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FEED-FORWARD NEURAL NETWORKS REGRESSION ANALYSIS WITH GENETIC 

ALGORITHMS: APPLICATIONS IN ECONOMICS AND FINANCE 

Dr. Eleftherios Giovanis4 

Abstract 

In this paper feed-forward neural networks are examined using genetic algorithms in the 

training process instead of error backpropagation algorithm. Additionally, real encoding is preferred to 

binary encoding as it is more appropriate to find the optimum weights. Learning and momentum rates 

are used for the weight updating as in the case of the error backpropagation algorithm. Some empirical 

examples as well as the programming routines in MATLAB are provided in the paper. 
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GENETİK ALGORİTMALAR İÇEREN İLERİ BESLEMELİ SİNİR AĞLARI REGRESYON 

ANALİZLERİ: İKTİSAT VE FİNANS ALANINDA UYGULAMALAR 

Eleftherios Giovanis  

Özet 

Bu çalışmada ileri beslemeli sinir ağları, hata geriye yayma algoritması yerine öğrenme 

sürecinde genetik algoritmalar kullanılarak incelenmiştir. İlave olarak, optimal ağırlıkları bulmada 

daha uygun olduğundan ikil kodlama yerine gerçek kodlamanın kullanımı tercih edilmiştir. Hata 

geriye yayma algoritmasında olduğu gibi ağırlıkların güncellenmesi için öğrenme ve momentum 

katsayıları kullanılmıştır. MATLAB’da yapılan ampirik örnekler ve program yordamları çalışmada 

sunulmuştur.  

Anahtar Kelimeler: İleri Beslemeli Sinir Ağları, Genetik Algoritmalar, Zaman Serileri, Hisse Senedi 

Getirileri, Enflasyon Oranı, Yurtiçi Hasıla, Kestirim, MATLAB  

Jel Kodları: C15, C45, C63 
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1. Introduction 

In the 1950s and the 1960s several computer scientists independently studied evolutionary 

systems with the idea that evolution could be used as an optimization tool for engineering problems. 

The idea in all these systems was to evolve a population of candidate solutions to a given problem, 

using operators inspired by natural genetic variation and natural selection. Genetic Algorithm (GA) is 

a method for moving from one population of "chromosomes" e.g., strings of ones and zeros, or "bits", 

to a new population by using a kind of "natural selection" together with the genetics−inspired 

operators of crossover, mutation, and inversion. Each chromosome consists of "genes", each gene 

being an instance of a particular "allele" (e.g., 0 or 1). The selection operator chooses those 

chromosomes in the population that will be allowed to reproduce, and on average the fitter 

chromosomes produce more offspring than the less fit ones. Crossover exchanges subparts of two 

chromosomes, roughly mimicking biological recombination between two single−chromosome 

organisms. 

Μutation randomly changes the allele values of some locations in the chromosome. The purpose 

of our study is to present only the procedure and some empirical examples so we do not compare the 

results of other methods. Additionally, there are many models to compare with, as also even if we test 

for example ten different time-series in 50 countries it will not be enough. Furthermore, GAs are 

proposed for error minimizations, so GAs might be a good choice e.g. GARCH optimization among 

others. 

2. Methodology 

In its simplest "feed-forward" form, presented in figure 1, a neural network is a collection of 

connected activatable units -"neurons"- in which the connections are weighted, usually with 

real−valued weights. The activation coming into a unit from other units is multiplied by the weights on 

the links over which it spreads, and then is added together with other incoming activation. This 

process is meant to roughly mimic the way activation spreads through networks of neurons in the 

brain. In a feed-forward network, activation spreads only in a forward direction, from the input layer 

through the hidden layers to the output layer. 

 

 

 

 

Figure 1. A Simple Feed-Forward Neural Network 
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We minimize function (1) in order to find the optimum parameters. 
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, where yt is the target-actual, y is network’s output variable and mse is the mean squared error The 

steps of genetic algorithms are (Bäck, 1996; Mitchell, 1996): 

1. Start with a randomly generated population of n-bit chromosomes, which are the candidate solutions. 

In the case we do not use bit or binary encoding, but we use real number encoding based on the range 

of the input data. The chromosomes are equally with the number of weights for both input-to-hidden 

layer and hidden-to-output layer.  

