308 |
| $A_{25}$ | 188478571208100940998 | 224136679955668384664 | 253628348880352605006 | 273138222198684224492 | 279966677854797606408 |
| $A_{26}$ | 188478570551838143 | 224136679223210699736 | 253628348104809448672 | 273138221380207012778 | 279966677034941689648 |
| $A_{27}$ | 188478549368580840 | 224136655653342348792 | 253628322671442383030 | 273138194758827908970 | 279966650006522174306 |
| $A_{28}$ | 18847861116199966862 | 224136724432806385474 | 253628396892881934154 | 273138272463548459144 | 279966728893274635996 |
| $A_{29}$ | 282717823061500661778 | 336204982396918169290 | 380442482835833897378 | 409707290927757703692 | 419949973771606452858 |
| $A_{30}$ | 282717824914939044664 | 336204984437130852146 | 380442485027745138714 | 409707293209113720670 | 419949976089315216212 |
| $A_{31} 1$ | 282717915740561360068 | 336205085534618800980 | 380442594154920976128 | 409707407449934795308 | 419950092087919132428 |
| $A_{32}$ | 2827179176444795 | 336205087637821970714 | 380442596405796945924 | 409707409801097900340 | 419950094467721216008 |
| $A_{33}$ | 376957180390646038772 | 448273402196193222712 | 507256743434232078056 | 546276492212397496308 | 559933404275504931684 |
| $A_{34}$ | 376957181722068167618 | 448273403661108470626 | 507256745007198636492 | 546276493849351789810 | 559933405938190990028 |
| $A_{35}$ | 376957139250237212918 | 448273356406207503440 | 507256694017706957254 | 546276440479057355420 | 559933351752173214880 |
| $A_{36}$ | 376957140461803631240 | 448273357745142250826 | 507256695450864273506 | 546276441976397984938 | 559933353267698982600 |

*Identifies Chiral Representation
$\dagger$ Identifies Alternating Representation
'’Terms corresponding to partitions [68 12] through [45 35] are not displayed."

Table 5: 2-colorings of 5D-hypercube for $\mathrm{q}=4$ or 1-hyperplanes (edges) of 5D-hypercube

| [ $\lambda$ ] | 800 | 791 | 782 | 773 | 764 | 755 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A_{1}$ | 1 | 1 | 8 | 50 | 608 | 7092 |
| $A_{2} *$ | 0 | 0 | 0 | 12 | 330 | 5782 |
| $A_{3} \dagger$ | 0 | 0 | 2 | 30 | 488 | 6690 |
| $A_{4}$ | 0 | 0 | 0 | 10 | 319 | 5730 |
| $A_{5}$ | 0 | 0 | 0 | 55 | 1426 | 23866 |
| $A_{6}$ | 0 | 1 | 13 | 132 | 1990 | 26563 |
| $A_{7}$ | 0 | 0 | 1 | 64 | 1465 | 23992 |
| $A_{8}$ | 0 | 0 | 5 | 98 | 1781 | 25800 |
| $A_{9}$ | 0 | 0 | 3 | 97 | 2010 | 30903 |
| $A_{10}$ | 0 | 0 | 10 | 136 | 2289 | 32246 |
| $A_{11}$ | 0 | 0 | 2 | 90 | 1940 | 30638 |
| $A_{12}$ | 0 | 0 | 4 | 108 | 2098 | 31546 |
| $A_{13}$ | 0 | 1 | 10 | 148 | 2345 | 32892 |
| $A_{14}$ | 0 | 0 | 2 | 74 | 1808 | 29722 |
| $A_{15}$ | 0 | 1 | 10 | 162 | 2385 | 33253 |
| $A_{16}$ | 0 | 0 | 1 | 67 | 1795 | 29648 |
| $A_{17}$ | 0 | 0 | 5 | 127 | 2489 | 37615 |
| $A_{18}$ | 0 | 0 | 4 | 120 | 2428 | 37328 |
| $A_{19}$ | 0 | 0 | 4 | 171 | 3786 | 60625 |
| $A_{20}$ | 0 | 0 | 6 | 191 | 3952 | 61607 |
| $A_{21}$ | 0 | 1 | 19 | 284 | 4598 | 65138 |
| $A_{22}$ | 0 | 0 | 6 | 225 | 4204 | 63415 |
| $A_{23}$ | 0 | 0 | 3 | 157 | 3735 | 60286 |
| $A_{24}$ | 0 | 0 | 5 | 175 | 3893 | 61194 |
| $A_{25}$ | 0 | 1 | 14 | 270 | 4483 | 64799 |
| $A_{26}$ | 0 | 1 | 12 | 252 | 4325 | 63891 |
| $A_{27}$ | 0 | 0 | 9 | 212 | 4121 | 62523 |
| $A_{28}$ | 0 | 0 | 8 | 219 | 4148 | 62810 |
| $A_{29}$ | 0 | 0 | 6 | 267 | 5820 | 91884 |
| $A_{30}$ | 0 | 0 | 13 | 340 | 6347 | 95035 |
| $A_{31}$ | 0 | 0 | 9 | 286 | 5943 | 92458 |
| $A_{32}$ | 0 | 1 | 18 | 381 | 6533 | 96063 |
| $A_{33}$ | 0 | 0 | 10 | 394 | 7978 | 124004 |
| $A_{34}$ | 0 | 1 | 23 | 471 | 8536 | 126701 |
| $A_{35}$ | 0 | 0 | 13 | 403 | 8041 | 124130 |
| $A_{36}$ | 0 | 0 | 17 | 437 | 8357 | 125938 |
| [ $\lambda$ ] | 746 | 737 | 728 | 719 | 7010 | 6911 |
| $A_{1}$ | 82379 | 843038 | 7611823 | 60601324 | 429479585 | 2730645204 |
| $A_{2} *$ | 75639 | 815762 | 7501366 | 60219494 | 428191237 | 2726763270 |
| $A_{3} \dagger$ | 80615 | 837606 | 7592170 | 60547288 | 429312879 | 2730230168 |
