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1. Introduction and preliminaries

Let D be a division ring with center F. Recently, some skew linear groups
satisfying an identity was investigated [4,10,11,12,13]. For example, in [4] it was
shown that every subnormal subgroup N of GL,, (D) satisfying a generalized group
identity over GL,,(D) is central, i.e. N C F, provided F is infinite. Later, in [12]
this result was extended for almost subnormal subgroups of GL,, (D). Additionally,
L. Makar-Limanov proved that if D is infinite dimensional over its infinite center
F', then any subnormal subgroup of D* satisfying a generalized Laurent polynomial
identity over D is central [11].

Our first aim in this paper is to generalize the above results for almost subnormal
subgroups of GL, (D) satisfying a generalized Laurent polynomial identity in the
case when D is algebraic over its uncountable center F' and [D : F] = co. In fact, we
prove that if NV is an almost subnormal subgroup of GL,, (D) satisfying a generalized
Laurent polynomial identity, then NV is central (Theorem 2.5). Secondly, we focus on
maximal subgroups of GL,, (D) satisfying a Laurent polynomial identity by proving
that if M is a maximal subgroup of GL,, (D) such that D is infinite dimensional over
its infinite center F' and F[M] is algebraic over F, then M is absolutely irreducible
(Theorem 2.6). This result generalizes partially [10, Theorem 4.1]. In the case
when n = 1, we investigate maximal subgroups of an almost subnormal subgroup
of D*. In [13], maximal subgroups of subnormal subgroups of D* was studied and

it was shown that every nilpotent maximal subgroup of a subnormal subgroup of
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D* is abelian [13, Theorem 2.3]. We extend this result for any maximal subgroup
M of a non-central almost subnormal subgroup of D* in the case when D is infinite
dimensional over its infinite center F' and C'p(M)\ F contains an algebraic element
over F'. Namely, we show that if M satisfies a Laurent polynomial identity, then
M is abelian (Theorem 2.10).

Now, we recall some notation we use in this paper. Let D be a division ring with
center I and G be the free group generated by m non-commuting indeterminates
X1,T2,...,Tm. Denote by M, (D) FG the free product of the matrix ring M, (D)
and the group algebra FG over F. An element f(x1,z2, - ,Zm) € My (D) xp FG
is called a generalized Laurent polynomial over M, (D) (see [5] for the definition of
generalized Laurent polynomials over an arbitary algebra). In particular, if f € FG,
then f is called a Laurent polynomial over F.

Assume that f(x1,22,...,%,) is non-zero and N is a subset of the general skew
linear group GL, (D). If f(c1,c,...,¢m) = 0 for every (c1,c¢a, - ,¢m) € N™, then
we say that N satisfies the generalized Laurent polynomial identity (briefly, GLPI)
f = 0. In this case, f = 0 is called a generalized Laurent polynomial identity of
N. Additionally, if f is a Laurent polynomial, then we simply say that f = 0 is
a Laurent polynomial identity of N or N satisfies the Laurent polynomial identity
(shortly, LPI) f = 0.

Let K be a group. Following Hartley [8], H is an almost subnormal subgroup of
K if there is a family of subgroups H = H, < H,_; < --- < Hy = K of K such
that for each 1 < i < r, either H; is normal in H;_1 or H; has finite index in H;_1.
We call such a series of subgroups an almost normal series of H in K. It was noted
in [12] that there is a division ring whose multiplicative group contains some almost

subnormal subgroup that is not subnormal.

2. Results

Let us denote by M, (D)[t1,ts,...,ty] the polynomial ring in the determinates
t1,t2, ..., tm over M, (D). The following lemma can be obtained by applying the
Vandermonde argument [14, Proposition 2.3.26 and 2.3.27].

Lemma 2.1. Let f(t1,t2,...,tm) € Mp(D)[t1,t2, ..., tm]. If there exist infinitely
many elements ay, o, . . .,y in the center F of D such that f(aq, s, ..., ap) =0,

then f is identically zero.

Lemma 2.2. Let D be a division ring with infinite center F and M, (D) be the
matriz ring over D. If a € M,,(D) is algebraic over F, then there exist infinitely

many elements o € F' such that 1 + aa € GL, (D) and
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aa)k—1 V-1l aa)f2 4. .. v (@
(1—}-0[0;)71:—(1_'_ ) + vk ( Z(E}Oj)' ) + + ( ), (1)

where v;(t) € Ft].
Proof. Since a € M,,(D) is algebraic over F', there exists a polynomial

u(x) = 2% + by 4o £ by 4 by € Flx]

-1
such that u(a) = 0. Let ¢t be a central indeterminate. Put hi(z) = u<x " )

br—1

1
Then, hy(z) = t—k(x — 1)k + oy

(z— 1)1 4.y bt—l(x — 1) + by. Hence
thhi(x) = (x — D) +tbp_1(x — )P 4o 570y (2 — 1) + Dy
=aF o ()P o (D) + v(t),
where v;(t) € F[t]. It is clear that h¢(1 4+ ta) = 0, so
(1+ta)* +vp_1 () (1 +ta)* ™1 + - + 0 (£)(1 + ta) + vo(t) = 0.