2. Calculate the fitness f(x) of each chromosome x in the population  

3. Repeat the following steps until n offspring have been created:  

a. select a pair of parents chromosomes of the current population and compute the probability of 

selection being an increasing function of fitness. In this case we take the roulette wheel selection 

algorithm. Also the selection process is one with replacement meaning that the same chromosome can 

be selected more than once to become a parent.  
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b. The next step is the crossover. We use one-point crossover process with probability pc cross over the 

pair at a chosen point. If no crossover takes place we form two offspring that are exact copies of their 

respective parents.  

c. Mutate the two offspring with probability pm and place the resulting chromosomes in the new 

population.  

4. Replace the current population with the new population.  

5. Go to step 2.  

 

In the initialisation, the first thing to do is to decide the coding structure. Coding for a solution 

is termed as chromosome in GA literature. In figure 2 a standard procedure for a genetic algorithm is 

presented. 

Figure 2. Standard procedure of a canonical genetic algorithm 

 

 

 

  

GA uses proportional selection, the population of the next generation is determined by n 

independent random experiments; the probability that individual xi is selected from the tuple (x1, x2, . . 

. , xm) to be a member of the next generation at each experiment is given by: 
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This process (2) is the well-known roulette wheel selection Crossover is an important random 

operator in Canonical Genetic Algorithm (CGA) and the function of the crossover operator is to 

generate new or ‘child’ chromosomes from two ‘parent’ chromosomes by combining the information 



AYDIN İKTİSAT FAKÜLTESİ DERGİSİ CİLT.3 SAYI.1 
 

16 
 

extracted from the parents. The method of crossover used in CGA is the one-point crossover. Mutation 

operates independently on each individual by probabilistically perturbing each bit string. A usual way 

to mutate used in CGA is to generate a random number v between 1 and l and then make a random 

change in the vth element of the string with probability ranging between 0 and 1. Usually probability 

pm takes values between 0.001 and 0.01. Holland's schema−counting argument seems to imply that 

GAs should exhibit worse performance on multiple−character encodings than on binary encodings. 

However, this has been questioned by some studies (Antonisse, 1989). Several empirical comparisons 

between binary encodings and multiple−character or real−valued encodings have shown better 

performance for the latter (Janikow and Michalewicz, 1991; Wright, 1991). But the performance 

depends very much on the problem and the details of the GA being used, and at present there are no 

rigorous guidelines for predicting which encoding will work best. The second approach is to introduce 

a weighted regression of the following form: 

kjii wxy  )( 0                                                                                                                              (3) 

 

Where y and xi are the dependent and independent variables respectively, β0 is the constant or 

bias, βi are the estimated coefficients for i=1,2,…n inputs or independent variables and wkj is the final 

weight matrix from the hidden to input layer after the training process with genetics. In this case the 

neural network procedure minimizes the squares error of the residuals of equation (3). Alternatively, 

(3) can be written as: 

))(( 0 kjii wxfy                                                                                                                        (4) 

Where f denotes the transfer function. To be specific the dependent variable can be regressed on 

sigmoid, tangent hyperbolic, radial basis or any other function of the independent variables. 

3. Empirical Applications 

The first example is the inflation rate of USA in monthly data and we examine the period 1950-

2009. The training period is 1960-2008 and the testing period is 2009. We use as input data the 

inflation rate with one lag and we do not take bias. The population size is set up at 30, with 20 

iterations and chromosomes are equal with the number of weights, as mentioned previously, and differ 

in each case we examine. The crossover probability pc is set up at 0.2 and the mutation probability pm 

at 0.005. The transfer function from input to hidden is sigmoid and to the output is the linear. The out-

of-sample forecasts are presented in Figure 3. 

