

¹⁶³Dy, ¹⁷⁷Hf, ¹⁸¹Ta ve ²⁰⁷Pb Hedef Elementlerin Proton Bombardımanı ile Oluşan İkincil Parçacıkların Enerji Spektrumu

İskender DEMİRKOL^{*1}, Tahsin DAĞDELEN¹

¹ Bingöl Üniversitesi, Fen Edebiyat Fakültesi, Fizik Bölümü, Bingöl, Türkiye

*Sorumlu yazar: idemirkol@bingol.edu.tr ORCID No: 0000-0002-8065-6717

(Alınış: 26.03.2018, Kabul: 13.12.2018, Online Yayınlanma: 31.12.2018)

Anahtar Kelimeler Nükleer reaksiyon, Enerji spektrumu, Nükleer modeller, Hızlandırıcı kaynaklı sistem

er Özet: Bu çalışmada ¹⁶³Dy, ¹⁷⁷Hf, ¹⁸¹Ta ve ²⁰⁷Pb hedef elementlerin farklı enerjilerde proton bombardımanı ile oluşan ikincil parçacıkların enerji spektrumlarının (mb/MeV) tesir kesiti hesaplamaları farklı modellerle yapılmıştır. Hesaplamalarda geometri bağımlı hibrid model ve cascade exciton modeli kapsayan CEM03 ve ALICE/ASH bilgisayar programları kullanılmıştır. Deneysel tesir kesitleri literatürden ve Uluslararası Atom Enerjisi Kurumunun ENDF/B kütüphanelerinden temin edilmiştir. Deneysel veriler ile teorik hesaplamalar kıyaslanarak gerekli sonuçlar çıkarılmıştır.

The Energy Spectra of The Secondary Particles Formed by The Proton Bombardment in Different Energies of ¹⁶³Dy, ¹⁷⁷Hf, ¹⁸¹Ta and ²⁰⁷Pb Target Elements

Keywords

Nuclear reaction, Energy spectrum, Nuclear models, Accelerator driven system **Abstract:** In this study, the energy spectra cross sections of the secondary particles formed by the proton bombardment of ¹⁶³Dy, ¹⁷⁷Hf, ¹⁸¹Ta and ²⁰⁷Pb target elements in different energies were calculated by different models. In the calculations, CEM03 and ALICE/ASH computer programs including geometry dependent hybrid model and cascade exciton model were used. Experimental cross sections were obtained from the literature and from the ENDF / B libraries of the International Atomic Energy Agency. The theoretical calculations were compared with experimental data and the necessary results were obtained.

1. GİRİŞ

Deneysel sonuçlardan elde edilen veriler temel çekirdek fiziğinin anlaşılması için büyük bir önem arz etmektedir. Farklı enerjilerde tesir kesitlerinin ve spektral yayınlanmanın incelenmesi bir gereklilik arz etmektedir, çünkü yüksek enerjilerde nükleer reaksiyonların enerji bağımlılığı detaylı olarak bilinmemektedir [1-2]. Hızlandırılan proton demeti ağır elementlerden oluşan hedefe çarptığı zaman spallasyon sonucunda çok sayıda nötronlar ve yüklü parçacıklar oluşur [3-5]. Yüksek enerjili parçacıkla çekirdeğin etkileşimi sonucunda hedeften bazı nükleonlar ve hafif çekirdekler çıkar, çıkan bu nükleonlar da diğer çekirdeklerle etkileşime girerler.

Bu iki süreçte hedef çekirdeğin parçalanma ya da buharlaşması ile nötronlar üretilir, üretilen nötronlar da fisyon oluşturması için reaktörün korunda kullanılır. Hızlandırıcı kaynaklı sistemde (ADS) temel düşünce proton başına çıkan nötronların enerjisinin bilinmesi ve maksimum sayıda nötron elde edilmesidir [6-9]. Fisyon ve füzyon enerji reaktörlerinin tasarımında önemli faktörlerden biri de nötronlarla oluşturulan reaksiyon tesir kesitleridir. Bu tür reaksiyonlarda materyallerin yapısal dayanıklılığı söz konusudur. Böyle problemlerin öneminin anlaşılması için tesir kesitlerinin ve yayınlanma spektrumlarının teorik olarak hesaplamalarının ve deneysel ölçümlerinin yapılması önemlidir.