Since vg(t) has finitely many roots in F', there exist infinitely many elements o € F
such that

(14 aa)* ' +op_ 1 (@)1 +aa) =2+ + vl(a).

-1 _
(1+aad) " = vo(@)

This completes the proof. O
Let F(y1,y2,-..,Ym) be the free algebra in y1,ys, ..., ym over F' and
M (D){y1, Y2, - - - ym) = M (D) *p Fly1,y2, - - -, ym)
be the free product of M,,(D) and F(y1,ya,-..,Ym) over F. Denote by

Mn(D)<y1,y2, N ,ym>[[t1,t2, N ,th

the ring of formal power series in the indeterminates tq,ts, ..., &, with coeflicients
in Mn(D)<y17 Y2, .. aym>

Lemma 2.3. If f(z1,22,...,Zm) is a non-zero element in M, (D) xp FG, then

f(1+t1y171+t2y2371+tmym)

is a non-zero element in My, (D){(y1, Y2, - -, Ym)[[t1, t2, - - -, tm]].
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Proof. If
f(1+t1y1,1+t2y2,,1—|—tmym) = 0

in M, (D){y1, Y2, - - -, Ym)|[t1, ta, - . ., tm]], then

1 1 1
flien 2= 146272 14,2 —0.
t1 to tm

This means that f(z1,22,...,2mn) = 0, a contradiction. The proof is complete. [

Recall that a generalized polynomial identity is a generalized Laurent polynomial

identity in which all powers of indeterminates are non-negative.

Lemma 2.4. If M,,(D) satisfies a generalized polynomial identity, then D is cen-

trally finite, i.e. D is a finite dimensional vector space over F.
Proof. This lemma is followed from [2, Theorem 6.1.9]. O
Now, we are ready to prove the main result of this work.

Theorem 2.5. Let D be an algebraic division ring with uncountable center F and
[D: F] =o00. If N is an almost subnormal subgroup of GL,,(D) satisfying a GLPI

flzi,xa,...,xy) =0, then N is central.

Proof. We first claim that if GL, (D) satisfies a GLPI g(x1,x2,...,Z,) = 0 then
D is centrally finite. In fact, by Lemma 2.3,

g(]. + t1y1, ]. +t2y2, ey 1 + tmym) 7é 0

Moreover,
g(l+tiyn, Ttoys, o Tbtyn) = Y B Dy (V1,255 Ym),
J1,J25-:Jm 20

where pj, j,.. ;.. are generalized polynomials over M,,(D) and

poo..o=g(1,1,...,1) =0.

Thus, there exist ji, j3,. .., jn, > 0such that pj«js._ i (Y1,%2,---,Ym) # 0. Now,
since D is algebraic over its uncountable center F, by [1, Theorem 2.10], M,,(D) is
algebraic over F. Let ¢1,ca,... ¢, be arbitary elements in M, (D), by Lemma 2.2,
we have 1+ ajeq,1 + ascs, ..., 1 + amenm € GL, (D), for infinitely many elements

a1,Qa,...,0, in F. Hence

g(]- +alcla1 +042027“'7]- +amcm) = 07
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for infinitely many elements oy, as,...,q, in F. Due to Equation (1) in Lemma
h(ag,an, ..., «

2.2, we can write g(1 + ayc1, 1+ azca, ..., 1+ amen) = (a1, 02, m), where
k(al, a9, ... ,am)

h(tl,tg, - ,tm) S Mn(D)[tl,tg, - ,tm],k/’(tl,tg, - ,tm) € F[t1,t2, - ,tm}.

Since g(1 + ajc1,1 + agea, ..., 1 + apmey,) = 0, for infinitely many elements
a1, Q9,. .., 0, in F| it follows that h(ag, as,...,a,) = 0 for infinitely many ele-
ments aq, o, ..., @y, in F. By Lemma 2.1, h(tq,ta, ..., ty) is identically zero, so

is g(1 +tic1, 1+ taca, ..., 1+ tpmem). Observe that

g(l+ticr, I+taco, . Ibtmen) = Y 5ty (e, Cm),
J1:425--2Jm >0
S0 Pjrjs..jx (€15 €2, s cm) = 0. Thus, pj=js i (Y1,Y2,- -, Ym) is a generalized poly-
nomial identity of M,, (D). By Lemma 2.4, D is centrally finite. The claim is proved.
Now suppose that N is non-central. We consider the following two cases.
Case 1. In the case when n > 2, by [12, Theorem 3.3], N is a normal subgroup
of GL, (D). Fix an element k € N \ F, and put

91, Ym) = Flykyr ' ymbynt).