In the next example we examine again the inflation rate with AR(2) and with the second 

approach. Because the computation process takes a very long time we reduced the sample period and 

we obtain 1995-2007 as the training period and 2008 as testing periods. Additionally, we reduced the 
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number of iterations at 10. The population size is set up at 30. The crossover probability pc is set up at 

0.2 and the mutation probability pm at 0.005. The transfer functions from input to hidden and from 

hidden to output are linear. The in-sample and out-of-sample forecast are presented in Figures 4 and 5 

respectively. 

Figure 3. Out-of-sample forecasts for inflation rate 

 

 

Figure 4. In-sample forecasts for inflation rate with the second approach 

 

Figure 5. Out-of-sample forecasts for inflation rate with the second approach 

 

 

In Figure 6 we present the out-of-sample forecasts with the second approach and AR(2) with 
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constant. The other settings remain the same. Also in table 1 the estimated coefficient and their 

respective t-statistics are reported. 

Figure 6. Out-of-sample forecasts for inflation rate with the second approach and with constant 

 

 

In the next numerical application example, we examine the growth rate of Japanese gross 

domestic product. The training period is 1995-2006 and the period 2007-2009 is taken as the test 

sample. The setting are the same with those me set up previously, while we estimate an AR(1) with no 

constant, with linear transfer functions. In figure 7 the out-of-sample forecasts are presented. 

Figure 7. Out-of-sample forecasts for gross domestic product of Japan with the second approach 

and with no constant 

 

 

 

In the last example we implement is the day of the week effect for FTSE 100 stock index 

returns. The regression we estimate is: 

tt DDDDDr   5544332211                                                                                     (5) 
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Where rt denotes the stock index logarithmic returns, βi denotes the estimated coefficients for 

i=1,2..5, D1 is the dummy variable for Monday taking value 1 for returns on Monday and 0 otherwise 

and so on until dummy D5 is the dummy variable for Friday. Our purpose is not to investigate if 

actually there is a day of the week effect but to show that this model can be useful for multi-period 

ahead forecasts. Because the independent variables are known, because we know the days, while in 

other models it is very difficult or even almost impossible to know with precision the actual values of 

independent variables in a long period ahead. Besides that, we can examine also calendar anomalies as 

this might be useful because the Boolean classification of one and zero is not anymore correct, 

because it is not enough to set up 1 for the returns on the specific day. More specifically, each day 

presents different returns on each week and the traditional classification is not clear. For this reason, 

different weights are assigned in each day and in each week. We take the trading days of 2008-2009. 

To be specific the last 50 trading days of 2009 are taken as the test sample while the remaining period 

is obtained for the in-sample or training period. The population size is set up at 30, the crossover 

probability pc is set up at 0.2 and the mutation probability pm at 0.003. The number of iterations is 

only 10, while we get satisfying results and this number can be increased. The transfer function from 

input to hidden layer is the sigmoid, while linear function is used from hidden to output layer. The 

process of taking the forecasts is very simple. Based on the estimated coefficient through the training 

period and knowing the values of the independent variables, which are the dummies, then we just have 

the following: 

ii xy 
^

                                                                                                                                               (6) 

Where 
^

y  are the predicted values, βi are the estimated coefficients through the training period 

and xi is the test sample or a matrix containing the dummy variables. In Figure 8 we present the out-

of-sample or test sample forecasts. We observe that there are deviations but we get the correct sign in 

most cases. Additionally, if we had estimated, with autoregressive, moving average, GARCH models 

or random walk, the forecasts would remind to us a dead line. We do not have to present the results in 

stock forecasting as are already very known and can be replicated. So the approach we propose is 

much more superior. Furthermore, we chose mutation probability pm equal with 0.003. Changing the 

probability, the forecasts can be changed significant as well. We change the mutation probability pm 

at 0.002 and we present the forecasts in Figure 9. It should be noticed that the sample period might be 

long, so a 10 period ahead might be more appropriate. Additionally, we take of four year period for 

FTSE 100 and we estimate EGARCH (1,1), proposed by Nelson (1991), and in figure 10 we present 

the out-of-sample forecasts. We observe how poor the predicted values are, so our argument is that if a 

model presents too poor forecasts, why should present also reliable estimations? The problem is not 
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only to solve for autocorrelation and ARCH effects, but is also the using of a model presenting good 

high forecasting performance. We estimated EGARCH process because simple Autoregressive (AR), 

Moving Average (MA), Autoregressive Moving Average (ARMA) models, or random walk and other 

GARCH models presented a lower forecasting power. Additionally, because these approaches give 

poor forecasts might not also be appropriate for the examination of the day of the week effect. 