| $A_{4}$ | 75477 | 815283 | 7500045 | 60216779 | 428185149 | 2726758252 |
| $A_{5}$ | 307123 | 3284074 | 30095715 | 241209472 | 1713913625 | 10910627650 |
| $A_{6}$ | 320894 | 3339553 | 30319122 | 241978353 | 1716502254 | 10918401261 |
| $A_{7}$ | 307440 | 3284670 | 30095732 | 241204688 | 1713884368 | 10910515598 |
| $A_{8}$ | 317386 | 3328346 | 30277316 | 241860238 | 1716127616 | 10917449272 |
| $A_{9}$ | 389378 | 4126847 | 37706909 | 301809609 | 2143390868 | 13641268215 |
| $A_{10}$ | 396261 | 4154583 | 37818587 | 302193983 | 2144685133 | 13645154996 |
| $A_{11}$ | 387957 | 4122042 | 37687342 | 301750856 | 2143195045 | 13640741264 |
| $A_{12}$ | 392933 | 4143886 | 37778146 | 302078650 | 2144316687 | 13644208162 |
| $A_{13}$ | 399267 | 4171384 | 37884523 | 302461562 | 2145574281 | 13648094476 |
| $A_{14}$ | 383245 | 4099953 | 37598806 | 301421467 | 2142091443 | 13637273850 |
| $A_{15}$ | 400355 | 4177159 | 37900610 | 302525641 | 2145738361 | 13648631429 |
| $A_{16}$ | 383252 | 4099836 | 37601654 | 301428966 | 2142137746 | 13637390920 |
| $A_{17}$ | 470161 | 4965306 | 45302969 | 362369722 | 2572751209 | 16371625455 |
| $A_{18}$ | 468572 | 4959648 | 45279512 | 362298144 | 2572507924 | 16370971432 |


| $A_{19}$ | 772214 | 8226800 | 75301905 | 603231076 | 4285454906 | 27278542065 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $A_{20}$ | 777520 | 8249976 | 75397983 | 603574410 | 4286630098 | 27282141053 |
| $A_{21}$ | 795119 | 8325967 | 75699273 | 604655545 | 4290232009 | 27293249472 |
| $A_{22}$ | 786640 | 8293652 | 75571959 | 604229960 | 4288818500 | 27289074727 |
| $A_{23}$ | 771209 | 8221878 | 75288996 | 603179822 | 4285332791 | 27278132184 |
| $A_{24}$ | 776185 | 8243722 | 75379800 | 603507616 | 4286454433 | 27281599082 |
| $A_{25}$ | 793288 | 8321045 | 75678756 | 604604291 | 4290055048 | 27292839591 |
| $A_{26}$ | 788312 | 8299201 | 75587952 | 604276497 | 4288933406 | 27289372693 |
| $A_{27}$ | 782308 | 8270850 | 75482201 | 603880760 | 4287661270 | 27285359307 |
| $A_{28}$ | 783403 | 8276508 | 75501136 | 603952338 | 4287871653 | 27286013330 |
| $A_{29}$ | 1163976 | 12366243 | 113065434 | 905261187 | 6429633640 | 40922345364 |
| $A_{30}$ | 1179979 | 12437655 | 113351061 | 906301111 | 6433116307 | 40933165819 |
| $A_{31}$ | 1166655 | 12376344 | 113102790 | 905381304 | 6430009399 | 40923404250 |
| $A_{32}$ | 1183758 | 12453667 | 113401746 | 906477979 | 6433610014 | 40934644759 |
| $A_{33}$ | 1558766 | 16520230 | 150873340 | 1207459954 | 8574271258 | 54567612412 |
| $A_{34}$ | 1572537 | 16575709 | 151096684 | 1208228835 | 8576859887 | 54575386023 |
| $A_{35}$ | 1559415 | 16520826 | 150876380 | 1207455170 | 8574263945 | 54567500360 |
| $A_{36}$ | 1569361 | 16564502 | 151057964 | 1208110720 | 8576507193 | 54574434034 |


| [ $\lambda$ ] | 4436 | 4337 | 4238 | 4139 | 4040 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $A_{1}$ | 18847859334620010456 | 22413670446997972838 | 25362837531743140240 | 27313824978896887460 | 27996670589987902014 |
| $A_{2}$ * | 18847856749898064896 | 22413667593567098448 | 25362834461344949584 | 27313821778724903160 | 27996667338560535196 |
| $A_{3 \dagger}$ | 18847859257885780852 | 22413670364841246912 | 25362837441865001528 | 27313824887601341100 | 27996670495254082980 |
| $A_{4}$ | 18847856766704295498 | 22413667612733468770 | 25362834481318343144 | 27313821800213507326 | 27996667359714049916 |
| $A_{5}$ | 75391429606157432796 | 89654673254005600786 | 101451340942485322288 | 109255290345061834468 | 111986672634212247242 |
| $A_{6}$ | 75391434741988768948 | 89654678922534504952 | 101451347043334813206 | 109255296702428492698 | 111986679094759845390 |
| $A_{7}$ | 75391429507567646082 | 89654673145529299732 | 101451340825886267878 | 109255290223762071580 | 111986672510921365600 |