Bu çalışmada; hedef element olarak seçilen ¹⁶³Dy, ¹⁷⁷Hf, ¹⁸¹Ta ve ²⁰⁷Pb elementlerin protonlarla bombardıman edilmesi ile elde edilen parçacıkların enerji spektrumları ve tesir kesitleri hesaplanmıştır. Mevcut çalışmada elde edilen veriler, çeşitli tesir kesiti hesaplamalarını yapmak için kullanılan programların geliştirilmesine ve yapılacak bazı deneysel çalışmalara katkı sağlaması bakımından önem arzetmektedir.

2. MATERYAL VE METOT

Bu makalede 163Dy, 177Hf, 181Ta ve 207Pb hedef elementleri kullanılarak, farklı enerjilerde proton bombardımanı ile oluşan ikincil parçacıkların (nötron ve protonlar) enerji spektrumları (mb/MeV) farklı modeller kullanılarak hesaplanmıştır.

2.1. Nükleer Modeller

Nükleer deneyler yardımı ile çeşitli enerji aralıklarına sahip nötronlar elde edilebilmektedir. Örneğin, proton ile herhangi bir element bombardıman edildikten sonra olusan nötronun enerji spektrumları nükleer denevler ile belirlenebilmektedir. Nötron oluşum tesir kesitleri ve parçacıkların enerji spektrumları Geometri Bağımlı Hibrid Model ve Cascade Exciton Model gibi çeşitli modellerin kullanımı ile oluşturulan kapsamlı programlarla hesaplanabilmektedir. Bu yöntemle deneysel veriye ihtiyaç duyulmadan sonuçlar elde edilebildiği için yapılan maddi harcamalar azaltılabilecektir.

Bu modeller henüz deneyi yapılmamış yüksek enerjili mermilerin bombardımanı sonrası oluşacak yeni parçacıkların tesir kesiti hesaplamalarını mümkün kılmaktadır. Bu nedenle modellerin kullanımını cazip hale gelmektedir. Bu programlar yüksek bir matematik işlemine sahip olan dinamiksel Liouville ve istatistiksel metodu kullanırlar ve uyarılmış hale gelen bir nükleer sistemin hamiltonyeni olarak ifade edilirler.

$$H = H_0 + V \tag{2.1}$$

Burada; H_0 kararlı durumlara aittir. Kuantum mekaniğin zamana bağımlı perturbe teorisinin çözümü ile birinci mertebeden V bulunarak durum yoğunlukları hesabı yapılmaktadır. Bu sistemin çözümü denge öncesi modellere bir alt yapı oluşturmaktadır [10-12].

2.1.1. Geometri bağımlı hibrid model

Denge öncesi olayları inceleyen ve nükleer oluşumun içerisinde çekirdek-çekirdek saçılımının belirlenmesi ile işleyen exciton denkleminin bir versiyonu olan bu modeldeki matematiksel ifadeler;

$$\frac{d\sigma \upsilon(\varepsilon)}{d\varepsilon} = \sigma_{\rm R} P_{\upsilon}(\varepsilon) \tag{2.2}$$

$$P_{\upsilon}(\varepsilon)d\varepsilon = \sum_{\substack{n=n^{0} \\ dnz + 2}}^{n} \sum_{n=n^{0}} \left[n\chi_{\upsilon} N_{n}(\varepsilon.U) / N_{n}(E) \right] g \ d\varepsilon [\lambda_{c}(\varepsilon) / \lambda_{c}(\varepsilon) + \lambda_{+}(\varepsilon)] D_{n}$$
(2.3)