Figure 8. Out-of-sample forecasts for FTSE 100 with second approach and with mutation 

probability 0.003 

 

Figure 9. Out-of-sample forecasts for FTSE 100 with second approach and with mutation 

probability 0.002 
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Figure 10. Out-of-sample forecasts for FTSE 100 with EGARCH (1,1) 

 

It should be noticed that the length of sample plays a major and crucial role, because significant 

changes, in crossover and mutation probabilities, are needed in order to get satisfying forecasts. 

4 Conclusion 

We examined a simple approach of feed-forward neural networks combined with genetic 

algorithms. The encoding was based on real number, instead of binary encoding or bits, because this 

procedure is more appropriate to find the optimum weights. Additionally, we proposed a very simple 

regression based on the weighted independent variables derived by the training procedure.  
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Appendix 

MATLAB ROUTINE 1 

For feed-forward neural networks and genetics 

 

clear all; load file.mat 

transfer_function=4 % 1 for log-sigmoid, 2 for tangent 

hyperbolic, 3 for radbas and 4 for linear 

if transfer_function==1 % 1 for log-sigmoid, 2 for tangent 

hyperbolic, 3 for radbas and 4 for linear 

transfer_delta_function=1  

elseif transfer_function==2  

transfer_delta_function=2  

elseif transfer_function==3  

transfer_delta_function=3  

elseif transfer_function==4  
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transfer_delta_function=4  

end   

transfer_function_O=4 % 1 for log-sigmoid, 2 for tangent 

hyperbolic, 3 for radbas and 4 for linear 

constant=0   

pc=0.2; % Crossover rate 

pm=0.005; % Mutation rate 

nforecast=12 

y=data(1:end-nforecast,1) x=data(1:end-nforecast,2) 

if constant == 0 x=x 

elseif constant==1 x=[ones(nk,1) x]; 

end 

[nk ni]=size(x) 

n_outputs = 1; n_inputs = ni; 

num_hidden = ni; 

chrom =num_hidden*n_inputs + num_hidden*n_outputs; 

 chrom =num_hidden*(n_inputs+1) + (num_hidden + 1)*n_outputs; 

 lb= min(min(x)); % Lower bound of the parameters to be optimized ub=max(max(x));; %Upper 

bound of the parameters to be optimized 

popsize=30; 

chromlength=chrom; 

Range=repmat((ub-lb),[popsize chrom]) 

Lower = repmat(lb, [popsize chrom]); pop=rand(popsize, chromlength).*Range+ Lower 

f=x 

for iterations =1:20 

% chromosoms' fitness evaluation [px,py] = size(pop); 

Chromosome = pop; for i = 1:px 

for j = 1:num_hidden*ni 
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w1(j) = Chromosome (i,j); 

end 

w1 = reshape(w1,num_hidden,ni); 

k=1; 

for j = n_inputs*num_hidden+1:(num_hidden*ni + n_outputs*num_hidden) 

w2(k)= Chromosome (i,j); %w2=w2' 

k=k+1; 

end 

[X Y]=meshgrid(w2) w2=Y(:,1) 

k=1; 

for j = (num_hidden*n_inputs + n_outputs*num_hidden + 1):(num_hidden*n_inputs + ... 

n_outputs*num_hidden + num_hidden) input_hidden_Bias(k)= Chromosome (i,j); 

k=k+1; 

end 

k=1; 

for j = (num_hidden*n_inputs + n_outputs*num_hidden + num_hidden + 1):(num_hidden*n_inputs 