| $A_{8}$ | 75391434523543070266 | 89654678688077585068 | 101451346786926363114 | 109255296441514937800 | 111986678824308450416 |
| A | 94239288940765094724 | 112068343700990309476 | 126814178474214859414 | 136569115323944723314 | 139983343224185808696 |
| $A_{10}$ | 94239291508680725702 | 112068346535254721166 | 126814181524639564132 | 136569118502628011070 | 139983346454459568290 |
| $A_{11}$ | 94239288765441089748 | 112068343510357292528 | 126814178267737678352 | 136569115111349424020 | 139983343006161121260 |
| $A_{12}$ | 94239291273428805704 | 112068346281631440992 | 126814181248257730296 | 136569118220225861960 | 139983346162854669044 |
| $A_{13}$ | 94239293852494038614 | 112068349135075557906 | 12 | 136569121420411825260 | 139983349407403993730 |
| $A_{14}$ | 94239 | 11 | 126814175311580690928 | 136569112023975578906 | 139983339875230284004 |
| $A_{15}$ | 94239293986646838254 | 112068349287375751864 | 126814184469883533380 | 136569121590029833798 | 139983349573931817500 |
| $A_{16}$ | 94239286361724523754 | 112068340847572699234 | 126814175410394391170 | 136569112123786737628 | 139983339979665122900 |
| $A_{17}$ | 113087148246821895790 | 134482 | 152177015972758652110 | 163882940268379932380 | 167980013779270147172 |
| $A_{18}$ | 113087148023326870600 | 134482013875198539440 | 15 | 16 | 167980013501415204240 |
| $A_{19}$ | 188478575214092180140 | 224136684459253077978 | 253628353780325450740 | 273138227347920302220 | 279966683093672480502 |
| $A_{20}$ | 188478577753444741688 | 224136687262337963862 | 253628356797550900292 | 273138230492142003960 | 279966686289042830634 |
| $A_{21}$ | 188478585356450552428 | 224136695670330279072 | 253628365831274846342 | 273138239923039836330 | 279966695856119919142 |
| $A_{22}$ | 188478582759971824040 | 224136692804886249198 | 253628362747650794080 | 273138236709894870180 | 279966692590942719194 |
| $A_{23}$ | 188478575127165613502 | 224136684357929991762 | 253628353678132069522 | 273138227235136161648 | 279966682985826244160 |
| $A_{24}$ | 188478577635153329458 | 224136687129204140226 | 253628356658652121466 | 273138230344012599588 | 279966686142519791944 |
| $A_{25}$ | 188478585260075643958 | 224136695569007192856 | 253628365718141263676 | 273138239810255695758 | 279966695736786486544 |
| $A_{26}$ | 188478582752087928002 | 224136692797733044392 | 253628362737621211732 | 273138236701379257818 | 279966692580092938760 |
| $A_{27}$ | 188478580130520633006 | 224136689893311819736 | 253628359623658890590 | 273138233444359426552 | 279966689282605624774 |
| $A_{28}$ | 188478580348346687096 | 224136690134921944426 | 253628359880250742400 | 273138233713788593812 | 279966689553568287440 |
| $A_{29}$ | 282717866380008860880 | 336205030620395062432 | 380442534902040326352 | 409707345433873419442 | 419950029122932529996 |
| $A_{30}$ | 282717873954451546210 | 336205038997207759458 | 380442543902564924858 | 409707354830309573418 | 419950038655106147470 |
| $A_{31}$ | 282717866710071210850 | 336205030982494643660 | 380442535290645133570 | 409707345837575331440 | 419950029533233410340 |
| $A_{32}$ | 282717874334993525350 | 336205039422297696290 | 380442544350134275780 | 409707355303818427610 | 419950039127500104940 |
| $A_{33}$ | 376957157974051675740 | 448273377264126084652 | 507256716527962663540 | 546276464057801193400 | 559933375684600884504 |
| $A_{34}$ | 376957163109882955912 | 448273382932654988818 | 507256722628812154458 | 546276470415167851630 | 559933382145148421080 |
| $A_{35}$ | 376957157879241203778 | 448273377155649783598 | 507256716415739690158 | 546276463936501430512 | 559933375565904857280 |
| $A_{36}$ | 376957162895216627962 | 448273382698198068934 | 507256722376779785394 | 546276470154254296732 | 559933381879291942096 |

*Identifies Chiral Representation
$\dagger$ Identifies Alternating Representation
'’Terms corresponding to partitions [68 12] through [45 35] are not displayed."