denklemleri ile verilmiştir [13]. Denklem 2.2 ve 2.3'de kullanılan nyv; n exciton durumundaki v tipli parçacıkların sayısını, σR ; reaksiyon tesir kesitini, $Pv(\varepsilon)d\varepsilon$; energisi ε ile ε + d ε arasında sürekli bölgeve yayınlanan v tipli parçacıkların sayısını gösterir. Ayrıca; λ +(ϵ) bir parçacığın (ϵ) kanal enerjisiyle sürekli bölgeye yayınlanma hızını gösterirken, g; tek -parçacık düzey yoğunluğunu, λ +(ϵ) ise; ϵ enerjili bir parçacığın çekirdek içi geçiş hızını, Dn; bir n-exciton zincirinde başlangıç popülasyon kesitini göstermektedir. Denklem 2.3' deki köseli parantezdeki nicelik; enerjisi ε ile ε + d ε arasında olan parçacık sayısını, ikinci parantezdeki ifade reaksiyon bölgesine parcacıkların gecis hızının toplam parcacık gecis hızına oranını verir [13]. Tesir kesitine ek olarak parçacık-deşik durum yoğunluğunun önemi ve parcacık-cekirdek olusumunun nükleer vüzeve bağımlılığı sürekli bölgedeki enerjilerde az da olsa bir farklılık oluşmaktadır.

2.1.2. Cascade exciton model

Cok yüksek enerjili olmayan mermi (parcacık) ile hedef (cekirdek) arasında gerçekleşen reaksiyonların dengeöncesi hesaplamalarını yapmakta kullanılan başka bir hesaplama vöntemi de Cascade Exciton Modeli (CEM) dir. Hedef çekirdeğe gönderilen mermi (parçacık) hedef çekirdeğin exciton işlemini oluşturduğu için oluşan nükleer sistem istatistiksel dengeye ulaşana kadar parçacık yayınlamaya başlar. Bu yayınlanma oluşmuş mekanizması da bileşik çekirdeğin bozunmalarına ve direkt etkileşmelere göre incelenir. Nükleer yapının anlaşılması ve parçacık yayınlanma mekanizmasının açıklanması denge ve denge-öncesi modellerin kullanılması ile mümkün olabilir [14-15]. Nükleer reaksiyonların birçok özellikleri, yüksek enerji ve nükleer seviyelerinde gerçekleşen ard arda geçiş işlemi dikkate alınarak incelenebilir. Reaksiyonlar, Cascade Model incelemesinde üç aşamada meydana meydana gelirler. Deneysel değerlere katkıda bulunan bu aşamalar sırasıyla nükleer seviyelerdeki geçiş, dengeöncesi ve denge durumu aşamalarıdır.

Parçacık spektrumu için;

 $\sigma(p)dp = \sigma_{in} \{ N_{cas}(p) + N_{prq}(p) + N_{eq}(p) \} dp$ (2.4)

ifadesi kullanılmaktadır ve bu denklemdeki inelastik saçılma tesir kesiti, ardı ardına geçiş model için de hesaplanabilmektedir. Ancak, bu denklem optiksel model hesaplamalarından bağımsız olduğu için model hesaplamalarında bir normalize katsayısına ve ek veriye ihtiyaç duyulmaz. Exciton Modeli uyarılmış bir çekirdeği; hh, ph ve pp etkileşmeleri hesaba katan yarıparçacık gazı gibi değerlendirken, Cascade Modeli reaksiyon geometrisini hesaba katar ve parçacıklar arasındaki etkileşmeleri ihmal eder.

Mermi parçacığın kinetik enerjisi nükleonun bağlanma enerjisinden fazla olduğu durumlarda Cascade Modeli aşamaları oluşmaktadır. Bu iki modelin (Cascade ve Excition) birleştirilmesi geniş bir enerji bölgesinde yayılan parçacıkların nükleer reaksiyon özelliklerinin tanımlanması bakımından önem arz etmektedir. Bu model ile yapılan hesaplamalarda verilen enerjiler arasında dalgalanmalar gözlenmekte [16-17], çünkü bu modelde hızlandırılan mermi parçacıklar ve çekirdek iki farklı tür olarak düşünümekte ve parçacıklar arasındaki çarpışmalar ihmal edilmektedir.

3. BULGULAR VE TARTIŞMA

3.1. p + ¹⁶³Dy Reaksiyonu

¹⁶³Dy hedef elementin 100 MeV enerjili proton ile bombardımanı sonucunda oluşan ve ikincil parçacık olarak bilinen nötronların ve protonların enerji spektrumları ALICE/ASH ve CEM03 programları ile hesaplanmıştır. Elde edilen datalar Tablo 3.1'de verilmiş ve Şekil 3.1-2'de grafiksel olarak gösterilmiştir.