+... 

n_outputs*num_hidden + num_hidden +n_outputs) hidden_output_Bias(k)= Chromosome (i,j); 

k=k+1; 

end 

 if transfer_function==1 h=logsig(f*w1'); 

elseif transfer_function==2 h=tansig(f*w1'); 

elseif transfer_function==3 h=radbas(f*w1'); 

elseif transfer_function==4 h=purelin(f*w1'); 

end 

h1 = h 

if transfer_function_O==1; y1=logsig(h1*w2); 

elseif transfer_function_O==2; y1=tansig(h1*w2); 
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elseif transfer_function_O==3; y1=radbas(h1*w2); 

elseif transfer_function_O==4; y1=purelin(h1*w2); 

end 

err = (y-y1); 

err = reshape(err,nk*n_outputs,1); object_value(i)=1/2*mse(err) 

end 

fitvalue = object_value; totalfit=sum(fitvalue); fitvalue=fitvalue/totalfit; fitvalue=cumsum(fitvalue); 

[px,py]=size(pop); ms=sort(rand(px,1)); fitin=1; 

newin=1; 

while newin<=px if(ms(newin))<fitvalue(fitin) newpop(newin,:)=pop(fitin,:); newin=newin+1; 

else fitin=fitin+1; end 

end 

% crossover between chromosoms 

 pop = newpop; 

length_chrom = size(pop,2); 

c_point = ceil(rand(size(pop,1)/2,1)*(length_chrom-1)); c_point = c_point.*(rand(size(c_point))<pc); 

for i = 1:length(c_point); 

newpop([2*i-1 2*i],:) = [pop([2*i-1 2*i],1:c_point(i)) pop([2*i 2*i-1],c_point(i)+1:length_chrom)]; 

end 

% mutation of chromosoms pop = newpop; 

mutated = find(rand(size(pop))<pm); newpop = pop; 

newpop(mutated) = 1-pop(mutated); 

% finding the best individual pop = newpop; 

bestindividual=pop(1,:); 

bestfit=fitvalue(1); for i=2:px 

if fitvalue(i)<bestfit bestindividual=pop(i,:); bestfit=fitvalue(i); 

end end 

best_gen=bestindividual 
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for j = 1:num_hidden*ni w1(j) = best_gen (1,j); 

end 

k=1; 

for j = ni*num_hidden+1:(num_hidden*ni + n_outputs*num_hidden) w2(k)= best_gen (1,j); 

k=k+1; 

end 

iterations=iterations+1 iterations 

arraygbest ( iterations )= bestfit; indexiter ( iterations ) = iterations; end 

%end test_sample=data(end-nforecast:end-1,2) test_y=data(end-nforecast+1:end,1) 

tt=length(test_sample) 

if constant==0 test_sample=test_sample elseif constant==1 

test_sample=[ones(size(test_y)) test_sample] 

end 

if transfer_function==1 

 yfore=logsig(test_sample*w1) yfore=logsig(yfore*w2) 

elseif transfer_function==2 

yfore=tansig(test_sample*w1) 

yfore=tansig(yfore*w2) 

elseif transfer_function==3 yfore=radbas(test_sample*w1) 

yfore=radbas(yfore*w2) 

elseif transfer_function==4 yfore=test_sample*w1 

yfore=yfore*w2 end 

 

figure, plot(y,'-r'); hold on; plot(y1,'-b'); xlabel('Periods') 

ylabel('Values') %title('In_sample forecasts') 

h1 = legend('Actual','forecasts',1); 

figure, plot(test_y,'-r'); hold on; plot(yfore,'-b'); xlabel('Periods') 

ylabel('Values') %title('Out_of_sample forecasts') 
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h = legend('Actual','forecasts',1); figure, plot (indexiter , array_y); xlabel('epochs') 

ylabel('Error') title('Number of Epochs') 

 

MATLAB ROUTINE 2 

 