Table 6: Two-Colorings of Vertices or q=5-hyperplanes of 5D-hypercube.

| $[\lambda]$ | 320 | 311 | 302 | 293 | 284 | 275 | 266 | 257 | 248 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $A_{1}$ | 1 | 1 | 5 | 10 | 47 | 131 | 472 | 1326 | 3779 |
| $A_{2} *$ | 0 | 0 | 0 | 0 | 2 | 26 | 148 | 653 | 2218 |
| $A_{3} \dagger$ | 0 | 1 | 2 | 10 | 33 | 131 | 421 | 1326 | 3616 |
| $A_{4}$ | 0 | 0 | 0 | 0 | 1 | 26 | 144 | 653 | 2210 |
| $A_{5}$ | 0 | 0 | 0 | 0 | 8 | 120 | 664 | 2870 | 9511 |
| $A_{6}$ | 0 | 0 | 4 | 13 | 82 | 310 | 1281 | 4174 | 12576 |
| $A_{7}$ | 0 | 0 | 0 | 0 | 13 | 120 | 690 | 2870 | 9600 |
| $A_{8}$ | 0 | 0 | 2 | 13 | 67 | 310 | 1215 | 4174 | 12360 |
| $A_{9}$ | 0 | 0 | 0 | 4 | 39 | 228 | 1092 | 4135 | 13189 |
| $A_{10}$ | 0 | 0 | 2 | 11 | 77 | 324 | 1399 | 4789 | 14718 |
| $A_{11}$ | 0 | 0 | 0 | 4 | 35 | 228 | 1073 | 4135 | 13128 |
| $A_{12}$ | 0 | 0 | 1 | 11 | 64 | 324 | 1339 | 4789 | 14514 |
| $A_{13}$ | 0 | 1 | 5 | 23 | 105 | 441 | 1657 | 5500 | 16038 |
| $A_{14}$ | 0 | 0 | 0 | 0 | 17 | 146 | 852 | 3523 | 11868 |
| $A_{15}$ | 0 | 1 | 4 | 23 | 100 | 441 | 1636 | 5500 | 15976 |
| $A_{16}$ | 0 | 0 | 0 | 0 | 15 | 146 | 838 | 3523 | 11818 |
| $A_{17}$ | 0 | 0 | 0 | 3 | 42 | 276 | 1335 | 5068 | 16098 |
| $A_{18}$ | 0 | 0 | 0 | 3 | 45 | 276 | 1342 | 5068 | 16126 |
| $A_{19}$ | 0 | 0 | 0 | 4 | 52 | 374 | 1922 | 7658 | 24982 |
| $A_{20}$ | 0 | 0 | 0 | 3 | 56 | 396 | 2021 | 7938 | 25690 |
| $A_{21}$ | 0 | 1 | 7 | 34 | 176 | 765 | 3034 | 10289 | 30678 |
| $A_{22}$ | 0 | 0 | 0 | 16 | 100 | 586 | 2498 | 9242 | 28298 |
| $A_{23}$ | 0 | 0 | 0 | 4 | 50 | 374 | 1911 | 7658 | 24946 |
| $A_{24}$ | 0 | 0 | 0 | 3 | 58 | 396 | 2032 | 7938 | 25726 |
| $A_{25}$ | 0 | 1 | 5 | 34 | 164 | 765 | 2975 | 10289 | 30490 |
| $A_{26}$ | 0 | 0 | 2 | 16 | 112 | 586 | 2557 | 9242 | 28486 |
| $A_{27}$ | 0 | 0 | 2 | 15 | 106 | 552 | 2447 | 8924 | 27754 |
| $A_{28}$ | 0 | 0 | 1 | 15 | 99 | 552 | 2412 | 8924 | 27642 |
| $A_{29}$ | 0 | 0 | 0 | 7 | 91 | 624 | 3091 | 12073 | 38804 |
| $A_{30}$ | 0 | 0 | 2 | 27 | 171 | 910 | 3875 | 14031 | 42938 |
| $A_{31}$ | 0 | 0 | 0 | 7 | 93 | 624 | 3105 | 12073 | 38854 |
| $A_{32}$ | 0 | 0 | 3 | 27 | 176 | 910 | 3896 | 14031 | 43000 |
| $A_{33}$ | 0 | 0 | 0 | 18 | 148 | 948 | 4398 | 16862 | 53220 |
| $A_{34}$ | 0 | 0 | 4 | 31 | 220 | 1138 | 5015 | 18166 | 56276 |
| $A_{35}$ | 0 | 0 | 1 | 18 | 157 | 948 | 4444 | 16862 | 53368 |
| $A_{36}$ | 0 | 0 | 3 | 31 | 211 | 1138 | 4969 | 18166 | 56128 |
|  |  |  |  |  |  |  |  |  |  |


| [ $\lambda$ ] | 239 | 2210 | 2111 | 2012 | 1913 | 1814 | 1715 | 1616 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A_{1}$ | 9013 | 19963 | 38073 | 65664 | 98804 | 133576 | 158658 | 169112 |
| $A_{2}$ * | 6300 | 14972 | 30730 | 54528 | 84854 | 115772 | 139549 | 148312 |
| $A_{3} \dagger$ | 9013 | 19591 | 38073 | 64985 | 98804 | 132622 | 158658 | 168028 |