Tablo 3.1. A	LICE/ASH ve	CEM03 program	arı kullanarak 1	100 MeV	enerjili proton	ile ¹⁶³ I	Dy elementinin	bombardımanı	ile oluşan	nötronların v	e
protonların e	nerji spektrumu										

	AL	ICE/ASH Prog	amı	CEM03 Programi					
E_p									
(mermi enerjisi)	Çıkan n ve p enerjisi (MeV)	n Tesir kesiti (mb/MeV)	p Tesir kesiti (mb/MeV)	Çıkan n ve p enerjisi (MeV)	n Tesir kesiti (mb/MeV)	p Tesir kesiti (mb/MeV)			
	5,5	260,40	0,87	0-10	634,80	6,00			
	15,5	26,30	22,94	10-20	31,98	20,30			
	25,5	13,36	17,80	20-30	17,90	17,29			
	35,5	10,36	15,78	30-40	12,06	14,17			
100	45,5	8,89	14,58	40-50	8,55	11,35			
MeV	55,5	8,12	13,85	50-60	6,59	9,59			
	65,5	7,78	13,55	60-70	5,21	8,29			
	75,5	7,39	13,12	70-80	4,05	7,09			
	85,5	6,04	10,89	80-90	3,43	6,24			
	95,5	2,38	4,96	90-100	2,74	3,50			

. 120

Şekil 3.1. ¹⁶³Dy elementinin 100 MeV enerjili protonların bombardımanı ile oluşan nötronların enerji spektrumu

3.2. p + ¹⁷⁷Hf Reaksiyonu

¹⁷⁷Hf hedef elementin 100 MeV enerjili proton ile bombardımanı sonucunda oluşan ve ikincil parçacık olarak bilinen nötronların ve protonların enerji spektrumları ALICE/ASH ve CEM03 programları ile

Şekil 3.2. ¹⁶³Dy elementinin 100 MeV enerjili protonların bombardımanı ile oluşan protonların enerji spektrumu

hesaplanmıştır. Elde edilen datalar Tablol 3.2'de verilmiş ve Şekil 3.3-4'de grafiksel olarak gösterilmiştir.

Tablo 3.2. ALICE/ASH ve CEM03 programları kullanarak 100 MeV enerjili proton ile ¹⁷⁷Hf elementinin bombardımanı sonucunda oluşan nötronların ve protonların enerji spektrumu

En	AI	LICE/ASH Prog	ramı	CEM03 Programi			
(mermi	Çıkan n ve p	n	р	Çıkan n ve p	n	р	
enerjisi)	(MeV)	Tesir kesiti (mb/MeV)	Tesir kesiti (mb/MeV)	(MeV)	(mb/MeV)	(mb/MeV)	
	5,5	267,4	0,8428	0-10	670	6,58	
	15,5	26,42	24,83	10-20	33,06	22,58	
	25,5	13,82	19,17	20-30	18,80	19,31	
	35,5	10,75	16,85	30-40	12,32	15,28	
100	45,5	9,228	15,45	40-50	9,13	12,61	
MeV	55,5	8,44	14,64	50-60	6,66	9,79	
	65,5	8,107	14,31	60-70	5,29	8,54	
	75,5	7,614	13,83	70-80	4,09	7,34	
	85,5	6,03	11,49	80-90	3,48	6,32	
	95,5	1,707	5,29	90-100	2,45	3,47	

Çıkan nötron ve protonların enerji spektrumu (mb/MeV)

Şekil 3.3. ¹⁷⁷Hfelementinin 100 MeV enerjili protonların bombardımanı ile oluşan nötronların enerji spektrumu

3.3. p+¹⁸¹Ta Reaksiyonu

¹⁸¹Ta hedef elementin 100 MeV enerjili proton ile bombardımanı sonucunda oluşan ve ikincil parçacık olarak bilinen nötronların ve protonların enerji spektrumları ALICE/ASH ve CEM03 programları ile hesaplanmıştır. Elde edilen datalar Tablol 3.3'de verilmiş ve Şekil 3.5-6'da grafiksel olarak gösterilmiştir. Tablo 3.3. ALICE/ASH ve CEM03 programları kullanarak 100 MeV enerjili proton ile ¹⁸¹Ta elementinin bombardımanı sonucunda oluşan nötronların ve protonların enerji spektrumu