For genetics with second approach and minimization of regression residuals 

%function [bols]   = ar_afnn_gen(y,lag,constant,criteria) 

clear all; load file.mat 

transfer_function=4 % 1 for log-sigmoid, 2 for tangent 

hyperbolic, 3 for radbas and 4 for linear   

if transfer_function==1 % 1 for log-sigmoid, 2 for tangent 

hyperbolic, 3 for radbas and 4 for linear   

transfer_delta_function=1 

elseif transfer_function==2 transfer_delta_function=2 

elseif transfer_function==3 transfer_delta_function=3 

elseif transfer_function==4 

 transfer_delta_function=4 end 

transfer_function_O=4 % 1 for log-sigmoid, 2 for tangent hyperbolic, 3 for radbas and 4 for linear 

nlag=2 % Lag order  

constant=1    

pc=0.2; % Crossover rate 

pm=0.001;  % Mutation rate 

nforecast=12 

for jj=nforecast:-1:1 

y= data(1:end-jj,1); 

clear x 

for pp=1:nlag 

x(:,pp)=lagmatrix(y,pp) 
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end 

 i1 = find(isnan(x));  

i2 = find(isnan(diff([x ; zeros(1,size(x,2))]) .* x)); 

if (length(i1) ~= length(i2)) || any(i1 - i2) 

 error('Series cannot contain NaN).') 

end    

if any(sum(isnan(x)) == size(x,1)) 

 error('A realization of ''x'' is completely missing 

(all 

NaN''s).')  

end    

first_Row  =  max(sum(isnan(x))) + 1; 

x  =  x(first_Row:end , :); 

y=y(first_Row:end,:) [nk ni]=size(x) 

if constant == 0 x=x 

elseif constant==1 x=[ones(nk,1) x]; 

end 

[nk ni]=size(x) 

n_outputs = 1; n_inputs = ni; 

num_hidden = ni; 

chrom =num_hidden*n_inputs + num_hidden*n_outputs; 

lb= min(min(x)); % Lower bound of the parameters to be optimized ub=max(max(x));; %Upper bound 

of the parameters to be optimized 

popsize=30; 

chromlength=chrom; 

Range = repmat((ub-lb),[popsize chrom]); Lower = repmat(lb, [popsize chrom]); 

pop= rand(popsize,chrom) .* Range + Lower; 

f=x 
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for iterations =1:10 

% chromosoms' fitness evaluation [px,py] = size(pop); 

Chromosome = pop; for i = 1:px 

for j = 1:num_hidden*ni 

w1(j) = Chromosome (i,j); 

end 

w1 = reshape(w1,num_hidden,ni); 

k=1; 

for j = n_inputs*num_hidden+1:(num_hidden*ni + n_outputs*num_hidden) 

w2(k)= Chromosome (i,j); 

k=k+1; 

end 

[X Y]=meshgrid(w2) w2=Y(:,1) 

if transfer_function==1 h=logsig(f*w1); 

elseif transfer_function==2 h=tansig(f*w1'); 

elseif transfer_function==3 h=radbas(f*w1'); 

elseif transfer_function==4 

h=purelin(f*w1'); end 

h1 = [h] 

if transfer_function_O==1; y1=logsig(h1*w2); 

elseif transfer_function_O==2; y1=tansig(h1*w2); 

elseif transfer_function_O==3; y1=radbas(h1*w2); 

elseif transfer_function_O==4; y1=purelin(h1*w2); 

end 

newx=x*w1 

bols=inv(newx'*newx)*newx'*y err = y-newx*bols 

err = reshape(err,nk*n_outputs,1); object_value(i)=1/2*mse(err) 

end 
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fitvalue = object_value; totalfit=sum(fitvalue); fitvalue=fitvalue/totalfit; fitvalue=cumsum(fitvalue); 