Then, since aka™! € N for any a € GL, (D), g = 0 is a GLPI of GL, (D). Hence,
D is centrally finite, a contradiction.

Case 2. In the case when n =1, suppose N =N, < N,_1 <---< Ny =D*is
an almost normal series in D*. We claim that if IV satisfies a GLPI, then so does D*.
It suffices to prove that N,._; satisfies a GLPI. In fact, if V,. is normal in N,_1, then
by the same argument in Case 1 we get the claim. If [N,_; : N,] = £ < oo, then
af',af,... a? € N, for any aj,as,...,am € N,_1. Hence, f(af',a¥,...,a%) = 0.
Thus g(z1, 2o, ..., 2m) = f(zf,25,...,2%) is a GLPI of N,_;. The claim is proved.
Therefore, D is centrally finite, a contradiction.

Thus, the proof is now complete. ([l
Next, we prove some results for maximal subgroups in GL, (D).

Theorem 2.6. Let D be a division ring with infinite center F and [D : F] = oco.
Assume that M is a mazimal subgroup of GLy, (D) such that F[M] is algebraic over
F, where F[M] is the F-subalgebra of M,,(D) generated by M over F. If M satisfies
an LPI, then M 1is absolutely irreducible.

Proof. By the maximality of M, either F[M]* = M or F[M]* = GL,(D). We
show that the first case can not occur. Indeed, by hypothesis M satisfies an LPI,
so F[M]* satisfies an LPI. Using the technique in the first part of the proof of
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Theorem 2.5, we can prove that F[M] satisfies a polynomial identity. Therefore,
by [10, Theorem 3.5], D is centrally finite, a contradiction.

Thus, we conclude F[M]* = GL,(D) and F[M] = M,,(D). Hence M is abso-
lutely irreducible. O

Corollary 2.7. Let D be a division ring with infinite center F. Assume that M is
a mazimal subgroup of GLy, (D) such that F[M] is algebraic over F. If M satisfies
a group identity, then D is centrally finite or M is absolutely irreducible.

Lemma 2.8. Let G be a group and N be an almost subnormal subgroup of G. For

any subgroup H of G, the subgroup H N N is an almost subnormal subgroup of H.
Proof. The proof is elementary. O

Lemma 2.9. Let D be a division ring with infinite center F'. If D* contains a
non-central almost subnormal subgroup which satisfies an LP1 f = 0, then D is

centrally finite.
Proof. This lemma is from [7, Theorem 1.1]. |

Theorem 2.10. Let D be a division ring with infinite center F' and [D : F] = oco.
Let N be a non-central almost subnormal subgroup of D*. Suppose that M is a

mazimal subgroup of N such that Cp(M)\ F contains an algebraic element over
F. If M satisfies an LPI, then M is abelian.

Proof. This proof is a slight modification of the one of [9, Theorem 2]. Suppose
that « € Cp(M) \ F is algebraic over F. Put L := F(«) and B := Cp(L). Then,
[L: F] < oco. By the Double Centralizer Theorem, B is a division ring with center
L. Since a € Cp(M), we have M < B*. Therefore, M < N N B* < N. By the
maximality of M in N, we have NN B* = N or N N B* = M. The first case can
not occur. To prove this, we claim that N ¢ B*. Suppose that N C B*. Then,
F(N) C B. Since N normalizes F'(N), by [3, Theorem 1], we have F(N) = D and
consequently B = D. This contradicts the fact that « is not in F'. Hence N € B*
and NNB* = M. By Lemma 2.8, we have B*N N is an almost subnormal subgroup
of B*. Thus, M is an almost subnormal subgroup of B* = Cp(F(«a))*.

Now, suppose that M is non-abelian. By [12, Corollary 2.3], M is a non-central
almost subnormal subgroup of B*. Since M satisfies an LPI, by Lemma 2.9, we
have [B : L] < co. Recall that [L: F] =r < 00, s0 [B : F] < co. By part (ii) of [6,

Centralizer Theorem, p. 42], we have

D®p L= M, (B®;, Cp(B)) =M, (B&,Cp(Cp(L)) =M. (B®yL L) = M,(B).
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Since M,.(B) is a finite dimensional vector space over F', we conclude that [D : F] <

o0, a contradiction. The proof is complete. (I
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