| $A_{4}$ | 6300 | 14955 | 30730 | 54502 | 84854 | 115733 | 139549 | 148272 |
| $A_{5}$ | 26577 | 62443 | 127170 | 224457 | 348060 | 473805 | 570371 | 605924 |
| $A_{6}$ | 31935 | 72346 | 141756 | 246631 | 375831 | 509313 | 608445 | 647402 |
| $A_{7}$ | 26577 | 62656 | 127170 | 224857 | 348060 | 474370 | 570371 | 606564 |
| $A_{8}$ | 31935 | 71835 | 141756 | 245691 | 375831 | 507976 | 608445 | 645892 |
| $A_{9}$ | 35457 | 82216 | 165022 | 289831 | 446538 | 607012 | 728648 | 774616 |
| $A_{10}$ | 38137 | 87161 | 172314 | 300905 | 460423 | 624750 | 747682 | 795338 |
| $A_{11}$ | 35457 | 82075 | 165022 | 289569 | 446538 | 606644 | 728648 | 774200 |
| $A_{12}$ | 38137 | 86673 | 172314 | 299996 | 460423 | 623459 | 747682 | 793876 |
| $A_{13}$ | 40948 | 91573 | 179829 | 310939 | 474635 | 640973 | 767103 | 814338 |
| $A_{14}$ | 32877 | 77754 | 157900 | 279619 | 432914 | 590482 | 709920 | 755258 |
| $A_{15}$ | 40948 | 91426 | 179829 | 310676 | 474635 | 640598 | 767103 | 813920 |
| $A_{16}$ | 32877 | 77628 | 157900 | 279385 | 432914 | 590142 | 709920 | 754876 |
| $A_{17}$ | 43199 | 99880 | 200138 | 350931 | 540233 | 733809 | 880619 | 935962 |
| $A_{18}$ | 43199 | 99934 | 200138 | 351041 | 540233 | 733952 | 880619 | 936136 |
| $A_{19}$ | 68334 | 159792 | 322922 | 569118 | 879452 | 1197022 | 1438568 | 1529340 |
| $A_{20}$ | 69776 | 162501 | 327308 | 575734 | 888293 | 1208086 | 1450990 | 1542436 |
| $A_{21}$ | 79085 | 178556 | 352143 | 611502 | 935058 | 1265251 | 1514785 | 1609132 |
| $A_{22}$ | 75134 | 171312 | 341894 | 595902 | 916064 | 1240734 | 1489064 | 1580692 |
| $A_{23}$ | 68334 | 159703 | 322922 | 568954 | 879452 | 1196786 | 1438568 | 1529076 |
| $A_{24}$ | 69776 | 162590 | 327308 | 575898 | 888293 | 1208322 | 1450990 | 1542700 |
| $A_{25}$ | 79085 | 178099 | 352143 | 610672 | 935058 | 1264057 | 1514785 | 1607796 |
| $A_{26}$ | 75134 | 171769 | 341894 | 596732 | 916064 | 1241928 | 1489064 | 1582028 |
| $A_{27}$ | 73594 | 169021 | 337336 | 590062 | 906961 | 1230818 | 1476330 | 1568876 |
| $A_{28}$ | 73594 | 168748 | 337336 | 589565 | 906961 | 1230103 | 1476330 | 1568076 |
| $A_{29}$ | 105233 | 244539 | 492330 | 865233 | 1334831 | 1814626 | 2179638 | 2316518 |
| $A_{30}$ | 113271 | 258295 | 514208 | 896465 | 1376487 | 1865012 | 2236746 | 2375486 |
| $A_{31}$ | 105233 | 244665 | 492330 | 865467 | 1334831 | 1814966 | 2179638 | 2316900 |
| $A_{32}$ | 113271 | 258442 | 514208 | 896728 | 1376487 | 1865387 | 2236746 | 2375904 |
| $A_{33}$ | 143370 | 330976 | 664644 | 1164802 | 1795254 | 2437474 | 2927320 | 3109712 |
| $A_{34}$ | 148728 | 340879 | 679230 | 1186958 | 1823025 | 2472982 | 2965394 | 3151168 |
| $A_{35}$ | 143370 | 331338 | 664644 | 1165463 | 1795254 | 2438425 | 2927320 | 3110776 |
| $A_{36}$ | 148728 | 340517 | 679230 | 1186297 | 1823025 | 2472031 | 2965394 | 3150104 |