[px,py]=size(pop); ms=sort(rand(px,1)); fitin=1; 

newin=1; 

while newin<=px if(ms(newin))<fitvalue(fitin) newpop(newin,:)=pop(fitin,:); newin=newin+1; 

else fitin=fitin+1; end 

end 

% crossover between chromosoms pop = newpop; 

length_chrom = size(pop,2); 

c_point = ceil(rand(size(pop,1)/2,1)*(length_chrom-1)); c_point = c_point.*(rand(size(c_point))<pc); 

for i = 1:length(c_point); 

newpop([2*i-1 2*i],:) = [pop([2*i-1 2*i],1:c_point(i)) pop([2*i 2*i-1],c_point(i)+1:length_chrom)]; 

end 

 % mutation of chromosoms pop = newpop; 

mutated = find(rand(size(pop))<pm); newpop = pop; 

newpop(mutated) = 1-pop(mutated); 

% finding the best individual pop = newpop; 

bestindividual=pop(1,:); 

bestfit=fitvalue(1); for i=2:px 

if fitvalue(i)<bestfit bestindividual=pop(i,:); bestfit=fitvalue(i); 

end end 

best_gen=bestindividual 

for j = 1:num_hidden*ni w1(j) = best_gen (1,j); 

end 

k=1; 

for j = ni*num_hidden+1:(num_hidden*ni + n_outputs*num_hidden) w2(k)= best_gen (1,j); 

k=k+1; 

end 

newx=x*w1 
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bols=inv(newx'*newx)*newx'*y 

xp=y(end-nlag+1:end,:) %yhat_out3(ii,:)=xp'*bols if constant==0 

yhat(jj,:)=[y(end,:) newx(end,1:end-1)]*bols elseif constant==1 

yhat(jj,:)=[newx(end,1) y(end,:) newx(end,2:end-1)]*bols 

end 

iterations=iterations+1 iterations 

arraygbest ( iterations )= bestfit; indexiter ( iterations ) = iterations; end 

end 

s2 = (y-newx*bols)'*(y-newx*bols)/(nk-ni); 

Vb=s2*inv(newx'*newx); % Get the variance-covariance 

matrix   

se=sqrt(diag(Vb)); % Get coefficient standard errors 

 tstudent=bols./se; % Get t-statistics 

for iii=1:nforecast yfore(iii,:)=yhat(end-iii+1,:) iii=iii+1 

end test_y=dat(end-nforecast+1:end,1) 

figure, plot(y,'-r'); hold on; plot(y1,'-b'); xlabel('Periods') 

ylabel('Values') %title('In_sample forecasts') 

h1 = legend('Actual','forecasts',1); 

figure, plot(test_y,'-r'); hold on; plot(yfore,'-b'); xlabel('Periods') 

ylabel('Values') %title('Out_of_sample forecasts') 

h = legend('Actual','forecasts',1); figure, plot (indexiter , arraygbest ); xlabel('epochs') 

ylabel('Error') title('Number of Epochs') 

 

MATLAB ROUTINE 3 

An example for the day of the week effects in FTSE 100 and the second approach 

clear all; load file.mat 

% data is a matrix where the first column contains the stock returns and the remaining are the dummy 

variables. 
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transfer_function=1 % 1 for log-sigmoid, 2 for tangent 

hyperbolic, 3 for radbas and 4 for linear   

if transfer_function==1 % 1 for log-sigmoid, 2 for tangent 

hyperbolic, 3 for radbas and 4 for linear transfer_delta_function=1 

elseif transfer_function==2 transfer_delta_function=2 

elseif transfer_function==3 transfer_delta_function=3 

elseif transfer_function==4 transfer_delta_function=4 end 

transfer_function_O=4 % 1 for log-sigmoid, 2 for tangent hyperbolic, 3 for radbas and 4 for linear 

pc=0.2; % Crossover rate 

pm=0.002; % Mutation rate 

nforecast=50 

y=data(1:end- nforecast,1) x=data(1:end-nforecast,2:end) 

[nk ni]=size(x) 

n_outputs = 1; n_inputs = ni; 

num_hidden = ni; 

chrom =num_hidden*n_inputs + num_hidden*n_outputs; 

lb= min(min(x)); % Lower bound of the parameters to be optimized ub=max(max(x));; %Upper bound 

of the parameters to be optimized 

popsize=30; 

chromlength=chrom; 