Çıkan nötron ve protonların enerji spektrumu (mb/MeV)

		ALICE/ASH Program	nı		CEM03 Programi			
E_p	n p							
(mermi enerjisi)	Çikan n ve p enerjisi (MeV)	Tesir kesiti (mb/MeV)	Tesir kesiti (mb/MeV)	Çıkan n ve p enerjisi (MeV)	Tesir kesiti (mb/MeV)	Tesir kesiti (mb/MeV)		
	5,5	249,5	1,10	0-10	719,2	5,43		
	15,5	25,66	25,00	10-20	34,74	21,9		
	25,5	13,21	18,29	20-30	19,72	18,3		
	35,5	10,31	15,98	30-40	13,01	14,8		
100	45,5	8,86	14,68	40-50	9,31	12,03		
MeV	55,5	8,10	13,92	50-60	6,80	9,93		
	65,5	7,78	13,62	60-70	5,17	8,35		
	75,5	7,30	13,09	70-80	4,21	7,42		
	85,5	5,76	10,67	80-90	3,48	6,03		
	95,5	1,51	4,07	90-100	2,79	3,61		

Şekil 3.5. ¹⁸¹Ta elementinin 100 MeV enerjili protonların bombardımanı ile oluşan nötronların enerji spektrumu

Ayrıca CEM03 programı kullanarak ¹⁸¹Ta elementinin farklı proton enerjileri ile bombardıman sonucunda ortaya çıkan ikincil reaksiyon nötron verimi tesir kesiti (mb) Tablo 3.4 ve Şekil.3.7'de verilmiştir.

Şekil 3.6. ¹⁸¹Ta elementinin 100 MeV enerjili protonların bombardımanı ile oluşan protonların enerji spektrumu

Tablo 3.4. CEM03 programında farklı enerjilerde p+¹⁸¹Ta bombardıman sonucunda ortaya çıkan ikincil reaksiyon nötron verimi tesir kesiti (mb)

		Proton (mermi) enerjisi (MeV)								
Reaksiyo	Reaksiyon türü		200 (MeV)	300 (MeV)	400 (MeV)	500 (MeV)				
			Tesir kesiti (mb)							
	(n,n)	24,77	12,37	9,70	7,09	7,00				
	(n,2n)	40,28	22,45	16,56	13,35	11,70				
CEM03	(n,3n)	38,41	18,84	13,50	10,84	9,03				
	(n,4n)	54,50	23,43	14,89	12,40	9,95				
	(n,5n)	59,33	20,82	14,19	10,80	10,08				
Deneysel	(n,5n)	62,00	12,00	7,50	-	7,30				

Şekil 3.8. ²⁰⁷Pb elementinin farklı enerjili protonlarla bombardımanı sonucunda oluşan fisyon tesir kesiti, deneysel değerler kaynak [19-20]' den alınmıştır.

3.4. p+²⁰⁷Pb Reaksiyonu

²⁰⁷Pb hedef elementin 25 ve 100 MeV enerjili proton ile bombardımanı sonucunda oluşan ve ikincil parçacık olarak bilinen nötronların ve protonların enerji spektrumları ALICE/ASH ve CEM03 programları ile hesaplanmıştır. Elde edilen datalar Tablo 3.6'da verilmiş ve Şekil 3.9-10'da grafiksel olarak gösterilmiştir. Ayrıca CEM03 programı kullanarak farklı enerjilerde protonlar ile ²⁰⁷Pb elementinin bombardımı sonucu oluşan fisyon tesir kesiti Tablo 3.5'de verilmiş ve Şekil 3.8'de grafiksel olarak çizilmiştir.