Identifies Chiral Representation
$\dagger$ Identifies Alternating Representation

## References

[1] R. Carbó-Dorca, Boolean hypercubes and the structure of vector spaces, J. Math. Sciences and Model. 1(1) (2018), 1-14.
[2] R. Carbó-Dorca, N-dimensional Boolean hypercubes and the goldbach conjecture, J. Math. Chem. 54(6) (2016), 1213-1220. https://doi.org/10.1007/s10910-016-0628-5
[3] R. Carbó-Dorca, DNA, unnatural base pairs and hypercubes, J. Math. Chem. 56(5) (2018), 1353-1356. https://doi.org/10.1007/s10910-018-0866-9
[4] R. Carbó-Dorca, About Erdös discrepancy conjecture, J. Math. Chem. 54(3) (2016), 657-660. https://doi.org/10.1007/s10910-015-0585-4
[5] R. Carbó-Dorca, Boolean hypercubes as time representation holders, J. Math. Chem. 56(5) (2018), 1349-1352. https://doi.org/10.1007/s10910-018-0865-x
[6] A. A. Gowen, C. P. O’Donnell, P. J. Cullen, S. E. J. Bell, Recent applications of chemical imaging to pharmaceutical process monitoring and quality control, European Journal of Pharmaceutics and Biopharmaceutics 69(1) (2008), 10-22.
[7] P. G. Mezey, Similarity analysis in two and three dimensions using lattice animals and ploycubes, J. Math. Chem. 11(1) (1992), 27-45.
[8] A. Frolov, E. Jako, P. G. Mezey, Logical models for molecular shapes and their families, J. Math. Chem. 30(4) (2001), 389-409.
[9] P. G. Mezey, Some dimension problems in molecular databases, J. Math. Chem. 45(1) (2009), 1-6.
[10] P. G. Mezey, Shape similarity measures for molecular bodies: A three-dimensional topological approach in quantitative shape-activity relations, J. Chem. Inf. Comput. Sci. 32(6) (1992), 650-656.
[11] K. Balasubramanian, Combinatorial multinomial generators for colorings of 4D-hypercubes and their applications, J. Math. Chem. 56(9) (2018), 2707-2723.
[12] W. K. Clifford, Mathematical papers, Macmillan and Company, London, 1882.
[13] W. K. Clifford, On the types of compound statement involving four classes, Memoirs of the Literary and Philosophical Society of Manchester 16 (1877), 88-101.
[14] G. Pólya, R. C. Read, Combinatorial enumeration of groups, graphs and chemical compounds, Springer, New York, 1987.
[15] G. Pólya, Kombinatorische anzahlbestimmugen für gruppen, graphen und chemische verbindugen, Acta. Math. 68(1) (1937), 145-254.
[16] J. H. Redfield, The theory of group-reduced distributions, American Journal of Mathematics 49(3) (1927), 433-455.
[17] G. Pólya, Sur les types des propositions composées, The Journal of Symbolic Logic 5(3) (1940), 98-103.
[18] M. A. Harrison, R. G. High, On the cycle index of a product of permutation groups, Journal of Combinatorial Theory 4(3) (1968), 277-299.
[19] D. C. Banks, S. A. Linton, P. K. Stockmeyer, Counting cases in substitope algorithms, IEEE Transactions on Visualization and Computer Graphics 10(4) (2004), 371-384.