Range = repmat((ub-lb),[popsize chrom]); Lower = repmat(lb, [popsize chrom]); 

pop= rand(popsize,chrom) .* Range 

f=x 

for iterations =1:10 

% chromosoms' fitness evaluation [px,py] = size(pop); 

Chromosome = pop; for i = 1:px 

for j = 1:num_hidden*ni 

w1(j) = Chromosome (i,j); 
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end 

w1 = reshape(w1,num_hidden,ni); 

k=1; 

for j = n_inputs*num_hidden+1:(num_hidden*ni + n_outputs*num_hidden) 

w2(k)= Chromosome (i,j); k=k+1; 

end 

[X Y]=meshgrid(w2) w2=Y(:,1) 

if transfer_function==1 h=logsig(f*w1); 

 elseif transfer_function==2 h=tansig(f*w1'); 

elseif transfer_function==3 h=radbas(f*w1'); 

elseif transfer_function==4 h=purelin(f*w1'); 

end 

h1 = [h] 

if transfer_function_O==1; y1=logsig(h1*w2); 

elseif transfer_function_O==2; y1=tansig(h1*w2); 

elseif transfer_function_O==3; y1=radbas(h1*w2); 

elseif transfer_function_O==4; y1=purelin(h1*w2); 

end 

newx=x*w1 

bols=inv(newx'*newx)*newx'*y err = y-newx*bols object_value(i)=1/2*mse(err) 

end 

fitvalue = object_value; totalfit=sum(fitvalue); fitvalue=fitvalue/totalfit; fitvalue=cumsum(fitvalue); 

[px,py]=size(pop); ms=sort(rand(px,1)); fitin=1; 

newin=1; 

while newin<=px if(ms(newin))<fitvalue(fitin) newpop(newin,:)=pop(fitin,:); newin=newin+1; 

else fitin=fitin+1; end 

end 

% crossover between chromosoms pop = newpop; 
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length_chrom = size(pop,2); 

c_point = ceil(rand(size(pop,1)/2,1)*(length_chrom-1)); c_point = c_point.*(rand(size(c_point))<pc); 

for i = 1:length(c_point); 

newpop([2*i-1 2*i],:) = [pop([2*i-1 2*i],1:c_point(i)) pop([2*i 2*i-1],c_point(i)+1:length_chrom)]; 

 end 

% mutation of chromosoms pop = newpop; 

mutated = find(rand(size(pop))<pm); newpop = pop; 

newpop(mutated) = 1-pop(mutated); 

% finding the best individual pop = newpop; 

bestindividual=pop(1,:); 

bestfit=fitvalue(1); for i=2:px 

if fitvalue(i)<bestfit bestindividual=pop(i,:); bestfit=fitvalue(i); 

end end 

best_gen=bestindividual 

for j = 1:num_hidden*ni w1(j) = best_gen (1,j); 

end 

k=1; 

for j = ni*num_hidden+1:(num_hidden*ni + n_outputs*num_hidden) w2(k)= best_gen (1,j); 

k=k+1; 

end iterations=iterations+1 ( iterations )= bestfit; 

indexiter ( iterations ) = iterations; end 

test_y=data(end-nforecast+1:end,1) test_x=data(end-nforecast+1:end,2:end) 

yfore=test_x*bols 

s2 = (y-newx*bols)'*(y-newx*bols)/(nk-ni); 

Vb=s2*inv(newx'*newx); % Get the variance-covariance 

matrix   

se=sqrt(diag(Vb)); % Get coefficient standard errors 

tstudent=bols./se;   
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figure, plot(test_y,'-r'); hold on; plot(yfore,'-b'); xlabel('Periods') 

ylabel('Values') %title('Out_of_sample forecasts') 

h = legend('Actual','forecasts',1); figure, plot (indexiter , array_y); xlabel('epochs') 

ylabel('Error') title('Number of Epochs') 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