Tablo 3.5. CEM03	programi	kullanaral	c farklı	enerjilerde	e protonlar	ile
207Pb elementinin bo	mbardımı	sonucu o	uşan fis	syon tesir k	esiti (mb)	

E _p (MeV)	100	200	300	400	500
CEM03 - Fisyon tesir kesiti (mb)	43,06	89,88	111,07	120,91	125,85
Deneysel fisyon tesir kesiti (mb)	45,80	85,50	100,00	134,00	135,00

Tablo 3.6	. ALICE/ASH v	e CEM03 programları	kullanarak 25	ve 100 MeV	⁷ enerjili proton	ile ²⁰⁷ Pb elementinin	bombardımanı	sonucunda	oluşan
nötronlarır	n ve protonların e	enerji spektrumu							

Çıkan nötron ve protonların enerji spektrumu (mb/MeV)											
Ep	ALI	CE/ASH Prog	ramı	С	EM03 Program	nı	Deneysel				
(mermi	Çıkan n ve	n	р	Çıkan n ve	n	Р	n				
enerjisi)	p enerjisi, (MeV)	Tesir kesiti (mb/MeV)	Tesir kesiti (mb/MeV)	p enerjisi, (MeV)	Tesir kesiti (mb/MeV)	Tesir kesiti (mb/MeV)	Tesir kesiti (mb/MeV)				
	5,5	68,03	0,04	0-10	0,09	1,26	72,13				
25	10,5	15,65	5,38	10-20	0,002	13,50	13,14				
MeV	15,5	6,64	9,05	20-30	0,0001	2,63	6,61				
	20,5	1,28	5,32	-	-	-	1,06				
	5,5	303,80	0,13	0-10	762,70	4,15	-				
	15,5	22,99	20,31	10-20	40,78	25,90	-				
	25,5	14,96	21,37	20-30	22,40	22,62	-				
	35,5	11,75	18,95	30-40	14,70	17,76	-				
	45,5	10,08	17,19	40-50	10,22	13,82	-				
100	55,5	9,24	16,19	50-60	7,45	11,13	-				
MeV	65,5	8,90	15,8	60-70	5,73	8,94	-				
	75,5	8,21	15,24	70-80	4,55	7,92	-				
	85,5	6,30	12,63	80-90	3,65	6,54	-				
	95,5	0,85	5,87	90-100	2,35	3,88	-				

Şekil 3.9. ²⁰⁷Pb elementinin 25 MeV enerjili protonların bombardımanı ile oluşan nötronların enerji spektrumu, deneysel değerler kaynak [21]'den alınmıştır

Şekil 3.10. ²⁰⁷Pb elementinin 100 MeV enerjili protonların bombardımanı ile oluşan protonların enerji spektrumu

4. SONUÇ VE ÖNERİLER

Bu çalışmada mermi (parçacık) olarak 25-500 MeV protonlarla enerii aralıklarında hızlandırılmış bombardıman edilerek oluşan ikincil parçacıkların enerji spektrum hesaplamaları, fisyon tesir kesiti ve nötron verim tesir kesitleri CEM03 ve ALICE/ASH bilgisayar programlarıyla yapılmıştır. 163Dy, 177Hf, 181Ta ve 207Pb elementleri hedef madde olarak kullanılmıştır. Elde edilen sonuçlar litaratürdeki deney sonuçları ile karşılaştırılmış ve iki sonuç arasında iyi bir uyum gözlemlenmiştir. Elde edilen veriler; tesir kesiti hesaplamalarına, radyoizotop üretim programları için gerekli veri tabanlarının güçlendirilmesine, üretim teknolojisinin geliştirilmesine ve bu alanda yapılacak birçok deneysel çalışmalara katkıda bulunacağı öngörülmektedir.