[20] D. C. Banks, P. K. Stockmeyer, DeBruijn counting for visualization algorithms, T. Móller, B. Hamann, R. D. Russell (editors), Mathematical foundations of scientific visualization, computer graphics and massive data exploration, Springer, Berlin, 2009, pp. 69-88.
[21] W. Y. C. Chen, Induced cycle structures of the hyperoctahedral group, SIAM J. Discrete Math. 6(3) (1993), 353-362.
[22] G. M. Ziegler, Lectures on polytopes (graduate texts in mathematics; 152), Springer-Verlag, 1994.
[23] P. W. H. Lemmens, Pólya theory of hypercubes, Geometriae Dedicata 64(2) (1997), 145-155.
[24] P. Bhaniramka, R. Wenger, R. Crawfis, Isosurfacing in higher dimensions, Proceedings of IEEE Visualization 2000, (2000), 267-273.
[25] O. Aichholzer, Extremal properties of 0/1-polytopes of dimension 5, G. Kalai, G. M. Ziegler (editors), Polytopes - combinatorics and computation, Birkhäuser, Basel, 2000, pp. 111-130.
[26] R. Perez-Aguila, Enumerating the configurations in the n-dimensional polytopes through Pólya's counting and a concise representation, 3rd International Conference on Electrical and Electronics Engineering, (2006), 1-4.
[27] M. Liu, K. E. Bassler, Finite size effects and symmetry breaking in the evolution of networks of competing Boolean nodes, Journal of Physics A: Mathematical and Theoretical 44(4) (2010), 045101.
[28] R. Perez-Aguila, Towards a new approach for volume datasets based on orthogonal polytopes in four-dimensional color space, Engineering Letters 18(4) (2010), 326-340.
[29] W. Y. C. Chen, P. L. Guo, Equivalence classes of full-dimensional 0/1-polytopes with many vertices, (2011), arXiv:1101.0410v1 [math.CO].
[30] N. G. de Bruijn, Enumeration of tree-shaped molecules, W. T. Tutte (editor), Recent progress in combinatorics: proceedings of the 3rd Waterloo conference on combinatorics, Academic Press, New York, 1969, pp. 59-68.
[31] F. Harary, E. M. Palmer, Graphical enumeration, Academic Press, New York, 1973.
[32] I. G. Macdonald, E. M. Palmer, Symmetric functions and Hall polynomials, Clarendon Press, Oxford, 1979.
[33] A. T. Balaban, Enumeration of isomers, D.Bonchev, D. H. Rouvray (editors), Chemical graph theory: introduction and fundamentals, Abacus Press/Gordon and Breach Science Publishers, New York, 1991, pp. 177-234.
[34] C. J. O. Reichhardt, K. E. Bassler, Canalization and symmetry in Boolean models for genetic regulatory networks, Journal of Physics A: Mathematical and Theoretical 40(16) (2007), 4339.
[35] K. Balasubramanian, Combinatorial enumeration of ragas (scales of integer sequences) of Indian music, Journal of Integer Sequences 5 (2002), Article 02.2.6.
[36] K. Balasubramanian, Applications of combinatorics and graph theory to spectroscopy and quantum chemistry, Chem. Rev. 85(6) (1985), 599-618.
[37] K. Balasubramanian, The symmetry groups of nonrigid molecules as generalized wreath-products and their representations, J. Chem. Phys. 72(1) (1980), 665-677.
[38] K. Balasubramanian, Relativistic double group spinor representations of nonrigid molecules, J. Chem. Phys. 120(12) (2004), 5524-5535.
[39] K. Balasubramanian, Generalization of de Bruijn's extension of Pólya's theorem to all characters, J. Math. Chem. 14(1) (1993), 113-120.
[40] K. Balasubramanian, Generalization of the Harary-Palmer power group theorem to all irreducible representations of object and color groups-color combinatorial group theory, J. Math. Chem. 52(2) (2014), 703-728.
[41] R. Wallace, Spontaneous symmetry breaking in a non-rigid molecule approach to intrinsically disordered proteins, Molecular BioSystems 8(1) (2012), 374-377.
[42] R. Wallace, Tools for the future: hidden symmetries, Computational Psychiatry, Springer, Cham, 2017, pp. 153-165.
[43] M. R. Darafsheh, Y. Farjami, A. R. Ashrafi, Computing the full non-rigid group of tetranitrocubane and octanitrocubane using wreath product, MATCH Commun. Math. Comput. Chem. 54(1) (2005),53-74.
[44] R. Foote, G. Mirchandani, D. Rockmore, Two-dimensional wreath product group-based image processing, Journal of Symbolic Computation 37(2) (2004), 187-207.
[45] K. Balasubramanian, A generalized wreath product method for the enumeration of stereo and position isomers of polysubstituted organic compounds, Theoret. Chim. Acta 51(1) (1979), 37-54.