KAYNAKLAR

- [1] Demirkol İ., Analysis of Isotopic Yields of Primary Residues in 1 A GeV 208Pb+p Reactions, Chinese Journal of Physics.2006;44(6)-418-429.
- [2] Demirkol İ., Tel E., Arasoglu A., Özmen A., Sarer B., Acir A., Alkan M., The Neutron Production Cross Sections for Pb, Bi and Au Targets and Neutron oMultiplicity for Nuclear Spallation Reaction Induced by 20- to 1600-MeV Protons, Nuclear Science and Engineering. 2004;147(1):83-91.
- [3] Enqvist T., Wlazlo W., Armbruster P., Benlliure J., Bernas M., Boudard A., Czajkowski S., Legrain R., Leray S., Mustapha B., Pravikoff M., Rejmund F., Schmidt K.H., Stephan C., Taieb J., Tassan-Got L., VolantC., Isotopic yields and kinetic energies of primary residues in 1 A GeV Pb-208+p reactions, Nuclear Physics A. 2001;686: 481-524.
- [4] Kaplan A., Aydın A., Tel E.and Sarer B., Equilibrium and Pre-Equilibrium Emissions In Proton - Induced Reactions on 203. 205Tl, Pramana-Journal of Physics. 2009;72 (2): 343-353.
- [5] Taieb J., Schmidt K.-H., Tassan-Got L., Armbruster P., Benlliure J., Bernas M., Boudard A., Casarejos E., Czajkowski S., Enqvist T., Legrain R., Leray S., Mustapha B., Pravikoff M., Rejmund F., Stéphan C., Volant C., Wlazlo W., Measurement Of A Complete Set Of Nuclides. Cross-Sections and Kinetic Energies In Spallation Of 238u 1a Gev With Protons, Nuclear Physics A. 2003;724: 413-430.
- [6] Rubbia C., et al., Fast Neutron Incineration in the Energy Amplifier as Alterantive to Geologic Storage: The Case of Spain. Eurupan Organization For Nuclear Research. 1997;CERN/LHC/97-01 (EET).
- [7] Rubbia C. and Rubio J.A., A Tentative Programme towards a Full Scale Energy Amplifier.1996;CERN/LHC/96-11, Geneva, 36 p..
- [8] Gudowski W., Accelerator-driven Transmutation Projects, The Importance of Nuclear Physics Research for Waste Transmutation, Nuclear Physics A. 1999;654: 436c-457c.

- [9] Rubbia C., et al. Conceptual design of a fastNeutron operated high power energy amplifier, 1995;CERN/AT/95-44(ET),.
- [10] Hüfner J. and Chiang C. C., Nucl. Phys A. 1980;349, 466.
- [11] Bogolubov NN., (Moskov: Gostekhizdat), in Russian. 1946.
- [12] Vaishnene L.A., Vovchenko V.G., Gavrikov A.A.Kotov Yu.A., Murzin V.I., Poliakov V.V., Tverskoy M.G., Fedorov O.Ya., Chestnov Yu.A., Shvedchikov A.V., Shchetkovskii A.I., Isotopic effect in the energy dependence of the total fission cross section of lead and Bi-209 nuclei for protons with energies up to 1 GeV, Izv, Rossiiskoi Akademii Nauk, Ser.Fiz. 2010;74: 529.
- [13] Blannand M., Vonach H.K., Global Test of Modified Precompound Decay Models Physical Review C. 1983;28(4):1475-1492.
- [14] Blann M., Ann. Rev. Nucl. Sci. 1975;25: 123.
- [15] Aydın EG., Tel E., Kaplan A., Aydın A., Equilibrium and pre-equilibrium calculations of neutron productionin medium–heavy targets irradiated by protons up to 100 MeV, Annals of Nuclear Energy.2008; 35:2306–231
- [16] Seidel K., Seeliger D., Reif R. and Toneev V. D., Physics of Elementary Particles and Atomic Nuclei. 1976;499:517.
- [17] Barashenkov V. S and V. Toneev D., (Atomizdat. in Russian 1972), RSIC CODE PACKAGE PSR-357.
- [18] Zhuikov B.L., Mebel M.V., Kokhanyunk V.M., Iljinov A.S., Zyuzin A.Y., Vincent S., Production of high-spin isomers in proton induced reactions at 100-500 MeV on 181Ta, Physical Review, Part C, Nuclear Physics.2003;054611: 68.
- [19] Shigaev O.E., Bychenkov V.S., Lomanov M.F, Obukhov A.I., Perfilov N.A., Shimchuk G.G., Jakovlev R.M., The definition of anisotropy and fission cross sections as a function of Z**2/A at the proton energy 200 MeV, Khlopin Radiev, Inst., Leningrad Reports. 1973;number 17.
- [20] Vaishnene L.A., and et all, Izv. Rossiiskoi Akademii Nauk, Ser.Fiz.2010;74:529.
- [21] Harder K., F.Binash A., Kaminsky E., Mordhorst W., Scobel M., Trabandt R., Angle and Enrgy Differential Cross Sections For the (p,xn Reactions of 25,5 MeV protons with Pb-204-208), Hamburg Univ., Inst.f. Experimental physic Reports.1987; 87.