[46] K. Balasubramanian, Symmetry simplifications of space types in configuration interaction induced by orbital degeneracy, International Journal of Quantum Chemistry 20(6) (1981), 1255-1271.
[47] K. Balasubramanian, Enumeration of the isomers of the gallium arsenide clusters ( $G a_{m} A s_{n}$ ), Chemical Physics Letters 150(1-2) (1988), 71-77.
[48] K. Balasubramanian, Nuclear-spin statistics of $C_{60}, C_{60} H_{60}$ and $C_{60} D_{60}$, Chemical Physics Letters 183(3-4) (1991), 292-296.
[49] K. Balasubramanian, Group theoretical analysis of vibrational modes and rovibronic levels of extended aromatic $C_{48} N_{12}$ azafullerene, Chemical Physics Letters 391(1-3) (2004), 64-68.
[50] K. Balasubramanian, Group theory and nuclear spin statistics of weakly-bound $\left(\mathrm{H}_{2} \mathrm{O}\right)_{n},\left(\mathrm{NH}_{3}\right)_{n},\left(\mathrm{CH}_{4}\right)_{n}$, and $\mathrm{NH}^{+}{ }_{4}\left(\mathrm{NH}_{3}\right)_{n}$, J. Chem. Phys. 95(11) (1991), 8273-8286.
[51] K. Balasubramanian, Generators of the character tables of generalized wreath product groups, Theoretica Chimica Acta 78(1) (1990), 31-43.
[52] X. Liu, K. Balasubramanian, Computer generation of character tables of generalized wreath product groups, Journal of Computational Chemistry 11(5) (1990), 589-602.
[53] K. Balasubramanian, Multinomial combinatorial group representations of the octahedral and cubic symmetries, Journal of Mathematical Chemistry 35(4) (2004), 345-365.
[54] K. Balasubramanian, Enumeration of internal rotation reactions and their reaction graphs, Theoretica Chimica Acta 53(2) (1979), 129-146.
[55] K. Balasubramanian, A method for nuclear-spin statistics in molecular spectroscopy, J. Chem. Phys. 74(12) (1981), 6824-6829.
[56] K. Balasubramanian, Operator and algebraic methods for NMR spectroscopy. II. NMR projection operators and spin functions, J. Chem. Phys. 78(11) (1983), 6369-6376.
[57] K. Balasubramanian, M. Randić, The characteristic polynomials of structures with pending bonds, Theoretica Chimica Acta 61(4) (1982), 307-323.
[58] S. C. Basak, D. Mills, M. M. Mumtaz, K. Balasubramanian, Use of topological indices in predicting aryl hydrocarbon receptor binding potency of dibenzofurans: A hierarchical QSAR approach, Indian Journal of Chemistry-Section A 42A (2003), 1385-1391.
[59] T. Ruen, Free Public Domain Work, available to anyone to use for any purpose at https://commons.wikimedia.org/wiki/File:5-cube_t024.svg
[60] N. G. de Bruijn, Color Patterns that are invariant under permutation of colors, Journal of Combinatorial Theory 2(4) (1967), 418-421.
[61] K. Balasubramanian, Computational multinomial combinatorics for colorings of 5D-hypercubes for all irreducible representations and applications, J. Math. Chem. (2018), https://doi.org/10.1007/s10910-018-0978-2
[62] J. M. Price, M. W. Crofton, Y. T. Lee, Vibrational spectroscopy of the ammoniated ammonium ions $N H_{4}+\left(N H_{3}\right)_{n}(n=1-10)$, Journal of Physical Chemistry 95(6) (1991), 2182-2195.
[63] K. Balasubramanian, Enumeration of stable stereo and position isomers of polysubstitued alcohols, ANNALS of the New York Academy of Sciences 319(1) (1979), 33-36.
[64] K. Balasubramanian, Nonrigid group theory, tunneling splittings, and nuclear spin statistics of water pentamer: $\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}$, The Journal of Physical Chemistry A 108(26) (2004), 5527-5536.
[65] H. S. M. Coxeter, Regular polytopes, Dover Publications, New York, 1973.
[66] J. W. Kennedy, M. Gordon, Graph contraction and a generalized Möbius inversion, Annals of the New York Academy of Sciences 319(1) (1979), 331-348.
[67] V. Krishnamurthy, Combinatorics: theory and applications, Ellis Harwood, New York, 1986.
[68] K. Balasubramanian, Generating functions for the nuclear spin statistics of nonrigid molecules, J. Chem. Phys. 75(9) (1981), 4572-4585.
[69] K. Balasubramanian, Operator and algebraic methods for NMR spectroscopy. I. Generation of NMR spin species, J. Chem. Phys. 78(11) (1983), 6358-6368.

